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Abstract: Lung CT image segmentation is a key process in many applications such as lung cancer
detection. It is considered a challenging problem due to existing similar image densities in the
pulmonary structures, different types of scanners, and scanning protocols. Most of the current
semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of
accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years,
several approaches, based on a deep learning framework, have been effectively applied in medical
image segmentation. Among existing deep neural networks, the U-Net has provided great success
in this field. In this paper, we propose a deep neural network architecture to perform an automatic
lung CT image segmentation process. In the proposed method, several extensive preprocessing
techniques are applied to raw CT images. Then, ground truths corresponding to these images
are extracted via some morphological operations and manual reforms. Finally, all the prepared
images with the corresponding ground truth are fed into a modified U-Net in which the encoder is
replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture,
we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced
integrator module instead of simple traditional concatenators. This is to merge the extracted feature
maps of the corresponding contracting path into the previous expansion of the up-convolutional
layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results
of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of
the proposed method where a dice coefficient index of 97.31% is achieved.

Keywords: segmentation; lung; CT image; U-Net; ResNet-34; BConvLSTM

1. Introduction

Lung cancer is known as the second most prevalent type of cancers in both genders in
the world [1]. According to the World Health Organization (WHO), lung cancer is responsi-
ble for 1.3 million deaths per year in the world [2]. It is estimated that around 228,820 new
lung cancer cases (116,300 in men and 112,520 in women) and around 135,720 deaths from
this disease (72,500 in men and 63,220 in women) are identified in the United States each
year [3]. Lung cancer is known as a malignant tumor characterized by the unnatural growth
of the cell in the lung tissue. Rapid diagnosis of this cancer can significantly decrease the
death rate and enhance patient survival chances. This is very important in improving the
clinical situation of patients. Thus, it is necessary to present an intelligent algorithm for the
early diagnosing of lung cancer.

Recent advances in computer vision and image processing technologies have signifi-
cantly helped the healthcare systems particularly in the analysis of medical images. In this
regard, image segmentation is widely used as one of the most fundamental, useful, and
well-studied topics in image analysis. Image segmentation can significantly improve the
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recognizability of parts of an image by assigning a label to each pixel in the image such
that those pixels with the same labels have similar visual features characteristics.

Segmentation is a substantial process in medical image processing and can reveal very
useful information concealed in the images. In some medical applications, the classification
of image pixels into descriptive regions, such as bones and blood vessels, is of interest.
While in other applications it is more appropriate to look for pathological regions, such as
cancer or tissue deformities [4]. One of the most important segmentation tasks in medical
images is to identify redundant pixels or unwanted regions located as background. This
segmentation is considered as one of the most challenging steps, especially in CT (computed
tomography) or MRI (magnetic resonance imaging), to provide critical information about
the shapes and volume of body organs. In other words, the overall performance of
automated cancer detection is highly dependent on the output of the segmentation stage [5].

In the lung segmentation stage, we seek to distinguish those pixels associated with
the lung from every other pixel in the surrounding anatomy. Radiologists often use a CAD
(computer-aided design) system to provide a secondary consideration for an accurate diag-
nosis. This method is useful for improving the efficacy of the cure. For many CAD systems,
a precise segmentation process of the target organ is required, which is a fundamental step
and a prerequisite for effective image analysis. The segmentation of lung fields is particu-
larly challenging because the lung zone is highly inhomogeneous. In addition, pulmonary
structures present similar congestions in different scanners and scanning protocols which
make the segmentation difficult. It becomes even more challenging because of the presence
of nodules attached closely to the lung wall. Figure 1 offers two examples of lung CT scans
that show the exact location of the node attached to the lung wall. This figure also clearly
represents the challenge of dividing the lungs despite these nodules.
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Figure 1. Two examples of nodules attached to the lung wall in CT-scan images. (a). represents one nodule attaching to the
outer wall of the lung, (b). represents one nodule attaching to the outer wall of the lung (orange arrows).

Medical image segmentation is an important and inseparable step in the diagnosis
process. For example, in the process of diagnosing lung cancer, the main steps are as follows:
(1) image pre-processing; (2) image segmentation; (3) feature extraction; (4) lung cancer
identification; (5) diagnosis of the disease [6,7]. It so happens that various algorithms
directly use the segmentation step in their work [8–10]. For example, Wang et al. [10]
conducted a study on differentiating COVID-19 from non-COVID-19 CT scans. In their
proposed method, images of patients were first segmented during a single step using a
deep neural network. Then, the images and tags were given to a network for classification.
They could achieve a 0.959 ROC AUC score. Unlike the previous example, some methods
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extract the region of interest and do segmentation indirectly within the feature extraction
stage [11–13]. For example, Pathak et al. [13] proposed a system for the detection of
COVID-19 in CT scans that considered a prepressed transfer learning. The system used
a neural network to extract the features from CT images, and a 2D convolutional neural
network was considered for the classification. The proposed system was tested on 413
COVID-19 and 439 non-COVID19 images with 10-fold cross-validation, and it achieved
93.01% accuracy.

It is clear that medical image segmentation is always accompanied by disease detection
algorithms. However, algorithms that specifically try to segment with high accuracy will
ultimately perform better for the diagnostic model. For this reason, we will also present a
robust system for accurate segmentation of the lung area in this article.

Generally, many techniques have been reported in the literature for the segmentation
of medical images. The most important drawback of the existing methods is relying on the
utilization of manual (hand-crafted) features to successfully segment the regions of interest.
In addition, most techniques are unable to segment nodules attached to the lung wall.
Recent advances in medical image processing by using deep learning-based methods have
revealed great influences in clinical applications. These methods can appropriately learn
important features of medical images and consequently overcome the limitation of hand-
crafted features [14]. In this paper, we propose a deep learning-based method to accurately
segment the lung tissue. In order to achieve a successful segmentation, we require the raw
CT images with their associated ground truths. Unfortunately, current lung CT databases
do not come with binary masks (ground truths). Hence, we propose a semi-automatic
method to resolve this issue by producing the corresponding masks. Then, we apply
appropriate pre-processing steps in order to enhance the quality of images used in the
training phase. In the last phase, all these pre-processed images with corresponding binary
masks are fed into a deep neural network. Our proposed deep model is a combination
of the ResNet and BCDU-Net. In fact, the backbone and the basis of the deep learning
network used in this paper are BCDU-Net. On the other hand, using pre-trained networks
such as ResNet, which have been trained in the ImageNet data collection, increases the
speed of training and the power of the network extension. So, the proposed method in this
paper is a novel BCDU-Net architecture that takes the advantage of ResNet-34 instead of
ordinary convolution layers in the encoding section.

The contributions of the current manuscript are:

• Applying novel extensive preprocessing techniques to improve quality of the raw images.
• Proposing a new method for extracting ground truths corresponding to the input images.
• Employing a new deep learning-based algorithm for proper segmentation of lungs.

The rest of this paper is organized as follows: Section 2 reviews some previous
segmentation models. Section 3 introduces the proposed method in detail. Section 4 is
devoted to evaluating the performance of our method through extensive experiments.
Section 5 draws some conclusions. Section 6 highlights future works.

2. Related Works

There are several techniques that have been developed to address the segmentation
task. Most of these approaches are mainly divided into five categories: threshold-based,
edge-detection, region growing, deformable boundary, and learning-based methods. In
what follows, we briefly review these categories.

2.1. Threshold-Based Methods

Since the lungs are filled with air during the CT scan, they are characterized by dark
areas in the associated grayscale image. Therefore, threshold-based approaches rely on this
principle that normal lung tissues have less density than the surrounding regions. On this
basis, the lung regions are separated by specifying a suitable threshold on the images [15].
These approaches are of the most popular lung segmentation methods because of their
simplicity in performance and computation. They can also be used in real-time applications.
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However, these methods have some deficiencies in lung segmentation. (1) They are not able
to effectively remove the trachea and main stem bronchi [16]. (2) Due to various conditions
in different images like air volume and image acquisition protocol, a universal gray-level
segmentation threshold would not be suitable [17]. (3) They are not often successful in cases
where anomalies represent higher densities compared to those in natural lung tissues [18].

2.2. Edge-Detection Methods

Lung segmentation can be also performed by using edge detection techniques. Edge
in image processing is defined as the boundary between the two regions with relatively
distinct gray surface properties. Some of the well-established spatial edge detection tech-
niques are Prewitt, Robert, Sobel, Prewitt, Laplacian, and Canny. In what follows, we refer
to canny as the most effective edge detector algorithm.

Canny is a well-known conventional edge detection algorithm. It can find the edges
of image regions by isolating noise from the image. The main advantage of this method
is that it does not affect the properties of the image edges and find edges and critical
thresholds. Canny is capable of achieving three important properties, i.e., great localization
of edge points, small error rate, and one-to-one responses to every single edge. As a
result, it normally performs well, thus, it is considered as one of the best methods to
extract the edges compared to other existing methods [19]. Shin et al. [20] demonstrated
the performance evaluation of different edge detectors and concluded that the Canny
detector has the best performance and robustness compared to other edge detectors. In this
regard, Campadelli et al. [21] detected edges from chest radiograph images and achieved
an accuracy of 94.37%. Mendonca et al. [22] identified the image edges using a spatial
detector for lung tissue segmentation in radiograph images. They used 47 radiograph
images and achieved a sensitivity of 0.9225 and a positive predictive value of 0.968.

In brief, the benefits of edge-based methods are (1) performing well in discriminating
between the background and the objects within an image, (2) high-level approach in
image segmentation similar to the way human perception segments the images. The main
deficiencies of these methods are: (1) sensitivity to noise, (2) working inappropriately on
images with smooth transitions and low contrast.

2.3. Region Growing Methods

Segmentations based on image regions are called region growing techniques. The basic
idea in this method is to collect pixels posing similar characteristics within a commonly
formed area. In another word, this category of methods starts the segmentation process
with a set of seeds. The seeds in any given image, can either be one single pixel or a
group of several pixels. After forming the seeds, the next step is to determine whether the
neighboring pixels must be added to the region or not. This is decided based on similarity
criteria such as color, intensity, variance, texture, and motion. Gradually, these pixels
begin to grow and form regions. Finally, when the image is completely divided by all the
growing regions and all the textural stages of the image are obtained as the boundaries
of the final regions, the algorithm is terminated. Region growing methods are utilized
in many medical applications such as cavities segmentation in the cardiac images [23],
blood vessel extraction in the angiographic data [24], renal segmentation [25], brain surface
extraction [26], and lung CT image segmentation [27].

Region growing technique has some advantages including low computational com-
plexity and high speed. However, its performance is highly dependent on the location of the
seed points and the growing conditions. It can be stated that region growing methods are
sensitive to noise or variation of intensity. This could result in holes or over-segmentation
and also dependency performance on its initial seeds. Its particular disadvantage in lung CT
images is that it cannot segment the nodules attached to the borders of the lung image [13].
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2.4. Deformable Boundary Models

These models consider the entire object’s boundary and can incorporate prior knowl-
edge about the object’s shape as a constraint toward a precise segmentation outcome. For
example, in lung segmentation, the boundary of the lung is determined by the evolution of
particular interior and exterior forces to fit the shape of the lung. Therefore, the parametric
representations used in these models can provide a concise and analytical description of
the lung. The most popular approach in deformable models is an active contour model
or snake [28]. Itai et al. [29] segmented the lung region from a CT image using a 2D para-
metric deformable model, called the SNAKES algorithm, without considering any manual
operations. Shi et al. [30] proposed an extraction technique for the lung region by using a
new deformable model through radiograph images.

Also, there exist some active contour models with many privileges such as providing
smooth and closed segmented contours and obtaining sub-pixel details of the object’s
boundaries [14]. However, one of the limitations of these models is that they often require
human interaction within the construction of the initial contour. Therefore, they normally
perform poorly in non-interactive applications, as the algorithm cannot be initialized close
to the desired structure of interest. Another limitation of the SNAKE model is that they
have weak convergence in the face of boundary concavities.

2.5. Learning-Based Models

Learning-based approaches are presented in the area of segmentation of medical im-
ages as well. In traditional learning-based methods, the segmentation process is addressed
as engineered features. Pixel classification-based approach [31] is known as one of the
most important categories in these techniques. However, it is very challenging to select
sub-pixels and extract some features to train the classification of a greater number of pixels.
To overcome this problem a super pixel learning-based method have used in [32] to prune
the pixels and merge them with the confined regions of shape constraints to segment lung
CT images. Generally, these methods have two shortcomings to extract the features. The
first drawback is relying on using hand-crafted features to achieve the segmentation results.
Another limitation is that designing the representative features for different applications is
very difficult.

Segmentation techniques based on deep learning can be ranked as pixel-based learn-
ing techniques for classification. Unlike conventional pixel or super-pixel classification
methods, which often use hand-crafted features, deep learning approaches can process
natural data in its raw form as well as learning features and overcoming the limitations
of hand-crafted features [19]. These approaches have predominately utilized for semantic
segmentation of natural image scenes and have also found many applications in biomedical
image segmentation tasks. They also contributed to decrease the manual manipulations
needed for segmentation and improving the accuracy and speed of segmentation. One
of the most important recent applications of segmentation is to accurately quantify the
COVID-19 virus effects. In [33], a new deep-learning-based method is used for auto-
matic screening of COVID-19 with limited samples in order to complete the screening of
COVID-19 and prevent further spread of the virus.

Previous deep learning methods purposed for medical image segmentation are mostly
based on the patches of images. Convolutional neural network (CNN) is the most success-
ful and widely used approach among many deep learning architectures community for
medical image analysis [34]. It is easy to use CNN to classify each pixel in the image sepa-
rately by offering the extracted neighboring regions of a particular pixel. For example, the
authors in [35] proposed a method based on light patches and sliding windows neuronal
membranes segmentation in microscopic images. This method has two deficiencies: redun-
dant computation caused from sliding window and huge overlap within input patches
from neighbor pixels.

To overcome these problems, the use of a fully convolutional network (FCN) was
introduced by Long et al. [36] in which the last fully connected layers of the CNN
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replaced by transpose convolutional layers. With emerging of the end-to-end FCN,
Ronneberger et al. [37], using the idea of the FCN, proposed U-shape Net (U-Net) frame-
work for biomedical image segmentation. U-Net is one of the most popular FCNs for
segmentation of medical images. U-Net configuration (Figure 2) comprises two paths; a
contracting path to capture context and a symmetric expanding path to obtain accurate
localization. The contraction path includes consecutive convolutional layers and max-
pooling layer. It is used to extract attributes while constraining the attributes map size.
The expansion path achieves up-conversion and has the convolution layers to retrieve the
size of the feature maps with the loss of localization knowledge. Also, the localization
information is shared from the contraction layer to the expansion layer by applying skip
connections. These connections are utilized in parallel and allows data to be transmitted
directly from a network block to another with no extra computational cost. Ultimately, the
convolution layer draws the attribute vector to the number of classes required at the final
partitioning output. The U-Net model has some advantages compared to other patch-based
segmentation approaches [38]: (1) It works well with very few training data. (2) It can uti-
lize the global location and context information simultaneously. (3) It ensures maintenance
of the complete texture of the input images.
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Figure 2. The U-Net architecture [37]. In the contraction path of this network, feature channels are doubled in each
down-sampling. Conversely, the expansion path is responsible for decreasing feature channels. The skip connections are
also displayed with gray arrows drawn to incorporate two feature maps.

U-Net has offered state-of-the-art performance in biomedical image segmentation.
In recent years, different extensions of U-Net have been proposed [39–43]. For example,
Milletari et al. [39] proposed V-Net as an extension of U-Net for 3D medical image seg-
mentation. Furthermore, in an extended paper, Cicek [40] proposed a U-Net architecture
for 3D images. Zhou et al. [41] developed a nested U-Net architecture. Other researchers
have developed various extensions of the U-net. The most significant changes in these
methods are mainly related to the skip connections. For example, in Attention U-Net [42],
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the extracted features at the skip connection are transferred to a processing stage first, and
then they are concatenated to each other. One of the limitations of these networks is their
two-stage process, i.e., first applying separate processing steps to each group feature map
and then concatenating the feature maps together. In [43], a residual attention U-Net was
proposed for automated segmentation of COVID-19 Chest CT images. This deep learning
model is based on U-Net which uses the residual network and attention mechanism to
enhance feature extraction and generate high-quality multi-class segmentation results. The
use of this method has led to 10% improvement in the segmentation performance.

In order to improve the original U-Net network, instead of using the desired convolu-
tion layers, various other architectures can be used in the encoding part of this network. For
example, a U-Net-based network is presented in [44] wherein the ResNet34 pre-training
model is used in its contraction path (left U). The greatest advantage of this modification is
increasing the speed of training and the power of the network extension.

In another work, U-Net has been extended to a network called BCDU-Net [45] and
achieved better performance than modern alternatives for medical image segmentation. In
this network, the encoding path includes four stages. Each stage is composed of two 3 × 3
convolutional filters on the image. After each convolution filter, there is a 2× 2 max-pooling
and a RELU activator. These three layers together form a down-sampling process. In each
down-sampling, feature channels are doubled. The encoding path gradually extracts the
representation of images and increases the dimensions of the representation layer by layer.
This network offers two contributions. First, it uses densely connected convolutions to
prevent the learning redundant features problem in successive convolutions in the last
encoding path layer of general U-Net. Second, batch normalization is utilized in the
decoding path after each up-sampling stage. Batch normalization helps to improve the
performance, speed, and stability of neural networks. The resulting output from the batch
normalization function is given to a bidirectional convolutional LSTM [46] (BConvLSTM).
The feature maps are processed with BConvLSTM to integrate in a more complex way than
simple concatenation in U-Net. BConvLSTM itself applies two ConvLSTMs on the input
data in both forward and backward directions and then determines the data dependencies
in both directions.

According to the above discussions and also the pre-trained ResNet framework [47] that
makes the neural network wider, deeper, and faster, we propose an architecture that is mainly
inspired by BCDU-Net and ResNet34 to automatically segment the lung CT images. In the
next section, the proposed model will be described and presented with all the required details.

3. Proposed Method

The proposed model encompasses three major steps: (1) ground truth extraction,
(2) image pre-processing and data preparation, and (3) deep learning-based segmentation.
Moreover, our novel deep learning model is composed of BCDU-Net and ResNet34. The
block-diagram of different steps of the proposed method is depicted in Figure 3. In what
follows, we first introduce the database used in this study followed by a description of
the process of semi-automatically re-producing database images. Then, we provide pre-
processing operations to prepare data stepwise. Finally, we describe the method based on
deep learning to segment these images and the corresponding masks.
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3.1. DICOM Images Reading

In this paper, we used the LIDC-IDRI dataset which involves lung cancer CT scans with
marked-up annotated lesions as well as diagnostic information [48]. It is an internationally
available resource of development, training, and assessment of diagnostic methods used
by the computer (CAD) to diagnose lung cancer. All CT scans are in DICOM format
and measured in HU and they have three channels and a resolution of 512 × 512. The
original DICOM images and their corresponding XML files are related to 1018 CT scans of
1010 patients registered in this data collection. These images consist of a chest CT scan and
an XML file annotated by four professional medical experts. The first step is to read and
import these DICOM images.

3.2. Ground Truth (GT) Extraction

Our deep learning architecture requires both input images and their corresponding
ground truth for successful segmentation. This database lacks labels for lung images, thus,
we need to manually extract every ground truth for CT images. Ground truth is in form of
masks that could be used to extract ROI from images to be then fed to the deep learning
model. Because the ground truth plays a vital role in the segmentation process, custom
masks were created using a semi-automatic technique so that they could be verified to
be ‘correct’.

In the CT scans, the lungs are declared as dark zones, while lighter areas inside the
lungs are considered to be blood vessels or air. The purpose of this step is to extract lung
regions as accurately as possible from each CT scans slice. This step should be performed
with extra care to avoid missing any region of interest particularly those attached to the
lung wall. Seven steps are carried out to get the masked lungs. These are as follows [22]:

1. Conversion to binary image: In the first step, slices of DICOM images are converted
into binary using the threshold method represented by Equation (1). A threshold
of -604 HU was applied to extract lung parenchyma [23]. The transformed image to
binary is shown in Figure 4b.

Binary (i, j) =
{

1 if f (i, j) < T
0 otherwise

, T = 604 (1)

2. Removing the blobs connected to the CT image border: To classify the images correctly,
the regions connected to the image border are removed, as shown in Figure 4c.

3. Labelling the image: Pixel neighbourhoods with the same intensity level can consider
being a connected region. When this process is applied to the entire image some
connected regions are formed. Figure 4a shows connected regions of integer array of
the images that are labelled.

Sensors 2021, 21, x 9 of 24 
 

   

(a) (b) (c) 

Figure 4. (a). Main CT image, (b). Binary image, (c). Image after eliminating border blobs. 

3. Labelling the image: Pixel neighbourhoods with the same intensity level can consider 

being a connected region. When this process is applied to the entire image some con-

nected regions are formed. Figure 4a shows connected regions of integer array of the 

images that are labelled. 

4. Keeping the labels with two largest areas: As shown in Figure 5b, labels with the two 

largest areas (both lungs) are kept whereas the tissues with areas less than the ex-

pected lungs are removed. 

  

(a) (b) 

Figure 5. (a). Labeled image, (b). Image with the two largest labeled areas kept. 

5. Applying erosion operation (with a disk of radius 2): This operation is applied on the 

image at this step to separate the pulmonary nodules attached to the lung wall from 

the blood vessels. The erosion operator reduces the bright areas of the image and 

makes the dark areas appear larger as shown in Figure 6a. 

6. Applying closure operation (with a disk of radius 10) [15]: The aim of using this op-

erator is to maintain the nodules connected to the lung wall. This operator can re-

move small dark spots from the image and connect small bright gaps. The image 

obtained by applying this operator is shown in Figure 6b. 

7. Filling in the small holes within binary mask: In some cases, due to a breach in binary 

conversion using thresholding, a series of black pixels belong to the background ap-

pear in the binary image. These areas, known as holes, may be helpful. Therefore, we 

must obtain these areas by filling them as shown in Figure 6c. 

Figure 4. (a). Main CT image, (b). Binary image, (c). Image after eliminating border blobs.



Sensors 2021, 21, 268 9 of 24

4. Keeping the labels with two largest areas: As shown in Figure 5b, labels with the
two largest areas (both lungs) are kept whereas the tissues with areas less than the
expected lungs are removed.
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5. Applying erosion operation (with a disk of radius 2): This operation is applied on
the image at this step to separate the pulmonary nodules attached to the lung wall
from the blood vessels. The erosion operator reduces the bright areas of the image
and makes the dark areas appear larger as shown in Figure 6a.

6. Applying closure operation (with a disk of radius 10) [15]: The aim of using this
operator is to maintain the nodules connected to the lung wall. This operator can
remove small dark spots from the image and connect small bright gaps. The image
obtained by applying this operator is shown in Figure 6b.

7. Filling in the small holes within binary mask: In some cases, due to a breach in binary
conversion using thresholding, a series of black pixels belong to the background
appear in the binary image. These areas, known as holes, may be helpful. Therefore,
we must obtain these areas by filling them as shown in Figure 6c.
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Figure 6. Results of applying (a). Erosion operation, (b). Closure operation, (c). Filling small holes (binary mask).

In the final step, binary masks are produced which are stored in ‘.bmp’ format. The
proposed steps sometimes fail and do not produce the correct binary mask due to two
main reasons: (1) all the above steps may cause partial tissues, which could involve lung
components, to be ignored in CT scan; (2) sometimes a closure operation, which connects



Sensors 2021, 21, 268 10 of 24

small bright cracks, causes connection of two pixels that fill the non-pulmonary tissue, e.g.,
air instead of the lung. Figure 7 shows 2 samples of these problems.
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Figure 7. (a). Sample of missing a part of the lung in the generated mask, due to considering only
the two largest areas, (b). Sample of misplaced pixels connecting that fills the non-pulmonary space
with white pixels.

Motivated by the above discussions, we need to provide a manual segmentation after
producing binary masks by the mentioned algorithm, if necessary. We extracted 1714 binary
masks for 10 patients (averagely 170 samples for each patient) using this semi-automatic
method. It takes hours to label each CT image by experts, while production of each mask
takes on average around three minutes in our proposed method, considering the worst
conditions and the need for manual reform. Therefore, the main advantage of this method
is to save a lot of time. Also, we plan to publicize our produced masks soon to help other
researchers using them in future researches.

3.3. Data Preparation

Following the GT extraction described above, we now aim to prepare input raw
images to improve the training process of the deep learning network by applying a few
preprocessing steps. Therefore, we use two stages including edge detection functions and
dilation morphological operations.

According to the description of the LIDC-IDRI database in previous sections, all CT
scans have 512 × 512 resolution and three channels. In this stage of the proposed method,
we want to improve the overall segmentation performance. It seems that if we increase the
focus of the network during training on a series of specific image features, it will help to
improve the forecast. In this regard, we have changed the channels of each image. To do
this, we convert these default channels for each CT image to three newly designed channels
as follows. In this regard, we use several preprocessing operations such as edge detection
functions and dilation morphological operations to generate new images. Then, these
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images are fed to our proposed network. The main advantage of this idea is that if these
newly generated images are fed to a deep neural network, its training can be faster and
more accurate. In other words, the proposed channels can provide focused information for
the deep neural network which are compatible with the associated masks. This leads to
more efficient training and ultimately reduction of false-positive measures. Details of the
proposed image conversion are as follows:

(a) Image binarization: In this process, a binary image is created with two values on the
grey surface, i.e., black and white. The lung region poses a black colour with the value
zero. Figure 8 shows the binarization process of a CT image.
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(b) Dilation morphological operation: Morphological operations, typically applied to
binary images, are used to extract and describe the geometry of the object in the
image [49,50]. As a result of the binarization process described before, there would still
be remaining regions of white colour around the lungs regarded as unwanted noise.
Thus, morphological operations can be used to remove these regions. Moreover, there
could still be some small black holes in the lung’s region, suspicious of noise caused
by the binarization process. These holes should be also removed using morphological
operations.

The morphological operation involves two basic operators: dilation and erosion.
Dilation [51] is applied when the segmented object loses part of its target area. This
operator increases the target area of the segmentation. It also increases the sensitivity but
decreases the specificity. The dilation operation can be mathematically represented as
Equation (2).

A⊕ B = ∪
x∈B

Ax (2)

where A is the image and B is the structuring element. In fact, Equation (1) means that the
matrix A is transmitted by each of the points B and then the assembly of all the transferred
matrices is calculated. We applied a dilation operation to remove redundant white regions
around the lung and small black gaps inside it. Figure 9 shows the result of the dilation
process. As can be seen, the orange arrow section (noise) in a binary image is removed in
the dilation result.
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Figure 9. Image after (a). binarization; (b). dilation.

(c) Edge detection: As already stated, the edge detection filter determines the vertices
of an object and the boundaries between objects and the background in the image.
This process can also be used to improve the image and eliminate blur. An important
advantage of the Canny technique is that it tries to remove the noise of an image
before edge extraction and then applies the tendency to find the edges and the critical
value of the threshold. Motivated by the advantages expressed so far, we also applied
the Canny method to detect the edges in the source images. Figure 10 shows the
result of the edge detection process.
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As a result, it cuts down the data quantity and removes unwanted parts, while
preserving the required structural features in the image. Next, we need to generate new
images with proposed filled channels. The first image channel is filled with the original
image (Figure 11a). The second channel of the output image would be an image containing
an edge detection process (Figure 11b). In the end, the third new channel would be the
image result of the dilation operation (Figure 11c). This helps to reduce the area around
the object and also removes the noise. Figure 11 shows the result of the combination
of channels. We generated 1714 new lung CT images for 10 patients using the above
processing method.

As shown in Figure 11, the resulting image of the combination of the three channels
is red. This is due to the arrangement of these channels. As mentioned earlier, the first
channel of the new image contains the original image. The second and third channels have
been replaced with edge detection processes and dilation operation, respectively. Since
black pixels are dominant in the input image (including the edges and resulting image
after applying the expansion operations) the final composite image receives the greatest
effect from the first channel, leading to a dominant red color. However, if the main image
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is placed on the second channel, the output image will be green, and similarly blue for the
third channel.
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3.4. Lung Segmentation Using Deep Learning

Since the main goal of this paper is to extract lungs from CT images, our proposed
model must successfully address the semantic segmentation problem. U-Net is the most
related available deep architecture in this regard. U-Net can learn from a relatively small-
size training dataset. In addition, it vastly speeds up training time if a pre-trained model is
used. Hence, a good starting point to train the network when dealing with image inputs is
using a pre-trained ImageNet model along with its weights. On the other hand, ResBlocks
architecture, which was proposed in [47,51], can facilitate the training process, while it
offers a deeper network due to having all accumulated layers. Moreover, according to
the experiments conducted in different networks and comparing their results, the use of
the convolution layer instead of the pooling layer is preferred. This is because pooling
layers generate huge semantic feature loss in the image. Thus, it seems ResNet architecture
can be a more appropriate choice for the encoder part of the U-Net (the left half of the
U). Figure 12 shows the block diagram of the ResNet-34 algorithm used in the encoder
section of our proposed network. Our proposed model is mainly inspired by BCDU-Net
and ResNet-34 [52] named as Res BCDU-Net. The backbone of this network is a ResNet-34
structure as the encoder which is shown in Figure 13. Details of different layers in the
proposed model are described as follows.
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Figure 12. Block diagram of the ResNet-34 in the encoder of Res BCDU-Net.

• Encoding path: In Res BCDU-Net, the encoder is replaced with a pre-trained ResNet-
34 network. The last layer of this path like BCDU-Net adopts a densely connected
convolutions mechanism. So, the last layer, in contrast to all residual blocks in this
path, never attempts to combine features through summation before being transferred
to a layer; instead, it tries to concatenate the features. In other words, features that are
learned per block are passed to the next block. This strategy can help the network to
avoid learning redundant features. Figure 13 shows the difference between Res blocks
and dense blocks.
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Figure 13. (a). ResNet Concept, (b). One Dense Block in Dense Net [53].

• Decoding path: In the decoding path, two feature maps should be concatenated: the
feature maps corresponding to the same layer from the encoding path and those from
the previous layer of the up-sampling function. In this Network, batch normalization
was performed after the output of each up-sampling, before processing of two feature
maps. Afterward, the resulting output is given to a BConvLSTM layer. In a standard
ConvLSTM, only forward dependencies are processed. However, it is very important
not to lose information concealed in any sequence. Therefore, the analysis of both
forward and backward approaches has been proven to improve predictive network
performance [54]. Both forward and backward ConvLSTMs are considered as standard
processes. Therefore, two set parameters are considered as BConvLSTM. This layer
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can decide on the present input by verifying the data dependencies in both directions.
Figure 14 illustrates our proposed network schematically.
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Figure 14. Res BCDU-Net architecture. The contraction path consists of Res blocks and a max-pooling layer. Such the
U-Net, in each downsampling of encoding path, feature channels are doubled (64 to 128 to 256 to 512). In the last layer of
the contracting path, we used 3 convolutional blocks with 2 dense connections. As seen, in the expansion path, the output
of each batch normalized is given to a BConvLSTM layer.

4. Experimental Results

We evaluated the performance of our proposed neural network on 1714 CT images of
the LIDC-IDRI dataset with the corresponding generated ground truth as described in the
previous section. The experiments were implemented based on the Keras module with the
TenserFlow backend. The network was trained for 50 epochs and batch size 32.

4.1. Evaluation Metrics

Several well-established criteria were used for performance evaluation of our proposed
network, namely accuracy (AC), precision (Pr), recall (Re), and F1-score. We first calculated



Sensors 2021, 21, 268 16 of 24

true positive (TP), false positive (FP), true negative (TN), and false negative (FN). These
performance measures are mathematically expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1− score = 2 × Precision × Recall
Precision + Recall

(6)

To turn the results into a more reliable form, Dice’s coefficient [55] is also used to
evaluate our results. The Dice score is normally used to determine the performance of the
segmentation step on the given images. This is a kind of similarity measure between two
different objects. It is equal to the number of overlapping pixels between the two partitions
divided by the size of the whole two objects. The Dice score is calculated as:

DSC = 2× |E∩Q|
|E|+|Q| (7)

where, E is the segmented lung parenchyma area’s pixels based on our network, Q is the
ground truth image’s pixels and |E∩Q| represents the intersect pixels of two images. We
also calculated the receiver operating characteristics (ROC) curve and the area under the
curve (AUC). ROC curve is defined as a plot of TPR to FPR, with TPR placed on the y-axis
and FPR on the x-axis. AUC is defined as the underlying area of the ROC curve. In other
words, it measures the quality in which the network can segment the input data.

4.2. Results

We grouped randomly the dataset into training data (1200 images), validation data
(257 images), and test data (257 images) in proportion 70%, 15%, and 15%. We also repeated
our experiments 10 times and reported the obtained average performance across all run
in this paper. All image sizes are 512 × 512. The input of the network consists of the CT
images with three separate designed channels and corresponding ground truth annotations
that we generated semi-automatically. Since the image segmentation process corresponds
to a pixel-wise classification problem, the task of the neural network is to assign a label
or class to all pixels of the input image. The output of the trained network is a pixel-wise
mask of the image. Each pixel is given one of two categories:

Class 1: Pixels that fall within the lung area are labelled by ‘0’.
Class 2: Pixels related to the non-lung class are represented by the label ‘1’.

According to the above descriptions, first, we calculated the confusion matrix as
shown in Figure 15.

According to Figure 14, we can see that the TP is very high, and also the point of
attention achieved a very low FP. With respect to these values, calculated amounts for
the accuracy, precision, recall, and F1-score measures are obtained as 97.83%, 99.93%,
97.45%, and 98.67%, respectively. Table 1 summarizes the results of the precision, recall,
F1-score, accuracy, and dice score for another and our methods with LIDC dataset (The
best-maintained metrics are highlighted in bold). We also provided some visual example
results in Figure 15 to better compare U-Net and BCDU-Net.
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Table 1. Comparison of proposed network performance and the state-of-the-art alternatives on LIDC-IDRI dataset.

Methods Precision Recall F1-Score Accuracy (%) Dice Coefficient

U-Net [37] 96.11 96.34 96.22 95.18 95.02
RU-Net [38] 95.52 97.21 96.35 97.15 94.93

ResNet34-Unet [44] 97.32 98.35 97.83 96.73 95.28
BCDU-Net [45] 99.02 98.03 98.52 97.21 96.32

Proposed Method 99.12 97.01 98.05 97.58 97.15

According to Table 1, we find that the performance of our proposed method per-
formed better compared to related methods. According to this table, several results can be
concluded as follow:

• Using the ResNet34 structure in the encoder section of the U-Net network has consid-
erably improved the obtained results particularly in the quantity of recall.

• BCDU—Net model generally performs better than the ResNet structure in the con-
tracting path of the U–Net.

• Using ResNet within BCDU-Net has achieved a better DSC similarity score compared
to cases where these networks are used individually.

• Using images under our designed channels help to improve the quantitative results in
all the evaluation criteria in comparison to using default channels.

• The high level of recall in our proposed model (with three new channels) arises from
small FP as shown in the confusion matrix.

As shown in Figure 16, the U-Net model does not work well because of its deficiencies.
The BCDU-Net model resolves much of the shortcomings in the image segmentation
by U-Net but it sometimes appears a false-positive diagnosis mode (third column). In
our proposed method, this problem has been resolved to a large extent and the final
segmentation image is much similar to its corresponding mask (compare with U-Net and
BCDU-Net in three last columns from right in Figure 16). It can be concluded that the
combination of new channels to generate initial CT images and emphasis on components
such as the edges and removal of additional items that are irrelevant in new filled channels
greatly improves the adaptability power of the network.
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Figure 16. Sample results. From left to right: Original CT image, Ground Truth, U-Net, BCDU-Net, and Proposed method.

The proposed method has solved the high false-positive challenge as well. Also,
losing the attached nodules to the lung wall challenge has been resolved by our proposed
method (see and compare two last columns from right in Figure 16). It seems that the
first challenge is resolved by the idea of combining three new channels in the CT images
because it focuses on some components such as the edges and also removes the irrelevant
objects and noise in the raw CT images. It can help the final segmentation network to be
accurate. The second challenge is resolved by using the ResNet architecture in the first
half of BCDU-Net because there is only one Pooling layer in the ResNet architecture and it
causes less semantic information to be lost. In addition, the densely connected convolution
mechanism in the last layer of the encoding path of the network plays an important role to
prevent learning redundant features. To better represent the two above challenges and how
the proposed method has resolved them, we have included these two challenges along
with the components generated by our algorithm in Figure 17. It seems in this figure, the
two challenges described, with the help of our proposed method, are solved using the new
hybrid channels in the images and the use of ResNet34 architecture in the encoder section
of the neural network.
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Figure 17. Visualizes the challenges for segmentation. First row presents the challenge of considering micro pulmonary
tissues in the segmented image as the non-pulmonary region causing high false positive. Second row presents the challenge
of losing attached nodules to the lung wall. (A yellow circle wrapped around the center of the nodule).

The overall performance of our proposed method, the ROC curve and also the accuracy
of training and validation proposed network for LIDC-IDRI dataset are shown in Figure 18.

Sensors 2021, 21, x 19 of 24 
 

 

Figure 17. Visualizes the challenges for segmentation. First row presents the challenge of considering micro pulmonary 

tissues in the segmented image as the non-pulmonary region causing high false positive. Second row presents the chal-

lenge of losing attached nodules to the lung wall. (A yellow circle wrapped around the center of the nodule). 

The overall performance of our proposed method, the ROC curve and also the accu-

racy of training and validation proposed network for LIDC-IDRI dataset are shown in 

Figure 18. 

 
 

(a) (b) 

Figure 18. (a). ROC curve of Res BCDU-Net; (b). The accuracy of training and test for Res BCDU-Net. 

According to Figure 18a, the AUC corresponds to 0.9732 which implies the effective-

ness of the proposed model performance. Figure 18b shows that the network converges 

quickly; on the other hand, it converges after the 35th epoch. We also can see that the 

accuracy of training increases to over 99% after the 35th epochs. This is a good indicator 

Figure 18. (a). ROC curve of Res BCDU-Net; (b). The accuracy of training and test for Res BCDU-Net.

According to Figure 18a, the AUC corresponds to 0.9732 which implies the effective-
ness of the proposed model performance. Figure 18b shows that the network converges
quickly; on the other hand, it converges after the 35th epoch. We also can see that the
accuracy of training increases to over 99% after the 35th epochs. This is a good indicator
of appropriate training of the network. In the validation phase, from epoch 0 to 30, it has
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a descending trend, which indicates inappropriate selection of weights, but the accuracy
has been gradually increased from the 35th to 55th epochs. The training and validation
accuracy will overlap between 35th and 50th.

4.3. Ablation Study

In this section, we conduct the ablation study to determine the effects of each compo-
nent on the performance of the segmentation system. In detail, we intend to answer these
questions in this section: (1) How does the use of images with the new three channels affect
the overall performance of the system? (2) What is the effect of automatically producing
binary labels for each of the images? (3) What is the effect on execution time and assisting
the medical community? (4) What is the effect of using densely connected convolutions
and BConvLSTM in the proposed deep neural network on the final performance of the
system?

First, we discover the role of the new CT image channels in the segmentation perfor-
mance. So, we did our experiments using images with their own default channels. The
result can be found in Table 2. As we can see, the performance of our proposed method,
where CT images are filled with newly designed channels, is higher than when they are
filled with default channels.

Table 2. Impact of CT image channels on system performance.

Channel Type in CT Images Precision Recall F1-Score Accuracy (%) Dice Coefficient

Default 99.12 97.01 98.05 97.58 97.15
Proposed 99.93 97.45 98.67 97.83 97.31

As the second work in this section, we look at the running time of the binary mask
production algorithm. In this paper, we first used an automated algorithm to produce
masks, and then, if necessary, we applied manual modification to each of the generated
images. It takes hours to label each CT image taken by the Radiologists; whereas in our
proposed method, without manual correction, all masks were produced within 10 min,
on average. Considering the worst conditions and the need for manual correction and
examination of each image produced by the algorithm, each mask requires 3 min to be
made. Looking at Figure 19 the proposed method is capable of producing a similar number
of images in a time of nearly 10 min. This figure shows the time of execution measured
on the dimension of the data set from 50 to 1700 images. Furthermore, the execution time
is reduced to 20% only with respect to the computation time without loading the image.
As the number of images increases linearly, we can see that the execution time increases
linearly, while the time required for the analysis of images by an expert will be greatly
increased by increasing the number of images and parameters such as fatigue and so on.

Finally, we aim to examine the effect of densely connected convolution mechanism in
the last layer of the encoding path of neural network and also the rule of using BConvLSTM
on the skip connection. Table 3 shows these results. For this comparison, the CT images
with new channels are assumed to be the network input, and the ResNet blocks are also
used in the encoding section. Given the values in Table 3, we can observe the positive
impact of using dense connection mechanism and BConvLSTM on system performance.
(Please note that we have already discussed the role of ResNet blocks in the encoding path
of the network in Table 1.)

Table 3. Impact of using densely connected convolutions and BConvLSTM on system performance.

Method Precision Recall F1-Score Accuracy (%) Dice Coefficient

Without Densely Connected Convolutions
and BConvLSTM 97.02 94.32 95.55 96.21 96.19

Ours (With Densely Connected Convolutions
and BConvLSTM) 99.93 97.45 98.67 97.83 97.31
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Figure 19. The execution time of the binary mask production algorithm.

5. Conclusions

In this paper, we proposed Res BCDU-Net to automatically and accurately segment
the lung region from CT images. The proposed method consists of three main steps.
First, we presented a semi-automatic technique to extract the ground truth for each lung.
One of the great benefits of our method is that one can manage to produce all mask
images, intelligently, without the need for the expertise of a radiologist and that saves a
huge amount of time. Second, we proposed a novel three image channel generation and
observed a significant decrease in the false positive rate and higher dice coefficients due
to effective network input imagery. Finally, we designed the segmentation framework
using a novel deep network architecture using a BCDU-Net with an encoder of pre-trained
ResNet-34. This model was named Res BCDU-Net. It performed well, as verified through
our extensive experiments on the large LIDC-IDRI dataset.

We have seen that combining ResNet and BCDU-Net networks as well as using CT
images with newly designed channels in the proposed method has led to a few false
positives as well as higher dice similarity scores. We have also seen that by using the
automated algorithm used in the label production section for the dataset, the execution
time is much less than the one used for producing masks and this is one of the most
important advantages of this method.

The application of the proposed algorithm in daily work is being accepted. Because
accurate and reliable segmentation of lung tissue is of particular importance in various
clinical applications such as computer-assisted bronchoscopy, quantification of emphysema,
and diagnosis of lung cancer. Therefore, the great potential goal of our work is applying it
to clinical application to help the medical community in their daily work.

6. Future Works

One of the interesting research topics that could be pursued in the future is the
adaptation and testing of the proposed method for 3D lung CT images. In this regard, a
network such as V-Net can be used. Another idea for future works could involve using
a combination of deep learning-based networks to segment medical images. It is also
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possible to examine the use of data enhancement methods and their impact on overall
performance.
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