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Abstract: Cell-based assays are essential for virus functional characterization in fundamental and
applied research. Overcoming the limitations of virus-labelling strategies while allowing functional
assessment of critical viral enzymes, virus-induced cell-based biosensors constitute a powerful
approach. Herein, we designed and characterized different cell-based switch-on split GFP sensors
reporting viral proteolytic activity and virus infection. Crucial to these sensors is the effective—yet
reversible—fluorescence off-state, through protein distortion. For that, single (protein embedment or
intein-mediated cyclization) or dual (coiled-coils) distortion schemes prevent split GFP self-assembly,
until virus-promoted proteolysis of a cleavable sequence. All strategies showed their applicability in
detecting viral proteolysis, although with different efficiencies depending on the protease. While
for tobacco etch virus protease the best performing sensor was based on coiled-coils (signal-to-noise
ratio, SNR, 97), for adenovirus and lentivirus proteases it was based on GFP11 cyclization (SNR 3.5)
or GFP11 embedment distortion (SNR 6.0), respectively. When stably expressed, the sensors allowed
live cell biosensing of adenovirus infection, with sensor fluorescence activation 24 h post-infection.
The structural distortions herein studied are highly valuable in the development of cellular biosensing
platforms. Additionally highlighted, selection of the best performing strategy is highly dependent on
the unique properties of each viral protease.

Keywords: cell-based assay; fluorescent biosensor; structural distortion; intein; eglin c; coiled-coils;
protease; adenovirus; lentivirus

1. Introduction

The growth of human population, urbanization, and long distance travelling have
contributed markedly to the emergence of pathogenic virus outbreaks of unprecedented
size and geographical extension [1]. For many viral infections, antiviral drugs targeted to
block virus entry in host cells or to block viral enzymes crucial to virus replication—such
as the proteases—constitute the only therapeutic approach to reduce virus load in infected
patients and decrease the development of chronic disease [2]. In parallel, the last years
also witnessed an explosion of new virus-based biopharmaceuticals. While traditional
vaccination schemes have historically received most of the attention [3], the interest in viral
vectors is growing remarkably, whether be adenoviruses for oncolytic virotherapies [4] or
lentiviral vectors for chimeric antigen receptor T-cell therapies [5].

To support fundamental and applied research in virology, development of virus-
based biopharmaceuticals, and screening of antivirals, cell-based assays are of outmost
importance for functional characterization of viral enzymes and viruses. Regarding the
latter, despite viral plaque and colony forming assays [6,7] being considered the “gold
standards” for virus detection and quantification, they are time-consuming and lack high-
throughput. Faster and easier to perform methods often rely on viral genome coupled
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reporter genes such as Green fluorescent protein (GFP). However, virus labelling strategies
may impact negatively on virus production and its genetic stability [8,9].

Virus-induced cell-based biosensors constitute a powerful approach, overcoming the
limitations of using virus-labelling strategies while additionally allowing functional assess-
ment of critical viral enzymes. Essential to the virus life cycle, viral proteases cleave viral
polyprotein precursors—for virus maturation [10]—and host cell proteins—for inhibition
of host protein translation [11] or to bypass innate immune responses [12]. As such, viral
proteases constitute important targets not only for antiviral drug screening [13] but also as
key elements to diagnose and report virus infection. For such protease-sensing systems,
fluorescent proteins such as split GFP [14] are highly advantageous. In this version, one
fragment of the split GFP contains 10 β-strands (GFP10), where the three residues form-
ing the chromophore remain almost nonfluorescent until complementation. The other
fragment contains the 11th β-strand of GFP (GFP11), where the highly conserved Glu222
catalyzes chromophore maturation after rapid self-assembly with GFP10 fragment. A num-
ber of split GFP sensors dependent on viral protease activity have been developed [15,16].
Similar strategies were also applied for detection of cellular proteases [17,18]. However,
those methodologies require laborious fluorescence analysis, lack throughput, or were not
assessed neither in mammalian cells nor, importantly, in response to virus infection.

By combining the high specificity of virus host cells with optical detection of geneti-
cally encoded and conditionally activated switch-on fluorescent sensors, we have designed,
optimized, and characterized innovative cell-based assays to detect viral proteolytic activity
and label-free virus infection. Structural distortion—herein referred as holding a peptide
or a protein in a non-native structural conformation—of one (by GFP11 embedment or
cyclization) or both (GFP10 and GFP11 with heterodimerizing coiled-coils) of the split GFP
fragments prevents their self-assembly until a cleavable sequence—acting as a switch—is
processed by the viral protease. The different strategies of structural distortion were herein
assessed in response to the highly specific tobacco etch virus protease and the clinically
important adenoviral and lentiviral proteases. While all strategies showed to be valid
in the development of virus protease-dependent sensors, they performed differently for
the proteases under study due to the intrinsic properties of each protease. As shown
in transient screenings, for tobacco etch virus protease the best performing sensor was
based on coiled-coils (signal-to-noise ratio, SNR, 97), while for adenovirus and lentivirus
proteases it was based on GFP11 cyclization (SNR 3.5) or GFP11 embedment distortion
(SNR 6.0), respectively. Moreover, stable expression in mammalian cells of these genetically
encoded sensors enabled establishment of a biosensing platform for monitorization of
adenovirus infection, with sensor fluorescence activation 24 h post-infection.

2. Materials and Methods
2.1. Plasmids

The plasmid pRRLSIN.cPPT.PGK-GFP.WPRE (Addgene plasmid No. 12252, kindly
provided by Didier Trono through the Addgene plasmid repository, Watertown, MA,
USA) was modified to substitute the human phosphoglycerate kinase 1 promoter and
GFP by a cytomegalovirus promoter driving the expression of GFP10 (Sandia Biotech Inc,
Albuquerque, NM, USA), and an encephalomyocarditis virus internal ribosomal entry
site (amplified from pIRESGALEO [19]) driving the expression of Sh ble (amplified from
pMONO-zeo-mcs; Invivogen, San Diego, CA, USA) or pac genes (amplified from pSELECT-
puro; Invivogen).

By replacing GFP10, the plasmids described above served as backbones for the sensor
(structurally distorted GFP10 or GFP11) and protease constructs. Briefly, for the GFP11
embedment strategy—e11 chimeras—the internal loop of eglin c (Ser42 to Arg49) [15] was
replaced by GFP11 and the ENLYFQ*S cleavable sequence (recognized by the tobacco etch
virus protease, TEVp; asterisk denoting scissile bond) [20]—e11-ENLYFQS sensor (Table S1).
In the GFP11 cyclization strategy—cy11 chimeras—C- and N-intein fragments of the Nostoc
punctiforme DnaE split intein (Npu DnaE) [21] were linked, respectively, to the N- and C-
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termini of GFP11 in fusion with ENLYFQ*S—cy11-ENLYFQS sensor (Table S2). In the coiled-
coil strategy—cc10/11 chimeras—E5/K5 heterodimerizing coiled-coils were used [18]. E5
was fused N-terminal to GFP10, while ENLYFQ*S and K5 were fused C-terminal—cc10-
ENLYFQS sensor (Table S3). Inversely, K5 was fused N-terminal to GFP11, while ENLYFQ*S
and E5 were fused C-terminal—cc11-ENLYFQS sensor (Table S4). Direct replacement
of ENLYFQ*S cleavable sequence by LRGA*G [22], IVGL*G and EEGE*G [23] (for the
adenovirus protease, AVP), or GIF*LET, GSGIF*LETSL, and IRKIL*FLDG [24,25] (for the
human immunodeficiency virus 1 protease, HIV-1 PR) by site-directed PCR mutation
created the “.v0” chimeras of the corresponding sensors. Addition of one (.v1) or two (.v2)
glycine spacers surrounding each side of the cleavable sequence of the sensors described
above was also performed by site-directed PCR mutation. Constructs coding for the viral
proteases were also designed: AVP in fusion with a 11-residue peptide from the C-terminus
of precursor protein VI (pVIc) with a MVGL*G cleavable sequence [26]; and the stable
S219V variant of TEVp [27].

All constructs were generated using custom DNA oligonucleotides, gBlocks Gene
Fragments (Integrated DNA Technologies, Inc., Coralville, IA, USA), custom gene synthe-
sis (GenScript, Piscataway, NJ, USA), standard molecular biology techniques, In-Fusion
HD Cloning (Takara Bio Inc., Mountain View, CA, USA), and confirmed by extensive
sequencing of the cloned fragments. Further details on the developed sensor constructs are
provided in Table S5.

2.2. Mammalian Cell Lines

293 [HEK-293] (ATCC CRL-1573), 293T (ATCC CRL-3216), and 293 FLEX S11 [28]
were routinely cultivated in Dulbecco’s modified Eagle’s medium (DMEM; Gibco, Paisley,
UK), supplemented with 10% (v/v) of fetal bovine serum (Gibco), and maintained at 37 ◦C
in an incubator with humidified atmosphere of 5% CO2 in air.

2.3. 293 Cell Transduction and Selection

Establishment of 293 sensor cells was accomplished by lentiviral transduction. First,
293T cells plated at 8 × 104 cells/cm2 the day before were transiently co-transfected using
linear 25 kDa poly(ethylenimine) (PEI; Polysciences Inc., Hirschberg, Germany) with the
developed pRRLSIN plasmids—coding for GFP10 fragment, e11 or cy11 sensors—and
pMDLg/pRRE (Addgene plasmid No. 12251), pMD2.G (Addgene plasmid No. 12259) and
pRSV-Rev (Addgene plasmid No. 12253) [29]. Viral supernatants were collected 48 h later,
clarified by 0.45 µm filtration, and stored at −80 ◦C. 293 cells, plated at 8 × 104 cells/cm2

the day before, were transduced with lentivirus coding for GFP10 (previously titrated in 293
FLEX S11 cells by GFP transcomplementation titration [28]) at a multiplicity of infection of
5 in presence of 8 µg/mL Polybrene (Sigma-Aldrich, St. Louis, MO, USA). After 48 h, cells
were selected using 200 µg/mL Zeocin (Invivogen). This selected 293 GFP10 population
was then transduced with lentiviral stocks coding for e11 or cy11 sensors, further selected
using 1.5 µg/mL Puromycin (Invivogen), and the resulting populations characterized.

2.4. Adenoviral Vector Stocks

Label-free human recombinant E1-deleted adenovirus serotype 5 (AdV; provided by
Dr. Geneviève Libeau, CIRAD-EMVT, Montpellier, France) were amplified, purified and
stored as previously described [30]. AdV stocks were quantified by tissue culture infectious
dose 50 assay in 293 cells according to the method of Spearman and Kärber, described in
Darling et al. [31].

2.5. Split Sensors Characterization

For initial screenings, transient transfections were performed. Briefly, 293T cells plated
at 8 × 104 cells/cm2 the day before were co-transfected with 5 µg of total DNA/(106 cells)
using PEI with each of the sensor-coding plasmids (and GFP10-coding plasmid where
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needed for complementation), and either TEVp-coding plasmid, AVP-coding plasmid,
HIV-1 PR-coding plasmid (psPAX2, Addgene plasmid No. 12260) or a mock plasmid.

For the assessment of stable sensors cells, 293 GFP10 cells stably expressing either
e11 or cy11 optimal sensors were seeded at 1 × 105 cells/cm2. In the next day, the culture
medium was removed, and cells were infected with AdV at a multiplicity of infection of 5,
in 0.2 mL of nonsupplemented DMEM (Gibco). After 1 h, 0.3 mL of fresh supplemented
DMEM was added.

Forty-eight hours post-transfection or at each post-infection time point, cells were:
(i) observed by fluorescence microscopy (DMI6000, Leica, Wetzlar, Germany) at 100×
optical magnification using a 488 nm laser line, a BP480/40 nm excitation filter, and a
BP527/30 nm emission filter; (ii) assessed by flow cytometry (CyFlow Space, Sysmex
Partec GmbH, Görlitz, Germany) with gates set using nontransfected 293T cells as negative
control, and the geometric mean GFP fluorescence intensity of GFP positive cells measured
within the positive gate.

2.6. Evaluation of GFP10 and GFP11 Levels in 293 Sensor Cells

To assess the levels of GFP10 available for transcomplementation, 293 GFP10 popula-
tion and 293 e11 and 293 cy11 sensor cells were seeded at 6 × 104 cells/cm2. After 24 h,
cells were transduced with a characterized stock of retrovirus harboring a nondistorted
version of GFP11 fragment (produced and characterized as described in [28]) in presence of
8 µg/mL Polybrene (Sigma-Aldrich). After 48 h, control (nontransduced) and transduced
cells were analyzed by flow cytometry for geometric mean GFP fluorescence intensity.

To determine relative transgene copy number integration (whether coding for e11 or
cy11 sensors), genomic DNA from parental 293 GFP10 population, and from 293 e11 and
293 cy11 sensor cells was extracted using DNeasy Blood & Tissue Kit (Qiagen, Valencia,
CA, USA). Quantitative PCR was performed using LightCycler 480 SYBR Green I Master
PCR kit (Roche Applied Science, Mannheim, Germany) and primers for the Woodchuck
hepatitis virus post-transcriptional regulatory element (WPRE) (Table S6) on a LightCycler
480 Real-Time PCR System (Roche Applied Science). The number of copies per cell was
quantified relatively to 293 GFP10 parental cells, after normalization to RPL22 reference
gene, using the 2−∆∆CT method [32].

2.7. Data and Statistical Analysis

SNR was used to evaluate the performance of the developed sensors. Herein, SNR
refers to the ratio of total accumulated GFP fluorescence (geometric mean fluorescence
of GFP positive cells times GFP positive scored events, as measured by flow cytometry)
upon sensor activation (signal), to total accumulated GFP fluorescence of mock or non-
infected controls (noise). Statistical analysis was performed using unpaired, two-tailed
Student’s t-test or one-way analysis of variance (ANOVA) followed by Tukey’s post-hoc
test. p values < 0.05 were considered statistically significant.

3. Results
3.1. Design of Switch-On Split GFP Sensors Activated by Proteolysis

For the establishment of split fluorescent sensors whose self-assembly is controlled
by proteolytic activity, three strategies of structural distortion of split GFP fragments were
developed, characterized, and evaluated (Scheme 1).

In native GFP, the GFP11 fragment is an elongated β-strand comprised of 16 residues
and more than 40 Å [33]. It can be hypothesized that by holding GFP11 in a non-native
conformational state, its self-assembly tendency towards GFP10 and consequent catalysis
of GFP chromophore maturation is impaired. As such, in one of the approaches, GFP11
peptide in fusion with a cleavable sequence was embedded as a surface loop on the
small protein eglin c [15]—hereafter referred as e11 strategy (Scheme 1a). This anchorage
to the thermodynamically stable backbone of eglin c can lead GFP11 to acquire a bent
conformation—instead of an elongated one—with the N- and C-termini brought closer in
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space (to less than 40 Å) [34]. This noncovalent single distortion strategy was compared to
introducing the distortion into GFP11 termini via covalent ligation. Herein, protein splicing
promoted by the efficient Npu DnaE split intein creates cyclized chimeras where GFP11
termini are covalently linked by a protease cleavable sequence—cy11 strategy (Scheme
1b). To further prevent self-assembly of GFP fragments before proteolysis, a dual distortion
scheme where both GFP10 and GFP11 fragments are flanked with heterodimerizing E5/K5
coiled-coils (in fusion with a cleavable linker) [18] was also assessed—cc10/11 strategy
(Scheme 1c). In all three strategies structural distortion prevents GFP fragments self-
assembly until proteolytic cleavage takes place at the cleavable sequence, thereby allowing
fragment complementation and fluorescence emission.
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Scheme 1. Schematic illustrations of the switch-on split fluorescent proteins activated by proteolysis. (a) GFP11 fragment is
embedded as a surface loop on the small protein eglin c—e11 strategy. (b) GFP11 fragment is cyclized by Nostoc punctiforme
DnaE split intein—cy11 strategy. (c) GFP10 and GFP11 fragments are flanked by α-helical heterodimeric E5/K5 coiled-
coils—cc10/11 strategy. All three strategies lead to structural distortion—of one or both—of split GFP fragments, with
concomitant inhibition of fragment self-assembly. Proteolytic cleavage at the cleavable sequence (scissor representing the
protease) leads to relief of structural distortion and fluorescence emission. Illustrative structures were adapted from Protein
Data Bank accession codes 1GFL (GFP, GFP10, and GFP11) and 1ACB (eglin c), and are not at scale. For simplicity, the
α-helical E5/K5 coiled-coils are depicted as straight cylinders.

To assess the conditional activation of the proposed designs, sensors containing the
ENLYFQ*S residues recognized by the highly specific and active TEVp were evaluated.
For this proof-of-concept, 293T cells were transiently co-transfected with plasmids coding
for either e11, cy11 or cc10/11 chimeras, GFP10 (when needed for complementation),
and a mock or TEVp. All strategies were effective on preventing split GFP fragments
self-assembly before proteolytic cleavage, as shown by the lack of fluorescence emission
(Figure 1a, top panel).

In the presence of TEVp (Figure 1a, bottom panel, and Figure S1), while surprisingly
e11 strategy showed no fluorescence activation, both cy11 and cc10/11 strategies showed
effective activation of GFP fluorescence. Flow cytometry analysis confirmed the fluores-
cence microscopy imaging observations, with a total GFP SNR of 0.6 ± 0.2 (e11 strategy),
20 ± 3 (cy11 strategy), and 97 ± 21 (cc10/11 strategy) (Figure 1b and Figure S1).

Together, these results confirmed structural distortion of split GFP fragments as a
valid approach towards mammalian cell-based switch-on split GFP sensors activated by
proteolysis.
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Figure 1. Validation of embedment, cyclization, and coiled-coil sensing strategies for detection of tobacco etch virus
proteolytic activity. 293T cells were transiently co-transfected with plasmids coding for either embedded GFP11 (e11),
cyclized GFP11 (cy11) or coiled-coil GFP10 and GFP11 (cc10/11) sensors, GFP10-coding plasmid where needed for
complementation, and either a mock plasmid or tobacco etch virus protease (TEVp) coding plasmid. After 48 h, (a)
fluorescence microscopy images were acquired, and (b) sensor performance as given by GFP signal-to-noise ratio (SNR)
was assessed by flow cytometry. Scale bar = 100 µm. Data shown as mean ± SD of at least three independent experiments.

3.2. Switch-On Sensors Activated by Adenovirus and Lentivirus Proteases

The applicability of these strategies to the clinically important adenovirus and lentivirus
proteases was then assessed. Firstly, the cleavable sequences in TEVp sensors were substi-
tuted by the LRGA*G cleavable sequence detected by the AVP. Transient co-transfection
of 293T cells showed an increase of total GFP fluorescence over the negative control in
all three strategies, suggesting sensor activation upon proteolysis: SNR, 2.8 ± 0.3 (e11.v0
sensor); SNR, 3.4 ± 0.6 (cy11.v0 sensor); and SNR, 2.4 ± 0.4 (c10/11 sensors); Figure 2a
and Figure S2–S4.

The two best performing strategies—e11 and cy11—were then further characterized.
In the initial sensor backbones—e11.v0 and cy11.v0—glycine spacers surrounding LRGA*G
residues were sequentially added to evaluate a potential increase in steric freedom and
exposure of the cleavable sequence to AVP. In the e11 strategy, addition of one glycine
spacer (e11.v1) led to a significant reduction in SNR performance (SNR, 2.3 ± 0.4; Figure 2a).
As for cy11 strategy, addition of one (cy11.v1) or two (cy11.v2) glycine spacers did not
significantly change SNR performance (as given by ANOVA analysis followed by Tukey’s
post-hoc test), despite a clear impact in fluorescence emission (Figure 2a and Figure S3).
Taken together, backbones e11.v0 (SNR, 2.8 ± 0.3) and cy11.v1 (SNR, 3.5 ± 0.7) were chosen
as the optimal backbones for AVP activity detection.

Different cleavable sequences may be recognized differently by the AVP [22,35,36] and
introduce different levels of structural distortion. As such, cleavable sequences naturally
occurring in the adenoviral precursor proteins—IVGL*G and EEGE*G—were assessed in
the optimal backbones. As shown in Figure 2b, no significant impact in SNR performance
was observed (as given by ANOVA analysis followed by Tukey’s post-hoc test, within each
strategy), despite affecting fluorescence emission levels (Figures S2 and S3). In common to
both strategies, IVGL*G-containing sensors presented a marked decrease in fluorescence
emission, whereas EEGE*G-containing sensors presented increased fluorescence emission
at the expense of slightly lower SNR performance (Figures S2 and S3). Overall, these results
showed that sensors e11.v0-LRGAG and cy11.v1-LRGAG—hereafter referred for simplicity
as eAdV and cyAdV, respectively—were the best performing switch-on split fluorescent
sensors for detection of AVP activity (Figure 2c).
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Figure 2. Evaluation of the different sensors and the impact of backbones and cleavable
sequences on sensor performance for detection of adenoviral proteolytic activity. Sensor
performance as given by GFP signal-to-noise ratio (SNR) of (a) different backbones for
e11, cy11, and cc10/11 strategies with a LRGA*G cleavable sequence, and (b) different
cleavable sequences in the optimal e11.v0 and cy11.v1 backbones were assessed by flow
cytometry 48 h after transient co-transfection. Data shown as mean ± SD of at least three
independent experiments. **, p < 0.01 as given by an unpaired, two-tailed Students’ t-test.
(c) Fluorescence microscopy of e11.v0-LRGAG (eAdV) and cy11.v1-LRGAG (cyAdV)
sensors 48 h after co-transfection with GFP10 and a mock plasmid or AVP-coding plasmid.
Scale bar = 100 µm.

A similar optimization approach was followed for the detection of HIV-1 PR activity.
For that, different sensor backbones and/or cleavable sequences—the non-natural GIF*LET
and GSGIF*LETSL, and the naturally occurring IRKIL*FLDG—were evaluated. Again,
an increase in fluorescence emission was observed when sensors were transiently co-
transfected with HIV-1 PR into 293T cells (Figures S5 and S6). For the detection of HIV-1
protease activity, addition of a glycine spacer in e11 chimera increased its performance
(e11.v1-GIFLET with SNR of 6.0 ± 0.6; Figure S5b) and no cleavable sequence was better
than GIF*LET (Figure 3). A similar pattern was observed when using the non-optimal
e11.v0 backbone (Figure S5c). In contrast to e11 strategy, cy11 sensors showed low SNR
performances, with the best performing sensor (cy11.v0-GSGIFLETSL) only reaching a
SNR of 2.1 ± 0.2 (Figure 3 and Figure S6).
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Figure 3. Impact of backbones and cleavable sequences on e11 and cy11 sensors perfor-
mance for detection of lentiviral proteolytic activity. (a) Sensor performance as given by
GFP signal-to-noise ratio (SNR) of different cleavable sequences in e11.v1 and cy11.v0
backbones was assessed by flow cytometry 48 h after transient co-transfection. Data shown
as mean ± SD of at least three independent experiments. **, p < 0.01 as given by ANOVA
followed by Tukey’s post-hoc test. (b) Fluorescence microscopy of e11.v1-GIFLET and
cy11.v0-GSGIFLETSL sensors 48 h after co-transfection with GFP10 and a mock plasmid
or HIV-1 PR-coding plasmid. Scale bar = 100 µm.

As showed for AVP and HIV-1 PR, the assessed switch-on sensors showed potential for
mammalian cell-based biosensing platforms for the detection of viral proteolytic activity.

3.3. Whole Cell Biosensing Platform for Monitoring of Adenoviral Infection

To assess the applicability of the structural distortion strategies as virus-induced
cell-based biosensors, the optimal eAdV or cyAdV sensors (and GFP10 fragment) were
stably expressed in 293 cells. When infected with label-free AdV, sensor cells had their
GFP fluorescence intensity increased throughout infection time (Figure 4a), and already
significantly at 24 h post-infection (Figure 4b).

In contrast to transient screenings however, eAdV sensor cells showed higher fluo-
rescence emission (Figure 4a). Conversely, cyAdV showed lower fluorescence emission
(Figure 4a) and SNR performance (SNR, 1.59 ± 0.07 at 48 h post-infection; Figure 4c). To
better elucidate the differences observed between sensor populations, GFP10 and GFP11
levels were analyzed in 293 GFP10 parental cells and eAdV and cyAdV sensor cells. To
assess if GFP10 levels were similar and not limiting fragment self-assembly, the two sensor
populations were transduced with retrovirus coding for a nondistorted version of GFP11,
readily available to self-assemble with GFP10. Upon retroviral transduction, the low back-
ground 293 GFP10 parental cells (1.5 ± 0.1 arbitrary units, AU) showed a ~17-fold increase
in fluorescence emission (26 ± 2 AU) (Figure 5a). As for both eAdV and cyAdV sensor
populations, although with very different background levels (as also observed in Figure 4a),
they reached similar fluorescence levels when given nondistorted GFP11 (Figure 5a).

To assess if GFP11 levels were limiting SNR performance of cyAdV sensor cells,
transgene copy number integration (relative to 293 GFP10 parental cells) was determined
by quantitative PCR. The 293 cyAdV sensor cells showed slightly fewer integrated copies
than 293 eAdV sensor cells (Figure 5b). Taken together, these results do not suggest lack of
split GFP fragments as the main cause of the observed differences in stable conditions.

Overall, structural distortion of split GFP fragments showed to constitute a valid
approach towards the establishment of whole cell biosensing platforms for monitoring of
adenoviral infection.
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Figure 4. Characterization of whole cell biosensing platforms in response to adenoviral
infection. 293 GFP10 cells stably expressing eAdV or cyAdV sensors were infected with
adenoviral vectors at a multiplicity of infection of 5. At the indicated time points post-
infection, sensor cells were (a) visualized by fluorescence microscopy, and GFP signal-
to-noise ratio (SNR) was evaluated by flow cytometry for performance of (b) eAdV or
(c) cyAdV sensors. Scale bar = 100 µm. Data shown as mean ± SD of at least three
biological replicates. **, p < 0.01; ***, p < 0.001, as given by ANOVA followed by Tukey’s
post-hoc test.
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Figure 5. Comparison of GFP10 and GFP11 levels in 293 eAdV and 293 cyAdV sensor
cells. (a) Parental 293 GFP10 and sensor cells were transduced with a characterized stock
of retroviral vectors (RVs) coding for nondistorted GFP11 fragment. After 48 h, control
(non-transduced) and transduced cells were analyzed by flow cytometry for mean GFP
intensity. Data shown as mean ± SD of three independent experiments. *, p < 0.05;
***, p < 0.001; ****, p < 0.0001, as given by ANOVA followed by Tukey’s post-hoc test. AU,
arbitrary units. (b) The number of integrated transgene copies per cell (whether coding
for eAdV or cyAdV sensors) was determined relatively to 293 GFP10 parental cells by
quantitative PCR with primers for WPRE, after normalization to RPL22 reference gene.
Data shown as mean ± SD of technical triplicates. **, p < 0.01, as given by an unpaired,
two-tailed Students’ t-test.
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4. Discussion

Development of virus-induced cell-based biosensors is essential not only for func-
tional characterization of label-free virus but also critical enzymes—e.g., viral proteases.
In that regard, we previously developed cVisensor, a virus-induced biosensor where a
circular permuted GFP is cyclized by Npu DnaE split intein and the structural distortion
maintained until the cleavable sequence is recognized by the AVP [30]. As successive
steps of proteolysis and fragment assembly are necessary to reconstitute fluorescence,
split GFP-based sensors should theoretically present higher sensitivity and dynamic range
than structurally distorted full-length GFP designs.

Herein, we designed and characterized structural distortion strategies of one (single) or
both (dual) split GFP fragments to prevent fragment self-assembly before viral proteolysis
activation (Scheme 1). Although systems using split GFP for detection of viral proteases
were previously reported [15,16], to best of our knowledge, none addressed both structural
distortion and conditional proteolytic activation upon virus infection.

Characterization of the three strategies—e11, cy11, and cc10/11—showed indeed
lower background fluorescence than cVisensor. However, self-assembly before proteolytic
activation was still not completely impaired in single distortion schemes—in particular,
cy11 sensors in transient conditions (Figure S3)—as background fluorescence was still de-
tectable. Although GFP10 alone can emit weak fluorescence [37], these results suggest that
the herein applied distortions to GFP11 fragment are not sufficient to impair the inherent
binding affinity of GFP11 towards GFP10 [14] and, consequently, the irreversible process of
chromophore maturation [38]. When in stable conditions, sensor cells with single distortion
schemes also presented background fluorescence (Figure 4a). Self-assembly tendency of
split GFP fragments is a particular concern in conditions of high fragment expression,
as previously observed in split GFP [14] and split yellow fluorescent proteins [39]. There-
fore, tight control of the expression levels of both fragments is recommended to avoid
unwanted interactions. In addition, one could take further advantage of the use of a
tripartite split GFP system [37]. Conversely, cc10/11 dual strategy presented the lowest
background fluorescence (Figure 1a, Figure S1 and S4), suggesting efficient impairment
of self-assembly when both GFP fragments are structurally distorted. An alternative dual
distortion strategy can be envisioned by cyclization of both split GFP fragments. To avoid
unwanted intermolecular splicing products however, such as covalent linkage of both GFP
fragments before proteolytic activation, usage of orthogonal split inteins is required [40].

When in presence of the target viral proteases—TEVp, AVP, and HIV-1 PR—the major-
ity of the biosensors showed activation of fluorescence emission (Figures 1–3), validating
their applicability as cell-based switch-on reporters of proteolytic activity. The exception
was e11 strategy for the highly specific and active TEVp (Figure 1 and Figure S1). Therein,
an unexpected SNR of 0.6 ± 0.2 suggested not only absence of sensor activation, but also
loss of background fluorescence. One could hypothesize that cleavage of the e11-ENLYFQS
sensors results in an unstable protein, preventing both unspecific (noise) and specific (sig-
nal) split GFP assembly. In remarkable contrast, cc10/11 strategy showed an outstanding
performance (SNR, 97 ± 21; Figure 1 and Figure S1). This result, using a highly active
protease, highlights the full potential of these sensors. Adaptation to the clinically relevant—
and less active—AVP and HIV-1 PR showed, in transient screenings, different patterns of
sensor performance. While for AVP cy11 strategy showed to be optimal (SNR, 3.5 ± 0.7;
Figure 2)—representing a higher SNR performance than cVisensor [30]—for HIV-PR, e11
design was the optimal design (SNR, 6.0 ± 0.6; Figure 3). The lower SNR performances of
the clinically relevant proteases might be due to protease activity and cleavage sequence
constrains. Regarding the former, while TEVp and HIV-1 PR need no cofactors, AVP is
expressed in an almost inactive form. Although active in the cytoplasm [41,42], its maximal
activity is reached inside the nucleus in presence of two cofactors: the cleaved 11-residue
peptide from the C-terminus of precursor protein VI; and viral DNA [43]. Regarding
the latter, in particular for AVP sensors (Figure 2, Figure S2 and S3), different cleavable
sequences might be recognized differently by the proteases and also influence biosensor flu-
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orescence emission. Indeed, both sequence length and composition can have tremendous
impact on protein structure and function, and potentially interfere with proper folding
and topology [44]. As hypothesized, prevalence of predominantly hydrophobic amino
acids (e.g., IVGL*G cleavable sequence) leads to a decrease in sensor fluorescence. On the
other hand, as EEGE*G has in its composition predominantly hydrophilic amino acids,
sensor folding might be less affected by distortion, leading to the observed increase in
fluorescence emission. A similar effect was also observed when adding flexible glycine
spacers surrounding the cleavable sequence (Figure S3). Taken together, a fine balance
between structural distortion levels, cleavable sequence length and composition, and sen-
sor fluorescence (before and after activation) exists, requiring careful optimization and
validation for each different target protease. Noteworthy, some non-specific proteolytic
cleavage of the sensors may occur when detecting similar proteases or proteases with
similar cleavage patterns. While specificity was not assessed in the scope of this work,
the developed sensors are envisioned in biotechnological applications evaluating specific
viruses in crude viral lysates or purified preparations and not in a mixture of different
viruses, as in human diagnostic applications.

After validation of the e11 and cy11 strategies—the top performing strategies for
detection of AVP activity—a virus-induced cell-based biosensing platform for detection of
label-free adenovirus infection was established. Of notice, the herein stable sensor cells are
‘bulk’ populations and not single cell clones. As such, cell to cell fluorescence variability
may arise due to different levels of protein expression and different ratios of GFP10 and
GFP11. Still, sensor cells with the e11 strategy allowed live-cell monitoring of infection by
fluorescence microscopy and flow cytometry, with fluorescence increasing fast, as soon as
24 h post-infection (Figure 4a,b). Conversely, cy11 sensor cells under-performed (Figure
4c). As seen in Figure 5a, all three populations reached similar and high fluorescence levels
when given undistorted GFP11, suggesting similar levels of GFP10 expression. GFP11
levels were indirectly assessed by quantification of copy number integration, since no
commercially available primary antibodies for GFP11 exist. As lentivirus-based viral
vectors stably integrate the transgene in a non-random fashion, similar integration and
expression profiles—in average—for both sensor populations might be expected. Although
cyAdV cells showed slightly lower relative number of integrated GFP11 copies (Figure
5b)—and potentially lower levels of protein expression—we hypothesize this difference is
not biologically significant to account for the negative impact seen in sensor performance.
Other factors should be considered, such as low self-assembly efficiency in stable conditions
(due to lower protein expression levels) or cy11 sensor protein degradation. The higher
SNR sensor performance observed in transient conditions compared to stable conditions
(Figures 2 and 4) may arise from several factors. Although RNA level quantification was
not performed to provide insights on these differences, we can hypothesize that transient
transfection might lead to higher viral protease and/or sensor protein expression. As the
label-free AdVs used in this work can replicate in 293 cells, protease levels during infection
should not be a limitative factor. AVP compartmentalization and activation status (as
explained above) may, nevertheless, negatively impact sensor activation. In that regard,
detection of other cytoplasmatic viral proteases could result in increased sensor activation.
On the other hand, increased levels of sensor protein and/or different ratios of GFP10 and
GFP11 may be necessary towards a stable sensor platform with improved performance.

Overall, the successful detection of viral infection provides a strong basis for further
applicability of these sensor cells in virus detection and quantification, as well in screening
of protease inhibitors. Towards that ultimate goal, ‘bulk’ populations—herein characterized
for proof-of-concept of our multiple sensor strategies and target proteases—should be
cloned, aiming at sensor cells lacking basal activity, with lower cell-to-cell variability,
and with increased SNR performance. Finally, the optimal sensing strategy for a specific
virus should then be benchmarked against well-established titration protocols. While
not expected to compete with the sensitivity of a quantitative PCR assay and be applied
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in human diagnosis, this label-free assay has the potential to compete with other flow
cytometry-based assays, making unnecessary to label the virus.

5. Conclusions

Herein, we optimized and characterized cell-based switch-on fluorescent split GFP
sensors conditionally activated by viral proteolytic activity. While comparable sensing
strategies were only applied in biochemical or bacterial screening assays [15,17], herein
we established mammalian cell-based sensors for different cysteine (TEVp and AVP) and
aspartic (HIV-1 PR) viral proteases, and a whole cell biosensing platform of adenovirus
infection. The split GFP-based sensors have shown an enormous potential, with SNR
up to 97. As highlighted by this work nonetheless, the different intrinsic properties
of each protease and constraints of cleavable sequence residue composition and length
require screening of multiple strategies and extensive sensor optimization. Overall, the
limitations and key parameters herein elucidated contribute for the development of better
and innovative protease-dependent sensors, whether for protease-containing viruses or
cellular proteases.
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developed split fluorescent sensors, Table S6: Primers for quantitative PCR, Figure S1: Evaluation
of embedment, cyclization, and coiled-coil sensing strategies for detection of tobacco etch virus
proteolytic activity, Figure S2: Evaluation of embedded GFP11 (e11) sensor backbones and cleavable
sequences for detection of adenoviral proteolytic activity, Figure S3: Evaluation of cyclized GFP11
(cy11) sensor backbones and cleavable sequences for detection of adenoviral proteolytic activity,
Figure S4: Evaluation of coiled-coil (cc10/11) strategy for detection of adenoviral proteolytic activity,
Figure S5: Evaluation of embedded GFP11 (e11) sensor backbones and cleavable sequences for
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