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Abstract: With the upsurge in the use of Unmanned Aerial Vehicles (UAVs) in various fields, detecting
and identifying them in real-time are becoming important topics. However, the identification of UAVs
is difficult due to their characteristics such as low altitude, slow speed, and small radar cross-section
(LSS). With the existing deterministic approach, the algorithm becomes complex and requires a large
number of computations, making it unsuitable for real-time systems. Hence, effective alternatives
enabling real-time identification of these new threats are needed. Deep learning-based classification
models learn features from data by themselves and have shown outstanding performance in computer
vision tasks. In this paper, we propose a deep learning-based classification model that learns the
micro-Doppler signatures (MDS) of targets represented on radar spectrogram images. To enable
this, first, we recorded five LSS targets (three types of UAVs and two different types of human
activities) with a frequency modulated continuous wave (FMCW) radar in various scenarios. Then,
we converted signals into spectrograms in the form of images by Short time Fourier transform (STFT).
After the data refinement and augmentation, we made our own radar spectrogram dataset. Secondly,
we analyzed characteristics of the radar spectrogram dataset with the ResNet-18 model and designed
the ResNet-SP model with less computation, higher accuracy and stability based on the ResNet-18
model. The results show that the proposed ResNet-SP has a training time of 242 s and an accuracy of
83.39%, which is superior to the ResNet-18 that takes 640 s for training with an accuracy of 79.88%.

Keywords: CNN; classification; UAV; FMCW radar; STFT; spectrogram; MDS

1. Introduction

In recent years, the rapid development of Unmanned Aerial Vehicle (UAV) technology
has increased the usage of UAVs in various fields such as agriculture, industry, and military.
Even though the use of UAVs brings convenience to life, it poses severe threats if abused by
enemies or terrorists. There have been reports of attempts to assassinate key figures or to
attack oil facilities using UAVs loaded with small bombs. If UAVs are used to attack with
biochemical weapons, damages will be more severe. Therefore, real-time early detection
and identification of UAVs are essential in real-life scenarios. However, it is difficult
to identify UAVs due to their low altitude, slow speed, and small radar cross-section
(LSS) characteristics. In the case of the deterministic rule-based model, due to the LSS
characteristics of UAVs, the algorithm becomes more complex, which increases the number
of computations. Hence, effective alternatives enabling real-time identification of these
new threats are required.

Recently, deep learning-based classification models have been used to solve various
tasks. These models learn features from a large amount of data themselves and have shown
outstanding performance in various classification tasks. In the UAV classification task,
deep learning-based classification models using various sensors are being actively studied.
Saqib et al. [1] experimented the task of UAV detection using pre-trained models such
as ZF-Net [2] and VGG-16 [3] with the bird-vs-UAV dataset, which contains 5 videos
with 2727 frames. It resulted the highest mean average precision of 0.66 with VGG-16.
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Kim et al. [4] performed Fast Fourier Transform (FFT) on the real-time acoustic data and
tested the performance by applying the plotted image machine learning (PIL) and the
k-nearest neighbors (KNN) methods, reaching accuracy of 83% and 61% in PIL and KNN,
respectively. Seo et al. [5] recorded acoustic signals of UAVs and non-UAVs outdoors,
obtained a 2D image by applying STFT, and tested the dataset with a self-designed CNN
model. The result showed a detection rate of 98.97% and a false alarm rate of 1.28%.

Radar poses some advantages over other sensors. Namely, radar is less affected by
weather and low visibility environments than optical sensors. Unlike acoustic sensors, it is
not vulnerable to ambient noise. Because of these advantages, various deep learning-based
UAV classification tasks such as birds vs. UAVs, UAVs vs. UAVs and UAV characterization
have been conducted using radars [6]. Among them, there exists a research field that
focuses on classification using deep learning by learning the MDS of a moving target as the
main feature. A moving target generates the micro-Doppler effect by partial movements
like the pendulum, rotation and vibration along with a constant Doppler shift induced from
the main body. This MDS is a unique characteristic of the target and is visually represented
well in a spectrogram of the STFT of the radar signal. This spectrogram can be trained with
a deep learning image classification model.

Choi et al. [7] suggested a deep-learning model which classifies three types of UAVs
(Vario helicopter, DJI Phantom 2, and DJI S1000+) based on the micro-Doppler signatures
in the spectrogram and confirmed the feasibility of the application of deep learning-based
models in the UAVs classification. Raman et al. [8] proposed a radar spectrogram-based
deep learning model that classifies birds and UAVs. They applied the following methods to
mitigate the lack of diversity and quantity of UAV radar spectrogram data. First, they added
the flying dynamics of UAVs for diversify the dataset. They added more flight dynamics
such as radial traversing, pointing out that other previous studies such as [7] only utilized
the hovering data of UAVs. Second, they applied the transfer learning [9] commonly used in
the optical image classification to solve the lack of radar spectrogram data. Transfer learning
is a method that can improve performance by transferring well-trained parameters of a
network trained with a large dataset to the network with a small amount of data. To apply
this method, the authors transformed the radar signal into an RGB spectrogram of the same
color scale as the optical image and trained the dataset with the modified GoogleNet [10].
They showed high performance of over 99%. However, radar signals have very different
characteristics from optical images. In particular, data characteristics may be distorted or
omitted in the process of transforming the color scale of radar spectrogram data to suit the
optical image classification network.

In this study, we generated a radar spectrogram dataset with a variety of UAV flight
dynamics and designed a lightweight deep learning classification model that learns the
MDS of targets, suitable for the real-time system. To diversify the dataset, radar signals
were recorded by diversifying the target type and the movement assuming a real-life
scenario. We recorded five LSS targets (3 types of UAVs and 2 different human activities)
each with an FMCW radar. UAV targets were selected according to flight type (multicopter,
fixed wing, wing flap) and walking and sit-walking were chosen as ground moving targets.
UAV signals were recorded by changing altitude, speed, and direction, and human signals
were recorded by changing direction and range at a constant walking speed. The signals
were converted into spectrogram images through STFT. Then, through the data refinement
and augmentation, we generated the radar spectrogram dataset. Then, we analyzed char-
acteristics of radar spectrogram data using the ResNet-18 model [11], which is a popular
image classification model. With this model, we analyzed the performance according to
the radar spectrogram data type and the model structure. Based on this, we designed a
lightweight ResNet-SP model which is more suitable for real-time systems. Additionally,
we improved model’s stability by applying anomaly detection and gradient clip methods to
reduce learning instability caused by abnormal data. The results show that ResNet-SP has
83.39% of accuracy which is higher than 79.88% from the ResNet-18. Also, the training time



Sensors 2021, 21, 210 3 of 18

is 242 s with our proposed model, which is faster than 640 s of ResNet-18. Furthermore,
the ResNet-SP model is more stable through out the training process.

2. Micro-Doppler Signature (MDS)

The Doppler effect of a radar is a frequency shift or wavelength change generated
from the reflected radar signal when a target moves or changes in a relative distance
to an observer. Radar signal interacts with the target in motion and the returned signal
changes its characteristics. While the Doppler effect is generated by a bulky motion of
the body of a target, its micro-movements from the part of the body can generate such
micro-frequency shifts, which is called the micro-Doppler effect [12]. This micro-Doppler
signal is created by all subtle movements of a target, such as vibration, rotation, pendulum,
etc., unique patterns or characteristics occur depending on the object type or different
movements of the same object. Figure 1 shows the micro-Doppler signature of walking
represented on the radar spectrogram. On this spectrogram, we can see the MDS shape
generated by swinging limbs around the torso signal. The shape of this MDS is represented
differently depending on the length of the limb, the swinging period, and the angle. Hence,
we can use this MDS shape as the main feature of the classification task.

Figure 1. Spectrogram of a person walking: approaching from the front and turning away.

In UAV, MDS appears differently according to the flight types, and even within the
same flight type, it appears differently depending on the number of rotors, blade length,
etc. Figure 2 is a radar spectrogram for UAVs of different flight types. The second column
shows the spectogram obtained by setting the UAV to the max speed with the fuselage
fixed at short-range, and the third column is the spectrogram obtained during free-flight.
We can see that each UAV spectrogram appears differently and using this characteristic,
we can further perform deep learning-based UAV classification.

3. Dataset Generation

UAV flight data is mainly generated by radar-related companies, agencies, or the
military for particular purposes. Thus, datasets are not publicly released and it is difficult
to find published references. In particular, the dataset recorded by radar sensors is even
rarer. Due to characteristics of the research field, many researchers generate their own
datasets and carry out research. However, most of datasets do not reflect the diversity of
data, such as measuring only at a close range to obtain a clear signal or simulating only
limited movements of UAVs. Unlike these datasets, we recorded various types of UAVs
and ground moving targets in diverse scenarios. After pre-processing the well-recorded
signals, we generated our radar spectrogram dataset.

3.1. Measurement

Radar signals are less vulnerable to low visibility and weather conditions than video
signals and have fewer restrictions on the line of sight (LOS), which indicates a straight line
between the target and the sensor. These radars are divided into two types by the principle
of radio wave emission; (1) ‘pulse radar,’ which transmits pulse signals and receives
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signals reflected from objects and (2) ‘continuous wave (CW) radar’, which continuously
transmits and receives signals without a pause. To detect time-varying changes for low
radar cross section (RCS) targets, the continuous wave radar is suitable and we decided
to use an FMCW radar that continuously emits a frequency modulated signal at regular
intervals to obtain time information. Our model is Ancortek’s SDR KIT 980AD2 and the
specifications are described in Figure 3. Additionally, to select well-recorded files, we
installed a video camera synchronized with the radar and double-checked video files and
radar spectrograms.

UAV Image fuselage fixed at short-range free flight

Figure 2. Spectrogram of Unmanned Aerial Vehicles (UAVs); wing-flap (top), quad-copter (middle),
and fixed-wing (bottom).

Figure 3. Staring mode X-band frequency modulated continuous wave (FMCW) radar (Ancortek’s
SDR-KIT 980AD2) and Specification.

We recorded five different LSS targets with the FMCW radar. Assuming the enemy
approaching the local area, we selected three types of UAVs as aerial moving targets and
two different human activities as ground moving targets. The three flight types of UAVs
are ‘Metafly’, a wing-flapping drone that mimics wings of a bird and ‘Disco’, a fixed-wing,
and ‘Mavic Air 2’, a quad-copter (4 rotors). ‘Walking’ and ‘Sit-walking’ are data of the same
person. Figure 4 shows the images of the five targets.
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Metafly MavicAir2 Disco Walking Sit-Walking
(XTIM SARL) (DJI) (Parrot)

Figure 4. Five target Images; three types of UAVs and two different human activities.

We recorded various movements of targets within the 100 m range. UAVs were
recorded while changing altitude, speed, and direction freely, and humans were recorded
while changing the distance and the direction at a constant pace. Only two UAVs (Metafly
and Disco) were given some restrictions for the proper recording. Metafly was recorded
within the 10 m range because of its low signal intensity. Disco was recorded only in the
left and right, front and rear, and concentric circular flight at an altitude of 10 m with
low-velocity settings because of its high-speed and wide turning radius. Disco is equipped
with a single rotor at the rear of the fuselage so that thrust acts only forward and changes
direction gradually by changing the Angle of the Attack (AoA) of the aileron at the wing-
tips. So it requires a wide turning radius and often be placed outside of the radar’s detection
range. Besides, because it moves at high speed, it quickly leaves the radar’s detection range.
Table 1 shows the movements for each target and the settings for recording. Figure 5 is
sequential video frames of a specific movement for targets.

Table 1. The movements for each target and the settings for recording. L is left, R is right, B is back, F is forth and C
is concentric.

Parameter Metafly Mavic Air 2 Disco Walking Sit-Walking

Alt./Range (m) 0–10/0–10 0–10/0–100 10/0–100 0/0–100 0/0–100

Movement Free flight Free flight Circular-flight (L↔ R, B↔ F, C) Free Free

We operated Metafly and Mavic Air 2 manually, and Disco operated automatically by
entering flight plans through the ‘Free Flight Pro’ mobile application. We recorded many
times for each target and removed abnormal files such as overly noisy files or files intruded
by other objects by cross-checking video files and spectrograms. Basically, we selected 10
well-recorded files for each target and divided the training dataset and the test dataset by a
ratio of 8:2. (The exception is for Disco; 25 files were used because the recorded section was
too short).

3.2. Pre-Processing

In the pre-processing step, the recorded radar signals are transformed into spectro-
gram images through STFT and completed into the dataset after the data refinement and
augmentation. The data refinement is the step for removing the spectrogram section in
which the target is not recorded. To do this, we cut the spectrogram into short time intervals
and removed cut images with an average intensity below a threshold. To increase the
amount of data, we applied three data augmentation methods, keeping the format of the
spectrogram: the x-axis represents time, the y-axis represents frequency and the color at
each point represents the amplitude of a specific frequency at a specific time.
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(a)

(b)

(c)

(d)

(e)

Figure 5. Sequential video frames of a specific movement for each target: (a) Metafly flight from right
to left ； (b) Mavic Air 2 flight from front to back; (c) Disco flight back to front; (d) Walking right to
left; (e) Sit-Walking back to front.

In the signal processing of STFT, we applied different window sizes (128, 256 and
512) and the window overlap ratios (50%, 70% and 85%) to get spectrograms of different
resolutions. In addition, we applied the vertical flip after the data refinement to obtain
spectrograms with reversed radial velocity sign.

A spectrogram [13] reveals the instantaneous spectral content of the time-domain
signal and the spectral content variations over time. A spectrogram is obtained by the
squared magnitude of the STFT of a discrete signal. With the spectrogram, we can visually
observe the spectrum of frequency changing over time. But when converting the spec-
trogram, finite-size sampling in a recorded signal may result in a truncated waveform
from the original continuous-time signal, introducing discontinuities into the recorded
signal. These discontinuities are represented in the FFT as high-frequency components,
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even though not present in the original signal. This appears as a blurry form, rather than
a clear form on the spectrogram. This is called ‘spectral leakage’ because it looks as if
energy is leaking from one frequency to another. In order to mitigate the spectral leakage,
window functions are generally applied. The spectrogram resolution is determined by the
window size and there is a trade-off between time and frequency resolution [14]. Figure 6
shows the differences in the spectrogram resolution according to window sizes.

32 64 128

Figure 6. Spectrogram resolution of walking according to window size; as the window size increases, the frequency
resolution increases.

If a narrow window size is applied, a fine time resolution can be obtained due to a
short time interval, but the frequency resolution is degraded due to the wide frequency
bandwidth. Conversely, if wide window size is applied, a fine frequency resolution is
obtained due to a wide time interval and a narrow frequency bandwidth, but the time
resolution is degraded. The higher the resolution, the more detailed the object’s MDS
waveform is represented. We generated spectrogram images with different resolutions by
applying three window sizes (128, 256, 512) to the original signal.

Even when the window size is determined, if several different frequencies are included
in a window, they may not be distinguishable. One can use a window overlap that applies
for redundancy when applying the next window in the STFT process to reduce this effect.
The higher the overlap ratio is applied, the higher the resolution, but it requires more
computations. Figure 7 shows the differences in the spectrogram resolution of Metafly
(wing flapping UAV) according to different window overlap ratios. The higher the overlap
ratio in the given window size, the more detailed the MDS signal is. The trajectory of radial
velocity by the entire body of the target is also precisely expressed.

25% 50% 75%

Figure 7. Spectrogram shape of Metafly flight according to window overlap ratio: approx. 24 wing beats per second of
Metafly appear more clearly as the window overlap ratio increases.

In the time-velocity spectrogram, the height represents the target’s radial velocity
relative to the radar; the radial velocity component that appears on the upside (positive
velocity) from the center represents the target is moving away from the radar, the down-
ward (negative velocity) from the center represents that the target is moving toward the
radar and center represents velocity zero. The continuous waveform of the target over time
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generates a trajectory representing the movement characteristics according to the type of
target on the spectrogram. For example, the difference in trajectory due to flight dynamics
between fixed-wing aircraft and multiple helicopters is explained below. First, in fixed-wing
UAVs, the propeller is fixed in the front or rear, so the thrust works only in one direction.
Accordingly, the direction changes gradually by three factors; the inclination of the aileron
at the rear of the main wing, the elevator of the horizontal tail wing, and the rudder of the
vertical tail wing. In contrast, in a multi-copter, several rotors are distributed over the top of
the fuselage. When changing the direction, it uses fuselage-tilting caused by the difference
at each rotor rotation rate, so not only a gradual change of the direction but also a drastic
change of the direction in all azimuth is possible. These distinctive flight characteristics
appear as time-varying trajectories on the spectrogram; in the former case, it is gradual
and curved and in the latter case, it appears in a sharp and vertical form. This trajectory
will be trained with the target’s characteristics along with the spectrogram shape and the
spectrogram with a high overlap ratio will represent the radial velocity change in more
detail. We applied three window overlap ratios for each window size. In the STFT process,
data augmented nine times by applying three window sizes and three window overlap
ratios to one original signal.

We performed data refinement after STFT. UAV signal has low intensity due to its small
size and material such as plastic or reinforcement styrofoam. So, as the distance increases,
the signal intensity drops sharply or is not detected at all. So there are many unrecorded
sections like background clutter in the spectrogram. Figure 8 shows the spectrogram for
the background clutter and Mavic Air 2.

Figure 8. Spectrogram of background clutter (top) and Mavic Air 2 (bottom). The red box is the
non-recorded section of the target.

In the spectrogram of Mavic Air 2 on the right, the red box is non-recorded sections
because of the target’s low signal intensity. When these non-recorded sections are trained
with data, it is hard to expect the correct performance of the deep learning model. So we
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applied the following data refinement process to remove abnormal data. If the target is
well captured, the clear spectrogram shape with strong intensity appears around a specific
velocity component on the spectrogram and harmonic components are represented parallel
around it. Based on this property, we first chopped the image at a time interval, which is the
MDS periodicity of the target. Then, we removed chopped images with an average intensity
below the threshold and stitched chopped images with an average intensity above the
threshold. If the threshold is too high, only high-intensity signals recorded at a short-range
would be retained and low-intensity signals at a long-range could be removed even though
the MDS shape was represented. Conversely, if the threshold is too low, non-recorded
sections of the target cannot be removed. So we determined the threshold by referring
to the average intensity values of the background clutter and non-recorded sections of
UAV spectrograms. Figure 9 represents the data refinement process for the Mavic Air 2
spectrogram. The spectrogram is cut at the same time interval, and the cut images with
average intensity below threshold (red-box) are removed. Images above the threshold (blue
boxes) are stitched together to generate a refined spectrogram. MDS periodicity (approx.) :
Walking (1/2 s), Metafly (1/24 s), Mavic Air 2 (1/92 s), Disco (1/183 s)

Figure 9. Spectrograms of Mavic Air 2 before refinement (left) and after refinement (right). red box: chopped image with an
average intensity below threshold, blue box : chopped image with an average intensity above threshold

The data refinement process was applied to only two UAV targets (Mavic Air 2 and
Disco) with many non-recorded sections on the spectrogram. Table 2 shows the change in
the spectrogram size before and after the refinement for these two targets. After refinement,
the spectrogram size of Mavic Air 2 was reduced by about 25 % and the Disco by about 50%.

Table 2. The spectrogram width size of 1 recorded radar signal.

Division Mavic Air 2 Disco

Before refinement 995 339
After refinement 747 168

Removal percentage 25% 50%

In particular, the spectrogram size of the Disco was significantly reduced due to the
flight characteristics of fixed-wing UAV. Disco has a single rotor mounted at the rear of
the fuselage, so the thrust acts only forward, and the direction changes gradually by the
ailerons at the wing-tips. Therefore, it requires a wide turning radius, which often leaves
the radar detection range. Besides, its RCS is very low because of the fuselage material
which is reinforced styrofoam. In other words, it was difficult to record due to the low
RCS, and due to flight characteristics such as high-speed movement and wide turning
radius, it was within the radar detection range only for a short time. The data refinement
process resulted in increased model stability. Figure 10 is the training loss curve before
and after data refinement. In training with unrefined data, accuracy often fell significantly
during training and the test accuracy also had a large deviation. You can see this by the
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number and size of spikes in the training loss curve on the left. Conversely, with refined
spectrogram data, the phenomenon of drastic accuracy drop during training was and the
variation of test accuracy were reduced. This can be seen in the figure on the right as the
size and number of spikes decreased.

Figure 10. Training loss curve; before data refinement (left), after data refinement (right).

After the refinement process, we applied the vertical flip to spectrograms. By using the
vertical flip, we got additional spectrograms with reversed radial velocity sign. Totally we
could generate 18 different spectrograms from one original radar signal by applying three
window sizes, three window overlap ratios and vertical flip. Table 3 shows applied data
augmentation methods when generating the training data. The test dataset was generated
by applying only one window size (128) and the overlap ratio (70%), without using the
data augmentation.

Table 3. Data augmentation method applied when generating training data.

Category Window Size Window Overlap Vertical Flip Total

(Specification) (128, 256, 512) (50%, 70%, 85%) (O, X)

Original signal ×3 ×3 ×2 ×18

For the training data, after pre-processing, the height of each spectrogram is resized
to 128 and then cut into a 128 × 128 spectrogram image by applying a 50% overlap ratio.
The test data is cut into a 128 × 128 spectrogram image by applying a 75% overlap ratio
after the pre-processing process. To prevent the class imbalance, the number of each class
of the training data and the test data was balanced. The number of examples for each class
was set to about 2000 in the training data and about 200 in the test data. Table 4 shows the
number of examples for each class in our dataset.

Table 4. The number of data for each class in the radar spectrogram dataset for five low altitude, slow
speed, and small radar cross-section (LSS) targets.

Class Metafly Mavic Air 2 Disco Walking Sit-Walking Total

Train 2142 2176 2196 2136 2112 10,762
Test 219 218 206 198 195 1096

4. Models

This section introduces the deep learning model and analyzes characteristics of the
radar spectrogram dataset using the ResNet-18 model, a popular image classification
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model. By checking model performances depending on the data type of radar spectrogram
and the noise, we confirm the optimal data type and a major feature of the spectrogram
dataset. In addition, we check the performance by changing the structure of the model. We
design a lightweight and stable ResNet-SP model which is suitable for real-time systems
by modifying the model, based on these characteristics.

The rule-based classifier is based on ’if-then’ rules designed by engineers. This method
often complicates the model and lacks scalability, because rules must be specified every
time to classify the new data. On the other hand, a CNN-based classifier extracts features
from large amounts of data automatically. In addition, the robustness of CNN to shift
and distortion [15] resulted in an outstanding performance in image classification tasks;
in the 2014 ImageNet Large Scale Visual Recognition Challenge (ILSVRC), GoogLeNet and
VGG-Net respectively ranked first and second with top-5 error rates of 6.67% and 7.3% and
In the 2105 ILSVRC, ResNet recorded a recognition top-5 error rate of 3.57% which was
less than the human recognition error rate.

CNN is a deep-learning model that uses convolutional operation, and is composed
of several convolution layers and pooling layers. A model learns the different features
of an image using various sizes and numbers of kernels. In the shallow layers, low-level
features are learned, which can be basic shapes like lines and edges. In the deep layers,
high-level features are learned, which contain more specific information for classifying
objects. The model is designed to perform well by learning the various characteristics of the
data. CNN can extract high-level features as layers are stacked deeper, but simply stacking
layers deeper does not increase the performance. The reason is known to be the gradient
vanishing problem [16] that occurs due to the multiplications of gradients in the parameter
update stage as the layer gets deeper. As a result, training cannot be progressed and in
some cases, the performance even degrades.

4.1. ResNet-18

He et al. [11] proposed a residual network that applies residual concepts to the CNN
model. ResNet showed that as the layer gets deeper, the gradient vanishing problem can be
reduced using the residual block and hence bring performance gain. This architecture has
shown superior performance in various image processing tasks than previous CNN models.
In the CNN model, the receptive field of the unit in the deeper layer is larger than in the
shallow layer. This is because as the layer deepens, the output unit is indirectly connected to
a broader area of the input image [17]. However, as the layer deepens, structural problems
such as gradient vanishing and over-fitting can easily occur. As shown on the right side of
Figure 11, ResNet solves the aforementioned problems by connecting a detour path called
identity shortcut connection between intermediate layers.

Figure 11. Plane CNN layers (left), Residual block (right).
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In the residual block, the input ‘x’ goes through the first convolution layer, the acti-
vation function (Relu) and the second convolution layer, outputting F(x). The output F(x)
passes through the activation function after the addition with the initial input ‘x’. Due to
this shortcut connection, even if F(x) has passed through the two layers and the parameter
approaches 0 due to gradient vanishing, the added initial input ‘x’ remains and is trans-
ferred to the next layer. Therefore, even if the layer is deepened, the representation power
does not fall short of the layer before the identity function and the performance is improved
by training. In the ImageNet dataset, the ResNet model showed higher performance than
the vanilla CNN model, and achieved better performance as the layer deepens. ResNet is a
well-balanced CNN model widely used in recent computer vision tasks. As radar signals
were transformed into a format of an image, we can train the detection problem on the
dataset with these ResNet models. Through this, we can analyze the radar spectrogram
data with the ResNet model and design an enhanced model. Compared to the optical image
classification task, learning MDS and trajectory on a radar spectrogram is less complicated,
so we use the ResNet-18 model with fewer layers.

First, we analyzed the performance of the model according to the information type of
the spectrogram data. The radar signal is composed of complex numbers, containing the
signal intensity and phase information, etc. In a related study, to utilize a deep learning-
based optical image classification model, the signal value of the radar spectrogram was
transformed into the color scale of the optical image. We assumed that the transformation
without preserving radar data characteristics could distort or miss out on information and
tested the performances according to the three different information form of the radar
signals. The three types of radar information are represented as channel information:
1 channel of magnitude, 2 channels of real and imaginary and 2 channels of magnitude
and phase. The magnitude is the square root of the sum of the squared real-value and
the squared imaginary-value. The phase is obtained by taking the inverse tangent of the
value obtained by dividing the imaginary value by the real value. The height and width
sizes of the three spectrogram data were the same, and the accuracy is the average of five
times measurements. Table 5 shows the classification accuracy according to the signal
information form of radar spectrogram. The result shows the highest accuracy when the
real and imaginary values of the radar signal are paired as two channels. Through this,
it was confirmed that most features were maintained at the original form of the radar signal
and that the change in signal form could lead to loss of information.

Table 5. Classification accuracy of ResNet-18 model according to the signal form of radar spectrogram.

Channels Accuracy (%)

1 (Magnitude) 75.98
2 (Real, Imaginary) 79.88

2 (Magnitude, Phase) 54.53

Next, we investigate the main features of the data that the model learns by adding
two different noises to the dataset. One is the Gaussian noise that adds random value and
the other is the uniform noise that adds the same value. The Gaussian noise image was
created by generating a random variable following a standard normal distribution as the
input size, multiplying it by a noise level representing noise intensity, and adding it to the
original normalized image. The uniform noise image was created by setting the value of
1 to the input size, multiplying the noise level, and adding it to the original normalized
image. Each value of the image does not exceed 1. Through Gaussian noise, we checked
the model performance in the condition of where an arbitrary shape is added to the entire
image, and in uniform noise, we checked the model performance when the sharpness of
the MDS is reduced compared to the surrounding area. Each noise level was specified
as a hyper-parameter by identifying the point at which the model’s performance begins
to deteriorate significantly. Table 6 shows the performance of the model for two types of
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noises. The performance of the model decreases in both data as the noise level increases,
but we see that the performance decreases sharply in the Gaussian noise, compared to the
uniform noise. This result shows that low-level features in the radar spectrogram dataset
are the most important features to the model when classifying UAVs.

Table 6. Accuracy of ResNet-18 on the spectrogram dataset with two different noises.

Noise Level Accuracy on Gaussian Noise (%) Accuracy on Uniform Noise (%)

0.01 76.20 80.80
0.03 66.30 80.90
0.05 40.25 75.71

The ResNet-18 model consists of a 5 convolution group and a second to fifth convo-
lution groups consist of several basic blocks. The feature map size is halved after going
through each convolution group.We analyzed the performance by changing the convo-
lution group of the model and the basic block(layer)s within the groups. We checked the
performance by sequentially removing the convolution groups from the output of the
model. Table 7 shows the accuracy of the model for the final feature map size changed by
the removal of the convolution group. The results showed the highest accuracy in the 8 × 8
feature map size with the 5th convolution group removed, and the performance continued
to decline after that. This is the highest model performance in the optimal feature map size
that reflects the characteristics of the data, and this feature is applied when designing a
new model. We tested the performance by changing the number of basic blocks within the
convolution group, but there was no significant trend. Through this experiment, we con-
firmed that the final feature map size is significant in learning the spectrogram data of
the deep learning model, and that the additional depth of the layer does not significantly
affect the performance improvement. Based on the above analysis, we design a lightweight
model more suitable for real-time systems.

Table 7. Accuracy by number of convolution groups and layers in ResNet-18.

Conv. Groups Numbers of Layers Feature-Map Size Accuracy (%)

5 18 4 × 4 79.88
4 14 8 × 8 81.43
3 10 16 × 16 75.38

4.2. ResNet-SP

In the analyses with the ResNet-18 model, we checked that (1) the model mainly
learns the low-level features of the radar spectrogram, (2) the size of the final feature map
significantly affects the performance and (3) the depth of layers do not significantly affect
the performance. Furthermore, we designed the ResNet-SP model for real-time systems by
applying optimal settings based on these analyses and applying additional compression
and stabilization methods.

Figure 12 is the architecture of ResNet-SP. We removed the 5th convolution group from
the ResNet-18 model and kept the number of basic blocks the same.And we reduced the
channels of each group by half. By applying a dilated kernel method, the computations were
reduced because the smaller parameters are used in the model while keeping the receptive
fields. To increase the learning stability of the model, we applied an outlier detection
method that removes abnormal data in the learning process through the distribution of
the data and the gradient clip method that reduces the influence of the anomalous data by
limiting the norm of the gradient.
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Figure 12. ResNet-SP Architecture.

In a kernel, the receptive field signifies the area of the input image where the kernel
attends to. The size of the receptive field is the same as the kernel size and the larger the size,
the more the overall characteristics of the image can be obtained. However, if the kernel
size is increased to obtain a wider receptive field, the number of parameters increases,
which increases the computational time.

Dilated convolution is a method of adding zero-padding to the convolution kernel,
which allows a wider receptive field while using the same number of parameters [18].
Figure 13 shows the receptive field images when 3 × 3, 5 × 5, and 3 × 3 kernels with
dilation are applied. The 2-dilated 3 × 3 kernel has the same receptive field as the 5 × 5
kernel, with the same number of parameters as the 3 × 3 kernel. Through this method,
the global feature can be extracted without increasing the number of parameters.

Figure 13. The receptive field images : 3 × 3 kernel (left), 5 × 5 kernel (center), 2-dilated 3 × 3
kernel (right).

In the radar spectrogram, the MDS shape is formed around the main velocity by the
main body, and the harmonic components appear parallel to around. Whereas the target
is located locally in the visual image, the moving target signal of the radar spectrogram
is time-varying, and the local characteristics of the MDS formed in specific areas of the
entire image and the global characteristics of the harmonic component formed at various
frequencies coexist. We tried to reduce the computational time without sacrificing the
global feature. Therefore, we applied a dilated convolution kernel within the range that
does not significantly degrade the performance. Table 8 shows the performance when the
size of the 7 × 7 kernel of the model is reduced to a 3 × 3 kernel with the dilation. When
dilation of 2 was applied to the 3 × 3 kernel, the performance was maintained. However,
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when dilations of 3 or more were applied, the performance was gradually decreased. This
means that applying too large dilation will miss out the MDS information, the main feature
that the model is supposed to learn. Therefore, at the end, we applied a dilation of 2 to the
3 × 3 kernel, instead of the 7 × 7 kernel.

Table 8. The accuracy by the kernel shape in the first convolution group on model.

Kernel size 7 3 3
Dilation 1 2 3

Receptive field 7 5 7
Accuracy (%) 79.88 80.26 79.33

Although many abnormal data were removed in the refinement step, abnormal data
that interfere with learning still remained in our dataset. In a deep neural network using
multiple layers, when such abnormal data comes in a batch, large weights from large loss
are successively multiplied in the parameter update process, causing a gradient exploding
problem. As a result, previous well-trained parameters change rapidly, which causes a
dramatic accuracy drop. We applied a gradient norm clipping method [19] that constrains
the maximum norm of gradients to reduce the impact of anomalous data interfering with
the learning process. Figure 14 is the training loss curve before and after applying the
gradient clipping method. In the figure, the red box represents the training loss value after
5000 iterations, and we can see that the variation has decreased after applying the gradient
clipping. And the deviation of test accuracy was also reduced.

Figure 14. The training loss curve before (left) and after (right) applying the gradient clipping method.

We additionally applied a method of removing abnormal data from the training
process to increase the learning stability of the model. In our dataset, abnormal data are
non-recorded or contaminated sections of the spectrogram. Most of these abnormal data
were removed through the data refinement step, but some remain, interfering with the
stable learning of the model. These abnormal data exist in every class. Anomaly detection
is a research field that identifies outliers that deviate from the majority of normal data.
There are various anomaly detection methods, but we applied the concept of a softmax
model of end-to-end anomaly score learning [20]. This approach assumes that normal data
appears at a relatively high frequency compared to anomalous data, and anomalous data
appears at a lower frequency. When data of a specific class is input, the softmax value
is much higher in that class than in other classes, and most of the normal data have this
probability distribution. When normal data is entered into the model, the softmax value is
significantly higher in one class. However, when abnormal data is entered into the model,
the softmax value appears similar in several classes and the largest value is much smaller
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than the softmax value in normal data. Figure 15 is an example of the softmax distribution
of normal and abnormal data. Using this characteristic, we excluded data in the training
process if the highest softmax value of the input data does not exceed a certain threshold.

Figure 15. Softmax output distribution on data; normal data (left), outlier data (right).

5. Experiment and Results

This section shows performances with the ResNet-18 and the ResNet-SP model on
the radar spectrogram dataset. The performance measures we present are accuracy and
computation time. The model accuracy is the average test accuracy of five runs and the
standard deviation is also presented. The computational time is measured only during the
training time, excluding the dataset generation procedure. We also presented inference
time, which is the prediction time for one input.

As settings for the experiment, the model training was performed in Ubuntu with
NVIDIA GeForce GTX Titan X edition GPU and a 3.6 GHz Intel Core i7-9700K CPU.
We used the stochastic gradient descent (SGD) [21] with momentum [22] as an optimizer.
The momentum coefficient was set to 0.9 which means 90% of the cumulated gradient from
the previous step will be transmitted to the current step. The initial learning rate was 0.1
and the weight decay [23] coefficient for regularization was set to 1 × 10−4. We trained for
100 epochs in total, with a batch size of 64. We used the cross-entropy loss [24] for the final
loss function.

Table 9 shows the computational time and accuracy of both models. As a result,
ResNet-SP showed slightly higher accuracy with shorter computational time than ResNet-
18, and the standard deviation of accuracy was also smaller, indicating that the learning
stability was improved.

Table 9. Mean accuracy and standard deviation of five measurements, and computational time.

Models Inference Time (ms) Training Time (s) Accuracy (%) Standard Deviation

ResNet-18 2.68 640.39 79.88 0.0204
ResNet-SP 1.98 242.22 83.39 0.0115

6. Conclusions

In this study, we recorded three different types of UAV signals and two different types
of human activity signals in various scenarios using FMCW radar. Furthermore, we gener-
ated the radar spectrogram dataset with high diversity through STFT, the data refinement
method, and the data augmentation method. Then, we analyzed the characteristics of the
radar spectrogram dataset using the ResNet-18 and checked the optimal data form and
model structure. In addition, we designed the ResNet-SP model, which is more suitable
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for real-time systems by compressing and stabilizing the ResNet-18 model. As a result of
experimenting with both models with the same radar spectrogram dataset, the ResNet-SP
showed higher stability, accuracy, and faster computational time than the ResNet-18 model.
In future works, we hope to expand this study to a model that classifies UAV types by
adding several additional UAVs and to improve the performance of the model using the
acoustic spectrogram of the target along with the radar spectrogram. We also hope to
improve the performance of the ResNet-SP model.
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