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Abstract: Emotion recognition has drawn consistent attention from researchers recently. Although
gesture modality plays an important role in expressing emotion, it is seldom considered in the field
of emotion recognition. A key reason is the scarcity of labeled data containing 3D skeleton data.
Some studies in action recognition have applied graph-based neural networks to explicitly model
the spatial connection between joints. However, this method has not been considered in the field of
gesture-based emotion recognition, so far. In this work, we applied a pose estimation based method to
extract 3D skeleton coordinates for IEMOCAP database. We propose a self-attention enhanced spatial
temporal graph convolutional network for skeleton-based emotion recognition, in which the spatial
convolutional part models the skeletal structure of the body as a static graph, and the self-attention
part dynamically constructs more connections between the joints and provides supplementary
information. Our experiment demonstrates that the proposed model significantly outperforms other
models and that the features of the extracted skeleton data improve the performance of multimodal
emotion recognition.

Keywords: emotion recognition; gesture; skeleton; graph convolutional networks; self-attention

1. Introduction

Multimodal emotion recognition has attracted a lot of attention due to its wide range
of application scenarios. Many previous research efforts on emotion recognition process
the information from different modalities and use multimodal clues to infer the emotional
states. Body gestures are an integral part of nonverbal communication and deliver ex-
tremely important supplementary information when expressing emotions [1]. A robot or
interactive system with the ability to recognize emotions from body movement can bring
significant benefits to many applications, such as biometric security, healthcare, and gam-
ing [2]. Body movement information has good robustness and can be a better alternative
for emotion recognition from a distance [3]. However, considerably less work has been
done on automatic emotion recognition using body movement.

The dynamic human skeleton is the most intuitional and natural method for depicting
human actions, and it does so by structuring the body movement as a sequence of joint
positions. The scarcity of labeled data containing 3D skeleton data is one of the significant
reasons the body gesture modality has seldom received attention in emotion recognition
tasks. Although several multimodal emotional databases include skeleton coordinates,
e.g., the multimodal database created by Sapiński et al. (560 samples) [4] and the emoFBVP
database (1380 samples) [5], the relatively small amount of samples and the lack of inter-
personal dialogue and interaction limit the generalization and robustness of the models
trained on them. By contrast, research using speech signals, textual transcriptions and
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facial expressions mostly evaluate their models on large open-source multimodal emotional
benchmark datasets, such as the interactive emotional dyadic motion capture database
(IEMOCAP, over 10000 samples) [6]. However, these databases do not contain skeleton data
representing the gesture modality, which makes them difficult to use in gesture emotion
recognition.

Since deep learning has revolutionized many fields and had an outstanding per-
formance, some recent research has utilized neural networks on gesture-based emotion
recognition [7–9], which fed video frames or a sequence of joint coordinates into neural
networks, e.g., convolutional neural networks (CNNs) and recurrent neural networks
(RNNs), to extract emotion-related features and make predictions. However, since the
spatial connections and graphic structures between joints are seldom explicitly considered
by these methods using image sequences and skeletons, the ability to understand the
emotion expressed by the body movement is relatively limited.

In the field of action recognition, the Spatial Temporal Graph Convolutional Network
(ST-GCN) [10] abstracts the skeletal structure of the human body as a spatial graph, in
which the vertexes are joints and the edges represent natural bone connections, and then
constructs a graph network using spatial-temporal convolutional blocks to extract features
and make predictions. However, ST-GCN has some shortcomings: the topology of the
graph is fixed and does not change with the information of each node, which means that
the flow direction of information between nodes is predefined and limited to the natural
connection between the joints of the body [11,12]. This is also unfavorable for emotion
prediction tasks based on skeletal data and there is a lack of flexible connections that are
necessary for emotional expression using body gestures. For example, when people express
anger, the joints of the limbs, especially the two hands, tend to have relatively high gestural
dynamics characteristics, e.g., movement speed and amount of movement [13]. A strong
connection between these joints is likely necessary, but the fixed graph structure does not
guarantee that the network can capture the appropriate dependency.

To solve these problems, we make the following contributions: (i) we extract 3D
skeleton movement data from raw video based on pose estimation and the method can be
used to expand existing databases to alleviate the lack of labeled data. (ii) We propose a
self-attention enhanced spatial temporal graph convolutional network for skeleton-based
emotion recognition, in which the self-attention part of the spatial graph convolutional layer
dynamically constructs connections between the nodes of the entire graph and provides
supplementary information for the spatial graph convolution. The model outperforms
baselines by a significant margin. (iii) We fuse the representations extracted by the proposed
model with the audio and text high-level features, to use audio, text, and skeleton modali-
ties simultaneously. The performance significantly exceeds that of the bimodal model using
only audio and text information, which shows the effectiveness of the extracted modality.

2. Related Work
2.1. Emotion Recognition

Emotion not only plays a crucial role in interaction, decision making, and cognitive
processes [14], but also further affects the accuracy of our memory of some events [15]. In
human-human interaction, people naturally express and recognize their emotions through
multiple modalities including speech, semantics, facial cues, and physical movement [16].
In recent years, the automatic detection of human emotional states has consistently drawn
attention from researchers, due to its wide range of applications and growing demand
in many different areas such as human-robot interaction, safety driving, website cus-
tomization, and education [17,18]. For example, a driver emotion detection system can
automatically infer the driver’s emotional state and take corresponding measures to ensure
road safety and human health [19]. Many previous research efforts on emotion recognition
process the information from different modalities and use multimodal clues to infer the
emotional states, and they show improvement of the overall performance by multimodal
fusion [20]. Tzirakis et al. applied convolutional neural networks to extract features from
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the speech and the facial expression and utilized long short-term memory networks to
model the context and improve the performance [21]. Heusser et al. combined pretrained
language models with speech emotion recognition and achieved a better accuracy [22].
However, these works rarely consider gesture as the source of information on recognizing
emotions.

2.2. Gesture-Based Emotion Recognition

There have been some studies about gesture-based emotion recognition over the past
few years [23]. For example, Ahmed et al. [2,24] applied a feature selection algorithm to
select features from the movement feature groups and proposed a genetic algorithm to
recognize emotions from body movement. A big challenge of emotion recognition is to
design suitable features to capture the emotional properties of body movement. Inspired
by the great performance improvement brought by deep learning in many important
tasks, some researchers also used deep learning in an end-to-end manner for gesture-
based emotion recognition. Filntisis et al. [8] fed flattened 2D pose data into deep neural
networks to get a representation and fused it with facial features to predict emotion, which
achieved better results than the model using only facial data. Karumuri et al. [25] used
convolutional neural networks for classification of emotions from (motion capture) data
of dance movements. Deng et al. [26] proposed an attention-based bidirectional LSTM to
explore the relationship between human behavior data and emotions.

Most of these studies used open-source multimodal datasets or created new datasets
without a large amount of data. Since labeled emotional gesture data is scarcer than
speech and facial data, these studies have been limited. Moreover, single-person action
performance instead of natural dialogue-based interactive data has been used in these
studies, which makes learning the natural expression of human emotions in interactive
scenes difficult. Besides, most of the existing deep learning methods for gesture emotion
recognition are based on RNNs or CNNs, which cannot represent the spatial connections
of joints.

2.3. Graph Neural Networks

Graph is a data structure composed of a series of nodes and edges. As non-Euclidean
data, graph data have no regular spatial structure, and their complexity poses a great
challenge to existing machine learning algorithms [27]. Recently, graph neural networks
(GNNs) have been used in a wide variety of difficult tasks for previous machine learning
algorithms, because of their ability to model the data generated from non-Euclidean
domains and capture the internal dependence of the data [28], and they have achieved
extensive success [29,30].

Encouraged by the success of CNNs in the computer vision domain, convolutional
graph networks (GCNs) that generalize convolutions to graph data have attracted an
increasing interest [27]. These approaches can be categorized as spectral approaches and
spatial approaches [31]. Spectral approaches define graph convolutions by using the graph
Fourier transform. Bruna et al. [32] first developed a spectral-based graph convolution,
which is limited because of the huge calculation burden. The approaches proposed by
Defferard et al. [33] improved efficiency and solved this problem. Spatial approaches
directly use the topology of the graph and apply the convolution filter based on the neigh-
borhood information of the graph. Monti et al. [34] proposed a spatial-domain model and
generalized CNN architectures to non-Euclidean domains. Hamilton et al. [35] proposed
a general inductive framework that samples and aggregates features from a node’s local
neighborhood to generate embeddings. This work follows the spatial approaches.

3. Skeletal Data Extraction

We extract dynamic body skeleton data from raw video of a large existing open-source
emotional database to add a new modality representing gestures. To do this, we use a
human pose estimation method to draw a temporal sequence of joint positions in the form
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of 3D coordinates. Then some prepossessing steps are applied for the data before feeding it
into the emotion recognition model.

3.1. Human Pose Estimation

Human pose estimation is used to localize the human joints in images or videos,
obtain 2D or 3D coordinates of the joints, and reconstruct the coordinate representations
of the human body. With the increase of computing resources and the amount of data,
the pose estimation method using learning has gradually matured and had considerable
success. We first apply AlphaPose [36–38], an accurate open-source pose estimator, to
detect the 2D position in the image frames of videos. The AlphaPose system pretrained
on the COCO database [39] is used for 2D keypoint detection. Then we project the 2D
detected results into 3D coordinates, using a pretrained fully convolutional model based
on dilated temporal convolutions proposed by Pavllo et al. [40]. In this way, the dynamic
skeleton representations of the human body in form of 3D coordinates are obtained.

3.2. Data Preprocessing

In the 2D pose estimation results, there is high-frequency noise because of the image
quality and the estimation error, which causes instability of the 3D coordinates. We add
a low-pass filter after 2D joint position detection to filter out the noise and obtain clean
skeleton data.

Since the lower halves of the actors’ bodies are not visible in the video clips most of
the time, the reliability of the estimation results of this part of the body is much lower than
that of the upper body. Therefore, the lower body part is removed from the skeleton graph
and only 10 joints of the upper body are considered in our research.

4. Proposed Networks
4.1. Graph Convolutional Network
4.1.1. Skeleton Graph Construction

The extracted body skeleton in each frame is represented in the form of 3D coordinate
vectors of human joints. The dynamic motion data of each sample is a time sequence with
different timesteps because of the variable lengths of the video clips. Following the work
of [10], we construct an undirected spatial-temporal graph G composed of vertexes V and
edges E, represented as G = (V, E). The spatial-temporal graph is a representation of
body movement along the spatial and the temporal dimensions and retains gestural static
and dynamics characteristics, e.g., movement speed and amount of movement, which are
helpful in recognizing emotions accurately [13,41]. Figure 1a shows the spatial-temporal
graph of a skeleton sequence, where the vertexes denote the joints of the upper body, the
blue lines represent the spatial edges based on the natural connection of human joints, and
the green lines indicate the temporal edges that exist between two consecutive timesteps of
the same joints. As illustrated in Figure 1b, the dots of different colors (in the dashed box)
represent different subsets of the adjacency matrix of the graph based on the partitioning
strategy. The root node and its neighboring nodes are divided into three subsets according
to their distance from the body center (spinebase), i.e., the root node, the nodes closer than
the root node, and the nodes farther than the root node.
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(a) Graph architecture (b) Partitioning

Figure 1. Skeleton graph construction. (a) The spatial-temporal graph contains vertexes (blue dots),
spatial edges (blue lines), and temporal edges (green lines). (b) The dots of different colors in the
dashed box represent 3 subsets according to the spatial configuration partitioning strategy, that is,
the root node (green), the nodes closer than the root node (yellow), and the nodes farther than the
root node from the spinebase joint (blue).

4.1.2. Self-Attention Enhanced Spatial Graph Convolutional Layer

As described in Section 1, in the work of Yan et al. [10], the calculation of graph
convolution is based on the fixed topology of the graph, which may not be appropriate
for emotion recognition tasks. To solve the problem, not only local neighborhood nodes
that are predefined by the natural connection of the human body but also other nodes with
high relevance of information need to be considered in the process of message passing.
Therefore, we propose a self-attention enhanced spatial graph convolutional layer, in which
the self-attention mechanism calculates the weighted sum of the values of all nodes to
aggregate features from the entire graph and provide supplementary information for the
spatial graph convolution module.

The structure of our self-attention enhanced spatial graph convolutional layer is
illustrated in Figure 2. The layer is composed of three parts: the graph convolutional part,
the self-attention part, and the gating mechanism.

Graph convolutional part: For the spatial graph convolutional part, the structure
of the graph is predefined by the the adjacency matrix A. According to the partitioning
strategy, A is divided into K subsets, i.e., A = ∑K

k Ak, Ak ∈ RV×V . The input fin is a tensor
with the shape (Cin × T ×V). First, a convolution operation is applied for the input:

f = Wkfin, (1)

where Wk ∈ R(K×Cout)×Cin×1×1 is a trainable matrix of the 1× 1 convolution. Similarly, f is
also divided into K subsets, i.e., f = (f1, ..., fK), fk ∈ RCout×T×V . The output of the spatial
graph convolutional part is calculated as:

fg =
K

∑
k

fk(Ak ⊗Mk), (2)

where Mk ∈ RV×V is a trainable weight matrix, and ⊗ denotes the element-wise product
between matrices.

Self-attention part: The self-attention part applies a multi-head scaled dot product
attention on the graph. In the field of Natural Language Processing, Vaswani et al. proposed
multi-head self-attention, in which the queries and the corresponding keys are used to
compute the weight and the weighted sum of the values is calculated as the output [42].
The self-attention model could be regarded as a spatial graph neural network with a fully-
connected graph, in which the feature vectors of joints are nodes and every pair of nodes
is connected. The model aggregates features from every node of the graph instead of
neighborhood nodes when updating representations of nodes. First, the input is reshaped
as a tensor with the shape (T ×V × Cin), where T is the temporal length, V is the number
of joints, and Cin is the number of input channels.
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Figure 2. Illustration of self-Attention enhanced spatial graph convolutional layer.

For each timestep in one sample, we represent the feature vector of each joint as ai ∈
RCin , whose amount is V. The set of the vectors corresponding to the joint representations
is A = {a1, ..., aV}. Then the similarity between the features of query i and the features of
key j is calculated by the scaled dot product for each head:

ehead
ij =

(aiWhead
Q )(ajWhead

K )T

√
dk

, (3)

where Whead
Q ∈ RCin×dk and Whead

K ∈ RCin×dk are learnable matrices for one head, dk is the
dimension of query. After this, the softmax function is applied to obtain the attention
coefficient α:

αhead
ij =

exp ehead
ij

∑V
k=1 exp ehead

ik

. (4)

The weighted sum of values for each head is shead = (shead
1 , ..., shead

V ) ∈ RV×dv , where
dv is the dimension of value. The calculation of shead

i is formulated as:

shead
i =

V

∑
j

αhead
ij (ajWhead

V ), (5)

where WV ∈ RCin×dv is a learnable matrix. Then we calculate the self-attention result fo:

fo = Concat(s1, ..., sH)WO, (6)

where H is the number of attention heads, and WO ∈ R(H×dv)×Cout is a parameter matrix. To
stabilize the training procedure, a residual is added for the output of the self-attention part:

fa = fo + Residual(fin), (7)
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Residual(fin) =

{
finWR Cin 6= Cout
fin Cin = Cout

, (8)

where WR ∈ RCin×Cout is a parameter matrix that transforms the number of input channels
to the number of output channels.

Gating mechanism: Considering that the contributions of the two parts may be
different for updating representations of nodes, we use a trainable coefficient r to adjust
the weight of the self-attention part, which is formulated as:

fout =
fg + r× fa

2
, (9)

where the trainable coefficient r is initialized as 1.

4.1.3. Self-Attention Enhanced Spatial Temporal Graph Convolutional Network

The basic block of the self-attention enhanced spatial temporal graph convolutional
network (S-STGCN) is composed of a self-attention enhanced spatial graph convolutional
layer, a temporal convolutional layer, and several functional layers (See Figure 3). The self-
attention enhanced spatial graph convolutional layer is used to aggregate the information
of the joints along the spatial dimension. The temporal convolutional layer of the network
is the same as that of the ST-GCN, i.e., apply the convolution with receptive field (Kt, 1) on
the feature vectors of each node along the temporal dimension.

Figure 3. Illustration of basic graph convolutional block. The residual connection is applied to
guarantee the stability of training. S-SGC represents the self-attention enhanced spatial graph
convolutional layer. T-Conv represents the temporal convolutional layer.

As illustrated in Figure 4, there are 10 basic blocks in the model, with output channels
of 32, 32, 32, 32, 64, 64, 64, 128, 128, and 128. After that, the output tensor is fed into a
global average pooling layer to get an emotional feature vector for each sample. Finally, the
vectors are passed into the output layer with a softmax function to obtain the prediction of
the emotion classes.

Figure 4. Overview of our proposed self-attention enhanced spatial temporal graph convolutional
network.
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4.1.4. Two-Stream Architecture

In some previous works of action recognition [11,43], in addition to the joint posi-
tions, the second-order feature, i.e., the bone information representing the lengths and
orientations of the human bones, has also been proved to be useful for skeleton-based
action recognition tasks. Considering the bone information may also play an important
role in the recognition of emotions in a similar way, we construct a two-stream network to
simultaneously use the joint information and bone information.

Similar to the work of [11], we define the bone features as the vectors from the source
nodes to the target nodes. Each bone is between two adjacent joints, in which the joint
close to the center (spinebase) of the skeleton is defined as the source node, and the joint far
away from the center is defined as the target node. For example, the bone vector between
the source node v1 and the target node v2 is represented as e1,2 = v2 − v1.

The architecture of the two-stream self-attention enhanced spatial temporal graph
convolutional network (2s-S-STGCN) is illustrated in Figure 5. The joint data representing
the positions of the joints and the bone data representing the lengths and directions of the
bones are fed into two S-STGCNs and each stream is trained respectively. Then the output
tensors of the two streams are fused to predict emotion labels.

Figure 5. Two-stream network. The two self-attention enhanced spatial temporal graph convolutional
networks (S-STGCNs) take the joint information and the bone information as input respectively. The
fusion of the outputs of these models are used for final prediction.

4.2. Multimodal Emotion Recognition Network

We construct a skeleton enhanced emotion recognition network (SERN), which inte-
grates text and audio information with the features extracted by the self-attention enhanced
spatial temporal graph convolutional network (See Figure 6). The multimodal dual re-
current encoder (MDRE) [44], composed of an audio recurrent encoder (ARE) and a text
recurrent encoder (TRE), is used to extract high-level representations of audio and text,
which takes as input prosody features, MFCC features and text transcripts. In the ARE, the
extracted MFCC features MFCCi (i represents the timestep) are fed into a gated recurrent
unit (GRU) for each timestep, and the final hidden state ht

A of the GRU is concatenated with
the prosodic feature vector to generate the representation vector of audio. In the TRE, the
tokens of the text transcripts are passed through a word embedding layer, and the embed-
ded tokens (token1, ..., tokent) are also fed into a GRU to obtain the representation vector of
text. The text representation vectors extracted by TRE and the audio representation vectors
extracted by ARE are concatenated and used for bimodal emotion recognition.
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Figure 6. Skeleton enhanced emotion recognition network. Each FC represents a fully connected layer.
The three fully connected layers on the left (FCA, FCT , FCS) are used for adjusting the dimensions of
the representation vectors of audio, text, and skeleton. The fully connected layer on the right is used
to learn the weights of these features and make final prediction.

We propose a two-phase hierarchical network to simultaneously fuse the audio, text,
and gesture information. In the first phase, the uni-modal features are fed into the ARE,
the TRE, and the self-attention enhanced spatial temporal graph convolutional network,
respectively, to obtain the audio, text, and gesture representations. In the second phase,
these representations are passed through the fully connected layers and then concatenated
to pass to the output layer to predict emotion.

5. Experiment
5.1. Dataset

We usde the IEMOCAP database [6] in the experiment. The IEMOCAP database
records audio and video data when two actors have a dialogue in hypothetical or scripted
scenarios. Every utterance is annotated into 10 classes by three or four annotators, i.e.,
happy, sad, angry, surprised, afraid, disgusted, frustrated, excited, or other. However, for
body movement, only motion capture data of the head and hands motions, instead of body
skeleton data, is contained in the database, thus ignoring some parts that are also crucial
for emotional expression, e.g., the spine, the shoulders, and the arms.

To keep consistent with previous work, we merged the samples with excitement labels
into the happiness subset and used four emotion classes, i.e., neutral, happy, sad, and
angry. The dataset used in the experiment contained a total of 5492 samples in those four
classes (1606 happy, 1081 sad, 1102 angry, and 1703 neutral). Some examples of the dataset
are shown in Figure 7.

(a) Happy (b) Sad (c) Angry (d) Neutral

Figure 7. Illustration of examples of four emotions from IEMOCAP database [6].
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5.2. Feature Extraction and Experiment Setting

Following the work of [44], we used the OpenSMILE toolkit [45] to extract MFCC fea-
tures and prosodic features and to initialize the tokens with the pretrained 300-dimensional
GloVe vector [46]. The samples were divided into a training set, a development set, and a
test set, with a ratio of 8: 0.5: 1.5 in the training process. The cross-entropy loss was used as
the loss function to back-propagation.

5.3. Results

The performance of the proposed models and baseline models is shown in Table 1.
We list the unweighted average recall (UAR) and the weighted average recall (WAR) of
the unimodal and multimodal models utilizing audio signals, textual content, and body
skeleton data. Considering the unbalance of the samples, the unweighted average recall
was used to evaluate the model by treating each category equally. Since the value of
the unweighted average recall was easily affected by the rare category, the weighted
average recall was also applied to measure the overall prediction performance, which was
numerically equal to the accuracy of the model.

Table 1. Comparison with baselines. We compare the performance of both the unimodal and
multimodal models, for which A is the audio modality, T is the text transcription, and S is the
skeleton data. SERN-2s is a skeleton enhanced emotion recognition network whose S-STGCN is
replaced with 2s-S-STGCN.

Model Modality UAR(%) WAR(%)

ARE [44] A 59.7 57.1
TRE [44] T 65.9 64.5

ResNet18 [47] S 55.3 56.9
ST-GCN [10] S 63.3 63.7

S-STGCN S 68.4 68.4
2s-S-STGCN S 73.1 72.5

MDRE[44] A + T 72.0 71.4
SERN A + T + S 80.4 80.0

SERN-2s A + T + S 82.2 82.3

For skeletal movement, ResNet18 [47] and ST-GCN [10] were selected as baseline
models. ResNet is a convolutional network that adds a residual mechanism to the tra-
ditional convolutional neural network, which has been widely used in many tasks. In
the experiment, we apply ResNet18 and ST-GCN to the skeleton data and compare their
performance with our proposed model. Our S-STGCN model achieved a UAR of 68.4% and
a WAR of 68.4%, significantly outperforming other networks in the emotion recognition
task, which shows that the proposed model, especially the self-attention enhanced graph
convolutional layer, could effectively extract emotion-related features from the dynamic
skeleton sequence. It shows that the self-attention part obtained more flexible representa-
tions and provided effective supplementary information for the spatial graph convolution
with the predefined graph. The two-stream architecture that integrated the joints and
bones brought remarkable improvement, which indicates that this method could extract
the emotional information from the skeleton modality more effectively.

We also compared the trimodal SERN with the MDRE [44] that was performed as the
basic model of the audio and text modalities. Similarly, we applied the UAR and the WAR to
the models as performance metrics. The model using text, audio, and skeleton information
exceeded the MDRE that does not use skeleton information by a UAR of 8.4% and a WAR
of 8.6%. The results show that the new extracted body skeleton modality contained some
emotional information that was not contained in the audio and text modalities, and the
use of the skeleton data enhanced the emotion recognition of the model. Moreover, we
further compared a multimodal model using 2s-S-STGCN to extract skeleton features with
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the multimodal model using single-stream S-STGCN. The result showed that the use of
the two-stream method also brought the improvement of the performance in multimodal
emotion recognition.

6. Ablation Study and Discussion
6.1. Effect of the Preprocessing

In the data preprocessing (See Section 3.2), we applied the low-pass filter for the
estimated position data of each joint to reduce the impact of the high-frequency noise.
The performance of the preprocessed and unpreprocessed data is listed in Table 2. The
result shows that the noise in the estimation result was harmful for skeleton-based emotion
recognition and that the preprocessing brings considerable improvement.

Table 2. Comparison between preprocessed and unpreprocessed data. The unpreprocessed noisy
data and the preprocessed data are fed into S-STGCN respectively to compare their performance.

Data UAR(%) WAR(%)

Unpreprocessed 66.5 66.4
Preprocessed 68.4 68.4

6.2. Gating Mechanism

In Section 4.1.2, we introduced the gating mechanism to adjust the weight of the
graph convolutional part and the self-attention part. In order to confirm the effect of the
gating mechanism, the coefficient r was set to constant 1 in the ablation experiment. Thus
Equation (9) was transformed into:

fout =
fg + fa

2
. (10)

The result is shown in Table 3. The model using the gating mechanism obtained better
prediction results, which suggests that the gating mechanism could flexibly adjust the
importance of the self-attention part and was beneficial to the improvement of performance.

Table 3. Comparison for the use of the gating mechanism.

Model UAR(%) WAR(%)

S-STGCN w/o G 67.7 67.3
S-STGCN 68.4 68.4

We also visualized the coefficient r of each layer in Figure 8. The weights of the
self-attention parts in the last several layers were higher than those in the other layers,
and the weights in the last two layers were more than 1, which indicates that the features
extracted by the self-attention part in the top layers were more informative than that of the
bottom layers and that in last two layers the self-attention parts even were more important
than the spatial graph convolutional part for the feature extraction.
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Figure 8. Visualization of the coefficient r of each layer.

6.3. Effect of the Bone Information

As introduced in Section 4.1.4, we fused the joint and the bone information to make
the final prediction. Here we compared two fusion strategies: (i) The softmax scores of the
two models were directly added as the final output. (ii) The scores were concatenated and
then fed into a fully connected layer to obtain the result.

The experimental result is shown in Table 4. For single-input models, the performance
of the joint model was slightly lower than that of the bone model. For the two-stream
models with different fusion strategies, the trained model with the fully connected layer
was better than the model using the summation strategy. Both of the two-stream models
outperformed the single-input model, which shows the effectiveness of the two-stream
architecture and the complementarity between the joint and bone information.

Table 4. Performances of different inputs and fusion strategies. J represents the joint information. B
represents the bone information. 2s-S-STGCN-a is the two-stream model using the summation fusion
strategy. 2s-S-STGCN-c is the two-stream model using the fully connected layer.

Model Input UAR(%) WAR(%)

S-STGCN J 68.4 68.4
S-STGCN B 68.8 68.9

2s-S-STGCN-a J&B 71.9 72.3
2s-S-STGCN-c J&B 73.1 72.5

From the confusion matrix in Figure 9, it can be seen that the joint and bone modalities
both performed best in the prediction of sad emotions. For joint information, the anger
class was not well recognized, while for bone information, the samples of the happy class
were often incorrectly recognized. For both of the single-stream models, other classes were
frequently confused with the neutral class.

Overall, both of the two-stream models obtained better performance for most of
the classes. The two-stream model using the summation of the scores also frequently
incorrectly classified the samples of angry, happy, and sad classes as the neutral class. The
other two-stream model that fed concatenation of the scores into the fully connected layer
alleviated this problem to a certain extent and performed better on most of the categories.
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(a) Joint (b) Bone

(c) 2s-S-STGCN-a (d) 2s-S-STGCN-c

Figure 9. Confusion matrices for single-stream and two-stream models.

6.4. Multimodal Analysis

Different modalities showed different characteristics in the ability of emotion predic-
tion. Figure 10 shows the confusion matrices of the unimodal and multimodal models.
For skeleton modality (Figure 10a), the model showed the best performance in predicting
the sad class. We speculate that this may be related to the posture of the spine and head.
When people expressed their sadness, they tended to bend over and lower the head, which
was obviously different from happy, angry, and neutral. As shown in (Figure 10b), for the
audio model, anger and happiness were often incorrectly recognized as each other. For text
modality (Figure 10c), although anger and happiness were correctly distinguished, angry,
happy, and sad classes were frequently misclassified as the neutral class. The multimodal
network that integrated the information from the three modalities (Figure 10d) achieved
high and balanced performance for every class by leveraging the strengths of unimodal
models and compensating for their weaknesses. From the error analysis, it can be seen that
each modality had its unique strengths.
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(a) Skeleton (b) Audio

(c) Text (d) Multimodal

Figure 10. Confusion matrix for each modality. For skeleton modality, the two-stream self-attention
enhanced spatial temporal graph convolutional network is used.

7. Conclusions

In this paper, we extracted body skeleton data using a pose estimation based approach
from the videos of the IEMOCAP database. We proposed a novel two-stream self-attention
enhanced spatial temporal graph convolutional network for emotion recognition based
on the skeleton data. It models the body skeleton as a graph and constructs both static
and flexible connections between the joints to update the representations. Through our
experiment, we demonstrated that the performance of the proposed model is superior
to that of the ST-GCN on emotion recognition tasks and that the two-stream architecture
further improves the performance. Besides, we integrated information from audio signals,
text transcripts, and skeletal movement, showing that our method outperforms the bimodal
model, which indicates that the extracted skeleton data can provide important supple-
mentary information for emotion detection. Since the multimodal fusion strategy that
directly concatenates different modalities may not be optimal, we will focus on exploring
more multimodal fusion strategies. We also plan to generate emotional gestures using the
extracted skeleton data in our future work.
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