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Abstract: Modeling a structure in the virtual world using three-dimensional (3D) information
enhances our understanding, while also aiding in the visualization, of how a structure reacts to any
disturbance. Generally, 3D point clouds are used for determining structural behavioral changes.
Light detection and ranging (LiDAR) is one of the crucial ways by which a 3D point cloud dataset
can be generated. Additionally, 3D cameras are commonly used to develop a point cloud containing
many points on the external surface of an object around it. The main objective of this study was
to compare the performance of optical sensors, namely a depth camera (DC) and terrestrial laser
scanner (TLS) in estimating structural deflection. We also utilized bilateral filtering techniques, which
are commonly used in image processing, on the point cloud data for enhancing their accuracy and
increasing the application prospects of these sensors in structure health monitoring. The results from
these sensors were validated by comparing them with the outputs from a linear variable differential
transformer sensor, which was mounted on the beam during an indoor experiment. The results
showed that the datasets obtained from both the sensors were acceptable for nominal deflections of
3 mm and above because the error range was less than ±10%. However, the result obtained from the
TLS were better than those obtained from the DC.

Keywords: terrestrial laser scanning (TLS); depth camera (DC); hausdorff distance; bilateral filtering;
point cloud; deflection

1. Introduction

The demand for structural steel has been increasing over time owing to its numerous
benefits, such as high ductility and tensile strength, lighter weight relative to concrete,
and ease of use in construction. During its service life, its performance may be affected by
unintended excessive impact loads and environmental disasters. These and several other
defects lead to unforeseen structural damages, resulting in major catastrophes. To solve
this problem, a structural health monitoring technique is required from the early con-
struction period to the end of its service life, depending on the service levels. Essentially,
structural health monitoring should be conducted in two phases. The first phase monitors
the structural response for any load during the service time using permanently mounted
sensors [1]. The sensor that is affixed to the structure should be inexpensive because eco-
nomic considerations are an important aspect in the construction industry and should be
optimized. Optical sensors, such as depth cameras (DCs), kinetic cameras, fiber optics sen-
sors, and range cameras, are the most favorable inexpensive vision-based sensors and are
effective in acquiring structural responses via images, videos, and spatial coordinates [2–4].
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The second phase should be carried out before a certain period of time to account for any
changes in the physical shape of the members that may occur [5]. Accordingly, depending
on the technique, an adequate budget must be allocated before utilizing this phased ap-
proach. Terrestrial laser scanners (TLSs), airborne laser scanners (ALSs), and unmanned
aerial vehicles (UAVs) are the most popular and valuable means of capturing structural
real-time 3D shapes that are vital input data for structural health assessment [6–8]. Vision-
based sensors are used for quality and process control in various commercial and research
applications, as well as medical technologies, automotive industries, metrology, and remote
sensing [9–11]. Meanwhile, different types of optical sensors have been used to monitor
structural health.

Several methods have been proposed for using vision-based sensors. Specifically,
a component of the serviceability limit state of a structure should be given attention and
monitored periodically using different types of noncontact optical sensors. Among these
components, some researchers have investigated the dynamic displacement of a structure
using a range camera [12], TLS [13], and Microsoft Kinect [14]. Crack detection and
measurement, structural vibration, and real-time structural 3D modeling have also been
accomplished using TLS and a camera [4,15]. Structural deflection due to creep, unexpected
loading, and different environmental impacts is a crucial serviceability limit state behavior
of a structure. Gordon and Lichti estimated beam deflection using point cloud data derived
from TLS acquired at different epochs and compared the results by extracting a line directly
from the point cloud data as a reference [16]. Park et al. estimated structural element
(beam) deflection and its corresponding maximum stress using the same approach [7].
However, the line is derived from the representative fitted plane of the point cloud for
setting a new coordinate system, which helps evaluate the real magnitude of structural
shape changes. To improve the deflection estimation results obtained Park et al., a group
of researchers obtained the curve of a beam deflected shape using a heuristic process
called a genetic algorithm to obtain a better deflection value [17]. Although the RealSense
DC is not yet optimized for structural health monitoring, Sayyar-Roudsari proposed an
inspection method to detect threats to a defective beam produced by honeycomb structural
components [18]. Some researchers have also attempted to fuse image depth data with
RGB data to increase the performance of vision-based depth sensors using data fusion
techniques [19]. Other researchers also used two different types of vision-based sensors
involving data fusion techniques to generate a robust approach and produce satisfactory
results [20].

The main goal of this research was to develop a technique that can measure the
deflection of a beam structure from light detection and ranging(LiDAR) and DC data
individually. In addition, the results were compared to determine the impact of these
methods on structural health monitoring. Through this study, we aimed to determine the
performance levels of inexpensive vision-based cameras as alternatives to expensive and
complicated sensor systems in structural health monitoring. Evaluating the performance of
these sensors is vital for performing quality control at low cost. In addition, we examined
the performance of bilateral filtering on optical and/or vision-based sensor data for better
implementation of structural health monitoring techniques. Section 2 describes the data
preparation process and denoising techniques used for the sensor data. Section 3 provides
an overview of the two evaluated sensors and describes the developed methodology for
each TLS and DC followed by the design of the experimental setup. An indoor labo-
ratory test was performed with a series of loadings to obtain the nominal deflection.
In Section 4, the data processing methods for both vision-based sensors and their outcomes
are discussed. Finally, the validated results obtained from the two sensors are compared
and the major findings of the study are summarized.
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2. Data Preparation
2.1. Data Acquisition and Pre-Processing

The data were simultaneously acquired through optical sensors, an Intel Real sense
DC, and a Leica TLS. For the TLS case, the highest resolution mode was used. This mode
of resolution has a capacity of holding 2530 × 2181 points in the horizontal and vertical
directions based on Leica specifications. One of the limitations of using this mode is having
a large amount of data, which makes post-processing difficult. However, our specimen is
small compared to the capacity of nature of TLS. Therefore, using a high-resolution mode of
scanning has better output performance. Considering the geometric shape of the specimen,
range, and surrounding environment, we used an effective field of view before starting
the scanning process. We scanned the specimen three times during each loading case to
ensure safety. The scanning process started immediately after applying the corresponding
load to attain the nominal deflection. when using the DC, real-time data acquisition via a
LibRealSense SDK2.0 platform was conducted. This platform provides a RealSense Viewer
application for users to access most camera functionalities through a simple cross-platform
user interface. Streaming from multiple RealSense devices at the same time, exploring
point cloud data in real time, recording and playback of the recorded RealSense device
data, and access to most camera-specific controls are some of the benefits offered by the
viewer application. As with TLS, the RealSense data were recorded immediately after
applying the nominal load and attaining the deflection.

Pre-processing of the point cloud data is involves preparing the data before proceeding
to the data processing step [21]. LiDAR point cloud data inputs to tools found in the
surrounding must be pre-processed to remove outliers and/or noise, errors, and non-target
data points through manual editing. To decrease the errors resulting from manual cropping
of the targeted area from the raw data, we processed the data multiple times in each case
and took the average.

2.2. Denoising

When acquiring point cloud data, owing to the impacts of equipment accuracy, op-
erator experience, environmental conditions, and other factors, some noise points (that
is, points we cannot use) are inevitable in point cloud data. We need to remove these
points before processing the data. Outlier and noise removal(denoising) in pre-processing
is interpreted differently by many researchers [22]. However, to the best of our knowledge,
outlier removal uses a noise removal filter that permits deletion of the lonely points outside
a detected surface, whereas the noise remover filter removes points that do not match
the local geometrical behavior of the point cloud. Specifically, data from both sensors
were subjected to different denoising techniques for better output. The following two
subsections describe the techniques we used on raw data before processing it.

2.2.1. Interquartile Range

Outliers are part of the data that are distant from other observations. Although outliers
are unknown in the acquisition phase, they may result from result from errors during data
collection and indicate variance in our data. In a vast database, differentiating the outliers
from the actual data is challenging. Therefore, researchers have been trying to manipulate
outliers in a systematic manner in combination with the statistical behavior of the data.
Among the numerous methods of treating outliers, the interquartile range (IQR) score is a
crucial and robust method. The IQR plays an important role in data science, for removing
outliers from a set of data [23]. The IQR is similar to the Z-score in terms of finding the
distribution of data and maintains a threshold to identify the outlier. In statistics, a simple
way of knowing the distribution of data is by calculating the range, which can be obtained
by deducting the minimum value from the maximum value. The IQR is calculated in the
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same way as the range. However, the maximum and minimum data are replaced by the
third quartile and first quartile, respectively, as shown in Equation (1).

IQR = Q3 −Q1. (1)

After arranging the data in an ascending order, Q1 represents a quarter of the way
through the data list, whereas Q3 represents three-quarters of the way through the data
list. The interquartile range shows how the data are spread about the median. It is less
susceptible than the range to outliers. Figure 1 shows an overview of the IQR process.

Q1 Q3

IQR

Q1 � 1.5*IQR Q3 + 1.5*IQR

Medium
Outliers

0�� 1�� 2�� 3� 1� 2� 3�

Figure 1. Interquartile range (IQR) configuration.

The following are the steps involved in the detection and removal of outliers us-
ing IQR:

• Maintaining the data in ascending order.
• Obtaining the median values, Q1, and Q3, used in determining the interquartile range.
• Scaling the interquartile range by 1.5.
• Adding and deducting the achieved value onto Q3 and Q1, respectively.
• Removing the set of data beyond these two ranges.

2.2.2. Bilateral Filter

Bilateral filtering techniques are notable image denoising methods, first conducted by
Tomasi and Manduchi [24]. Technically, bilateral filtering is a modified version of Gaussian
smoothing. However, unlike Gaussian smoothing and average filtering, it preserves the
sharp edges of an image during noise removal. The bilateral filter varies with each pixel of
an image by a weighted average of its neighbor, based on the spatial distance within the
pixels and the similarity between color samples. This filter is formulated as follows:

p
′
= p + γ× ni, (2)

where γ =

Σ
qij∈Qr

wc(‖pi−qij‖)ws(<ni ,pi−qij>)<ni ,pi−qij>

Σ
qij∈Qr

wc(‖pi−qij‖)ws(<ni ,pi−qij>))
is a bilateral filtering weight.

p is the noisy point from TLS or DC.
p
′

is the denoised point of p.
ni is the normal vector of point p.
wc is the 2D Gaussian filter for smoothing.
ws is the 1D Gaussian weight function for preserving edge features.
qij is a neighborhood point within the distance range, r, from p.
g = ‖pi − qij‖ is the geometric distance between p and qij.
h = <ni, pi − qij> is an inner product between the normal of a point, p, and the geometric
distance, g.
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σc & σs are parameters defined as the standard deviation of the neighborhood distance of
point p and a factor of the projection of the distance vector from point p to its neighborhood
point on the normal vector, ni, of point p, respectively.

This technique has been applied for image smoothing involving meshes and point
clouds by different researchers at different times [25,26]. To the best of the our knowledge,
Lihui Wang and his research team are the first to conduct bilateral filtering for denoising of
point clouds [27]. They applied fuzzy c-means (FCM) clustering before bilateral filtering
to diminish the large-scale noise in the data. However, bilateral filtering is incapable of
denoising large-scale noises. Consequently, our DC dataset was overdosed for this specific
denoising technique. Therefore, we applied IQR techniques to diminish the large-scale
noise. After determining the principle of bilateral techniques, the widely accepted form of
pseudocode representation is given as follows: Algorithm 1.

Algorithm 1. Bilateral denoising (p, r, σc, σs)

Input: points from TLS and/or DC obtained from deflected and/or undeflected beam, p
Qr(p) ← neighborhood of a selected point, p, within radius r of surroundings.
Evaluate the unit normal vector, ni, to the regression plane, np, from Qr(p)
Output: denoised point p’

For qij ε Qr do,
g = ‖pi − qij‖
h = <ni, pi − qij>

wc = e−g2/2σc
2

ws = e−h2/2σs
2

γ =

Σ
qij∈Qr

wc(‖pi−qij‖)ws(<ni ,pi−qij>)<ni ,pi−qij>

Σ
qij∈Qr

wc(‖pi−qij‖)ws(<ni ,pi−qij>))

p
′
= p + γ ∗ ni

End

3. Experimental Study
3.1. Instrumentation
3.1.1. Depth Camera

A DC uses infrared light to detect the depth difference of an object relative to its
coordinate system. Till date, the depth of the scene can be perceived throughout the camera
either using structured light, time of flight (ToF), or stereo vision principles [28]. Principally,
a structured light method projects a sequence of coded patterns on an object to determine
its depth. Treating these pattern as temporal textures rather than as known codes allows
multiple structured light systems to be used together. In the ToF principle, the system
measures the distance based on the known speed of light, measuring the ToF of a light
signal between the camera and the object for each point on the image. Because each pixel
encodes the distance to the corresponding point in the scene, the depth map for the entire
field of view can be produced. The stereo vision principle mimics the synchronizations
between the human eyes and brain to detect the depth of an object. Projecting infrared
light onto a scene improves the accuracy of the collected data. Having a constant gap
between the two sensors enabled us to visualize and quantify the depth information of the
scene. We used an Intel® RealSense™ D415 DC based on infrared stereo vision technology
in this study. Table 1 and the right side of Figure 2 provide the specifications of the DC
and its pictorial representation, respectively; the camera was utilized per Intel RealSense
instructions [29].
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Table 1. Technical specifications of Intel RealSense D415 Depth Camera and Leica Terrestrial Laser Scanner.

Parameter Terrestrial Laser Scanner Depth Camera

Brand Leica Intel RealSense
Model C5 D415
Range 300 m @ 90 %; 134 m@ 18 % albedo

(minimum range 0.1 m)
∼10 m

Field of View
(H × V)

360° × 270° 69.4° × 42.5° × 77°

Range measurement
principle

Pulsed(Time of Flight) Active IR Stereo

Scan rate 50,000 points/s -
Resolution - 1280 × 720
precision 2 mm -
Baseline - 55 mm
Point spacing Fully selectable horizontal and vertical; <1 mm minimum

spacing, through full range; single point dwell capacity.
-

IR Projector - Standard
Camera Auto adjusting, integrated high-resolution

digital camera with zoom video
Full HD RGB camera calibrated and
synchronized with depth data

Figure 2. Pictorial representation of the terrestrial laser scanner (TLS) and depth camera (DC) used
in this study.

3.1.2. Terrestrial Laser Scanning

TLS is a ground-based LiDAR method that scans an object by emitting a laser pulse
and records the subsequent intensity of the signal returning from the object. Green (most of
the time) and red visible light components from the electromagnetic spectrum are utilized
in this method. Point clouds can be produced directly using a 3D scanner that records
several points returning from the external surfaces of objects on which the laser light
is incident. These sets of points have multidimensional information about the scanned
object [30,31]. Point clouds are used for many purposes, including creating 3D models for
manufactured or hand-crafted parts and objects, for quality inspection in geomatic applica-
tions, and for a multitude of visualization, animation, rendering, and mass customization
applications. Lidar technology involves either phase-based, i.e., ToF, or triangulation (rare
case) methods. Researchers have tried to compare the principles of available laser scanning
technologies [32,33]. A ToF scanner measures the time it takes for the emitted pulse to
reflect back to the scanner. The proportion of the pulse returning to the scanner depends on
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the object roughness. Because the emitted pulse travels at the speed of light, the distance
can be obtained using the speed versus distance formula. Recent developments in this
technology allow us to acquire information about the spatial position (x,y,z) of a target
structure, and the intensity provides information regarding the object roughness using the
energy of the returning pulse and color (RGB). RGB data are captured either through an in-
ternal or external camera and is depend on the type of camera used. Most ToF scanners are
capable of measuring tens of thousands of points per second at distances of approximately
1 km. These scanners are typically used in surveying and environment scanning with a
range of 5–300 m [34,35]. The left side of Figure 2 shows the Leica C5 scanner employed
in this study; this scanner acquires point cloud data based on the ToF principle. Table 1
provides the specification for the Leica terrestrial laser scanner and Intel RealSense depth
camera per the Leica geosystem specification manual [36].

3.2. Proposed Approach for Estimating Structural Deflection Using via TLS and DC

The flowchart in Figure 3 shows the generalized process of individually computing
structural deflection using vision-based sensors. Once the artificial deflection is induced in
the prepared specimen, both the scanning processes were conducted separately. The results
were then compared based on their outputs relative to a contact sensor and a linear variable
differential transformer (LVDT), mounted during the experiment.

Applying the proposed Hausdorff

distance measurement

Scanning via DCScanning via TLS

• Manual trimming and

segmentation

• Statistical outlier removal (SOR)

• Generating point cloud

• Manual trimming

• Downsampling

Bilateral Filter
Applying IQR

Bilateral Filter

Validate & compare the result with

LVDT sensor

Loading/ Unloading

Data Acquisition

Preprocessing

Denoising

Figure 3. Flowchart depicting the process of comparing the results obtained using DC and TLS.

Hausdorff Distance

This is the distance used to measure the difference between two subsets in a metric
space. It is defined as the greatest of all the distances from a point in one set to the
closest point in the other set. The concept behind it is measuring the similarity between
two sets. This means that if two sets have a small Hausdorff distance, they are expected
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to look almost identical. It is a robust scheme to measure the distance between two
points in the presence of outliers [37,38]. Given two point sets A = a1, a2, ..., an and
B = b1, b2, ..., bm, the Hausdorff distance from A to B is a maxi-min function, which is
defined in Equation (3):

δh(A, B) = max
aεA
{min

bεB
{‖a− b‖}}, (3)

where ‖a− b‖ is the underlying norm on points A and B (usually taken as the Euclidean
distance). Further, a and b are points in set A and B, respectively.

The Hausdorff distance is oriented asymmetrically, as well, which implies that δh(A, B)
is always not equal to δh(B, A). The Hausdorff distance is dependent on the individual
point cloud spatial position rather than the overall structure facade shape, which is perpen-
dicular to the loading direction. The points acquired during loading and unloading serve
as two sets of points for applying the Hausdorff distance mechanism, as shown in Figure 4.

Figure 4. Schematic representation of Hausdorff distance measurement between points before and after loading the beam.

3.3. Experimental Design

The proposed methodology results obtained in this study were verified by conducting
indoor laboratory tests, as shown in Figure 5. The beam used for the laboratory test was a
steel box girder, SS400-6T, with dimensions of 0.4 m × 0.8 m × 2 m. The load was applied
at the center of the span using a universal testing machine (UTM). The specimen has
5 stiffeners 45 cm apart on each web entity for preventing lateral–torsional buckling. Four
different loads were applied to attain the nominal deflection measured by the LVDT. First,
the unloaded specimen was scanned using both sensors for obtaining reference data. Then,
the specimen was scanned simultaneously using TLS and the DC immediately after loading
and attaining nominal deflections of 1 mm, 2 mm, 3 mm, and 4 mm. The TLS field of view
specification allowed us to scan the entire specimen during the experiment. However, this
was not possible when using the DC because its field of view allowed us to scan of a limited
area of the specimen. Therefore, we selected the most sensitive area of the specimen and
scanned it using the DC. The bottom area around the mid-span where was considered the
area most sensitive to flexural deflection. Therefore, we mounted the LVDT at the center of
the span for validating the results.
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Figure 5. Experimental setup.

4. Results and Discussion
4.1. Depth Camera Data Processing

The deflection of the beam was determined from the DC data using the
following procedure:

• The D415 depth camera was fixed on the horizontal leveled area on the right at the
bottom of the center along the span, as shown in Figure 5.

• All the scanning processes conducted in the same position. Figure 6 depicts the
data acquired using the Intel RealSense D415 that were analyzed by changing the
.bin file format first into the .pts and then into the .txt format, which enabled us
to easily interpret the data using Cloud Compare and MATLAB software packages.
The necessary pre-processing steps, such as removing unwanted data, downsampling
the data, statistical outlier removal (SOR), and manual cropping of the farthest outliers,
were performed in the Cloud Compare software using the .pts file format.

• Because the DC is very sensitive to inherent noise, noise should be treated prominently.
Bilateral filtering techniques were applied based on the pseudocode described in
Section 2.2.2, preceded by using the IQR score to minimize the noise in the data
by eliminating outliers. The resulting point cloud of the scene after eliminating the
outliers is shown in Figure 7.

• The proposed Hausdorff distance measurement algorithm was executed using the
points obtained from the loading and unloading scenarios per Equation (3).

• Once we obtained the Hausdorff distance for each loading scenario, we compared it
with the LVDT output.

(a) (b)

Figure 6. (a) Point cloud acquired from DC for the target area of the specimen; (b) section view.
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Figure 7. DC data before and after bilateral filtering.

4.2. Terrestrial Laser Scanning Data Processing

The beam deflection was measured from TLS data using the following method.

• The Leica C5 scanner was placed 2.5 m away from the specimen during the laboratory
experiment. The incident angle and range of a scanner are selected based on the
factors affecting the accuracy of the data [39]. The scanning process was started
immediately after applying the required load and attaining the LVDT reading for the
nominal deflection. The acquired raw data form the scanner shown in Figure 8 was
transformed into the .pts or .xyz file format, for easy analysis using Cloud Compare.

• The necessary pre-processing steps, including SOR, manual trimming, and seg-
mentation were conducted for the raw data to decrease noise and increase accu-
racy. According to this approach, the bottom flange was more effective in deter-
mining the deflection. Therefore, our target was to tear out the bottom flange
during segmentation.

• Similar to the analysis of the DC data, the bilateral filtering techniques were also
applied to the TLS data for thorough removal of noises, as shown in Figure 9.

• Once we obtained a clear representative of the specimen point cloud data, we em-
ployed the Hausdorff distance approach for the loading and unloading data separately.
We then Compared and validated these results with those obtained using the DC and
LVDT sensors.

(a) (b)

Figure 8. (a) Point cloud acquired via TLS, (b) section view.
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Figure 9. Terrestrial laser scanning (TLS) data before and after bilateral filtering.

The data obtained from the TLS and DC showed different qualities during processing.
The data obtained from the DC had a 7-mm-thick layered set of points with 1 mm vertical
spacing, as shown in Figure 6a. However, there is a significant vertical gap between the
points, which indicates the depth of a scene when capturing the specimen image. Specifi-
cally, in our experiment, this depth difference was the main challenge for achieving our
target. This depth variation is generated owing to the nature of the specimen, environ-
mental factors, insignificant color variation along the surface of the specimen, and so on.
In contrast, in Figure 8b, although the data look scattered and do not have layered set of
points as observed in the DC data, the thickness and vertical spacing between the points
are very small. In addition, in our analyses, the vertical variation accuracy is significant
because we compared the vertical change in position (deflection).

4.3. Validated Result and Comparison

Figures 10 and 11 show the Hausdorff distances measured between deflected and
undeflected beams using the DC and TLS datasets, respectively. These results are only for
a nominal deflection of 1 mm. As discussed in Section 4.1, the densified concentration of
points in the vertical direction can be observed in the TLS Hausdorff distance measurements.
There are numerous points relative to the DC, as shown in Figure 11. The color map are
shown on the right side of Figures 10 and 11, illustrating the distance between all individual
constituents of a set of points in Q (assigned as deflected) and a set of points in P (assigned
as undeflected).

Based on the methodology depicted in Figure 3, outputs from the two devices were
compared. The TLS and DC outputs improved with the increasing nominal deflection.
As mentioned in the discussion on pre-processing, to diminish the error resulting from
manual cropping of the region of interest (RoI), repeatability of experiments and having
multiple datasets for a specific measurement are very crucial. As manual trimming was
unavoidable in the pre-processing step, we used the same data multiple times but differ-
ent pre-processing for each load case of dataset. Therefore, we analyzed the data nine
times for a single measurement and then took the average. Consequently, we obtained
4 × 9 = 36 outputs for one case in the dataset of each sensor. For each sensor, we obtained
noised and denoised data. This yielded 144 outputs. Through repeating this analysis
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for each dataset, we could decease the effects of the errors resulting from pre-processing.
For clarity and conciseness, Table 2 presents only the averaged value of each flexural
deflection measurement using the TLS and DC along with the LVDT. However, we present
the nine outputs analyzed for a 4-mm nominal deflection in the denoised measurement
in Table 3.

Figure 10. Hausdorff distance measurement result for 1-mm nominal deflection using depth camera.

Figure 11. Hausdorff distance measurement result for 1-mm nominal deflection using terrestrial laser scanner.

The error percentages and absolute errors of the TLS and DC measurements for each
load case before and after denoising are presented graphically in Figure 12. The percentage
error is expressed as the percentage of the difference between the measured value (proposed
result) and the known value (LVDT reading), whereas the absolute error defines the gap
between the measured and known values. According to the results in Table 2, even
the LVDT measurements have slight errors, which are acceptable. Fortunately, the error
graph for the TLS and DC measurements is a decreasing function with respect to the
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nominal deflection. As shown in Figures 7 and 9, the errors in the TLS and DC results
were enhanced after bilateral filtering. However, both devices showed better outputs
after bilateral filtering. The percentage errors of 29.45%, 14.90%, 10.29%, and 6.97% in the
DC outputs before denoising improved to 20.90%, 11.07%, 0.69%, and 2.48% for nominal
deflections of 1 mm, 2 mm, 3 mm, and 4 mm, respectively. Similarly, the percentage errors
of 27.96%, 17.83%, 1.72%, and 3.60% in the TLS outputs before denoising improved to
5.27%, 3.62%, 1.13%, and 1.54% for 1 mm, 2 mm, 3 mm, and 4 mm, respectively. Therefore,
we can conclude that the denoising technique is effective for data from both the sensors but
more effective for the TLS data than for the DC data. Generally, after denoising the data
acquired by the two sensors, percentage errors of 5.27%, 3.62%, and 1.54% obtained in the
TLS data for nominal deflections of 1 mm, 2 mm, and 4 mm, respectively, lower than those
obtained in the DC data. However, the percentage error of 0.69% for the 3-mm nominal
deflection obtained in the DC data is lower than that observed in the TLS data. The error
percentages for 1- and 2-mm nominal deflections observed in the DC data are beyond
10% and much higher than those for the remaining nominal deflections. This indicates
that the measurements of 1- and 2-mm nominal deflections obtained via the DC are not
acceptable based on the specific setup and environment conditions that we used in the
experiment; nevertheless the remaining measurements, at 3- and 4-mm nominal deflections,
are satisfactory. However, the TLS results for all nominal deflections are acceptable and
very satisfactory. In addition, both devices showed better and accurate outputs for the
3-mm nominal deflection, whereas the LVDT measured 3.022 mm. As expected, we can
conclude that the TLS provides better outputs than the DC overall. For the 3- and 4-mm
nominal deflections, we have shown that, when using a robust denoising technique on
the datasets, the inexpensive DC provides satisfactory deflection measurements, but its
performance is inferior to that of the more precise and expensive TLS.
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Figure 12. Comparison of absolute and percentage errors of TLS and DC with linear variable differential
transformer (LVDT).
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Table 2. Summary of deflection measurements obtained with both vision-based sensors.

TLS Percentage Error DC Percentage Error

Nominal
Deflection

(mm)

LVDT 1.00 m
(mm) Loading (KN) Noised mm Denoised mm Error Noised

%
Error

Denoised % Noised mm Denoised mm Error Noised
%

Error
Denoised %

Unloading 0 0 0 0 0 0 0 0 0 0
1 −1.005 57.33 −1.286 −1.058 27.96 5.27 −0.709 −0.795 29.45 20.90
2 −2.014 200.85 −2.373 −2.087 17.83 3.62 −1.714 −1.791 14.90 11.07
3 −3.022 380.85 −2.970 −2.988 1.72 1.13 −2.711 −3.043 10.29 0.69
4 −4.029 480.84 −4.174 −3.967 3.60 1.54 −4.310 −4.129 6.97 2.48

Table 3. Deflection measurements obtained through repeated analysis of denoised datasets in both sensors for a 4-mm nominal deflection.

Nominal
Deflection
(mm)

LVDT
1.00 m

(mm)

Loading
(KN)

TLS_Denoised DC_Denoised

Case Case

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

Unloading 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 −4.029 480.84 3.82 3.79 3.98 4.07 3.98 4.04 3.88 4.02 4.13 4.43 4.29 4.27 4.13 4.07 4.08 3.98 3.99 3.92

Average −3.9667 −4.1295
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5. Conclusions

Vision-based sensors have a considerable impact on structural health monitoring
because of their high-speed data acquisition performance, ability to scan real-time structural
3D shapes, capacity to obtain measurements from inaccessible sites conditions, portability,
and so on. However, all these devices have their own limitations, which depend on their
function. A fundamental limitation when using a DC for determining the deformation of a
structure is its narrow field of view. This prohibits us from visualizing the overall shape of
a structure, unless many different camera setups are used, followed by registration data
processing, which is time consuming and tedious. Therefore, the proposed methodology
can be used only on the critical areas of a structure. A TLS is also very sensitive to noise,
which is generated either from the inherent nature of the device or the environment.
Researchers have been trying to improve accuracy using different denoising and filtering
methods, as well as robust algorithms, to obtain the desired output.

This study comprehensively analyzed the performance of an inexpensive vision-based
sensor and compared it with a highly precise but very expensive sensor. In addition, this
study explains the effect of using bilateral filtering on sensor data to enhance structure
health monitoring. Accordingly, the deflection of a beam was estimated based on the same
approach—the Hausdorff distance measurement—using data obtained from the TLS and
DC. Bilateral filtering techniques were also applied to data from both sensors to obtain
better outputs.
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