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Abstract: Aiming at the problem that the performance of adaptive Kalman filter estimation will be 
affected when the statistical characteristics of the process and measurement of the noise matrices 
are inaccurate and time-varying in the linear Gaussian state-space model, an algorithm of multi-
fading factor and an updated monitoring strategy adaptive Kalman filter-based variational Bayes-
ian is proposed. Inverse Wishart distribution is selected as the measurement noise model and the 
system state vector and measurement noise covariance matrix are estimated with the variational 
Bayesian method. The process noise covariance matrix is estimated by the maximum a posteriori 
principle, and the updated monitoring strategy with adjustment factors is used to maintain the pos-
itive semi-definite of the updated matrix. The above optimal estimation results are introduced as 
time-varying parameters into the multiple fading factors to improve the estimation accuracy of the 
one-step state predicted covariance matrix. The application of the proposed algorithm in target 
tracking is simulated. The results show that compared with the current filters, the proposed filtering 
algorithm has better accuracy and convergence performance, and realizes the simultaneous estima-
tion of inaccurate time-varying process and measurement noise covariance matrices. 

Keywords: variational Bayesian; multiple-fading factors; time-varying noise covariance matrices; 
inaccurate noise; target tracking; updated monitoring strategy 
 

1. Introduction 
In many practical engineering applications, the actual values of the required state 

variables are often not directly available. For example, when radar detects an air target, it 
can calculate the target distance based on information such as reflected waves. Still, there 
is random interference in the radar detection process, resulting in random noise in the 
observation signal. In this case, it is impossible to obtain the required state variables ac-
curately, and these state variables can only be estimated or predicted based on the ob-
served signal. In linear systems, the Kalman filter is the optimal filter [1]. With the devel-
opment of computer technology, the calculation requirements and complexity of Kalman 
filtering no longer become obstacles to its application [2]. At present, the Kalman filtering 
theory has been widely used in tracking, navigation, guidance, and other areas [3–9]. 

The application of the Kalman filter requires prior knowledge of the mathematical 
model of the system and the statistical characteristics of noise. Still, in many practical ap-
plication problems, these are unknown or only partially known [10–12]. If inaccurate 
mathematical models or statistical noise characteristics are used to design the Kalman fil-
ter, the performance of the filter will be degraded, resulting in larger estimation errors, 
and even filter divergence. To solve this problem, various adaptive Kalman filters (AKF) 
have been produced [13,14]. 
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The Sage–Husa filter (SH-KF) is widely used because of its simple algorithm, which 
can estimate the first and second moments of noise online [15]. However, the Sage–Husa 
adaptive noise estimator has problems such as a large amount of calculation and easy 
divergence of state estimation [16]. In addition, some literature has pointed out that the 
covariance matrices of process noise and observation noise cannot be estimated dynami-
cally in real-time by the Sage–Husa adaptive estimator at the same time, which can only 
estimate the other noise covariance matrix when one noise covariance matrix is known 
[17,18]. The maximum-likelihood-based adaptive filtering method (ML-KF) can evaluate 
and correct the second-order moments of the noise statistics online, but it needs to rely on 
accurate innovation covariance estimation, and ML-KF requires a large sliding window 
to obtain a precise estimate of the noise covariance matrix, which theoretically makes it 
only for time-varying noise covariance matrix estimation [19,20]. Strong tracking Kalman 
filter (ST-KF) is an adaptive filtering algorithm based on the principle of residual orthog-
onality. It adjusts the weight of new measurement data by adding an estimate of the one-
step predictive covariance matrix. It has strong robustness regarding model parameter 
mismatch, lower sensitivity to the statistical characteristics of noise and initial values, and 
a strong ability to track sudden changes. But its adjustment ability for each filtering chan-
nel is the same, and state predicted error covariance matrix (PECM) and measurement 
noise covariance matrix (MNCM) are not estimated [21,22] 

In recent years, many scholars have introduced the variational Bayesian machine-
learning method into the KF algorithm and proposed AKF algorithm based on the varia-
tional Bayesian approach (VB-KF), which is an approximation of the Bayesian method. By 
choosing a suitable conjugate prior distribution, the slow time-varying measurement 
noise covariance can be estimated [23–25]. Literature [26] proposed a variational adaptive 
Kalman filter (R-VBKF) but only estimated the system state vector and the measurement 
noise covariance matrix (MNCM); the accuracy is not satisfactory enough. In the algo-
rithm presented in the literature [27], the state predicted error covariance matrix (PECM) 
and the measurement noise covariance matrix (MNCM) are estimated, but the process 
noise covariance matrix (PNCM) is not directly assessed. The specific estimated value of 
the PNCM cannot be obtained, and the estimation accuracy needs to be further improved. 

Aiming at the linear Gaussian state–space model with slow time-varying covariance 
of process and measurement noise, taking into account the estimation accuracy, conver-
gence performance, robustness, and the realization of simultaneous estimation of noise 
covariance matrices, the multi-fading factor and updated monitoring strategy, AKF-based 
variational Bayesian (MFMS-VBAKF) is proposed. Its feasibility is proved by simulation 
experiments. 

The main contributions of the algorithm proposed in this paper are as follows: com-
pared with the inverse-Gamma distribution applied by the R-VBKF algorithm in [25], the 
algorithm proposed in this paper selects the distribution of the measurement noise model 
as a more reasonable inverse-Wishart distribution in variational Bayesian approach, 
which improves the estimation accuracy of system state vector and MNCM; compared 
with SH-KF in [15], the algorithm proposed in this paper guarantees the positive semi-
definiteness of the PNCM under the maximum posterior estimation by designing an up-
dated monitoring strategy, and achieves the simultaneous estimation of the PNCM and 
MNCM.; and compared with ST-KF [21], the proposed algorithm has different adjustment 
abilities for each channel by introducing multi-fading factors and the PECM estimation 
accuracy is also improved. 

The main structure is as follows: Section 2 illustrates the mathematical modeling of 
the problem. In Section 3, the multi-fading factor and updated monitoring strategy AKF-
based variational Bayesian is derived. In Section 4, the proposed algorithm is compared 
with the existing algorithm through the simulation of the target tracking application, and 
the excellent performance of the proposed algorithm is proved. Section 5 summarizes the 
conclusions. Finally, Section 6 plans the future work. 
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2. Problem Modeling 
Consider the following discrete linear stochastic system of the state–space model 𝑿 = 𝜱 𝑿 + 𝝎 ,  (1)𝒁 = 𝑯 𝑿 + 𝒗 ,  (2)

where (1) and (2) are process and measurement equations, respectively. 𝑘 is discrete-
time, 𝑿 ∈ 𝐑 ×  is the state vector of the system at time 𝑘, 𝒁 ∈ 𝐑 ×  is the measure-
ment signal vector of the corresponding state. 𝜱 ∈ 𝐑 ×  is the state-transition matrix, 𝑯 ∈ 𝐑 ×  is the measurement matrix. 𝝎 ∈ 𝐑  and 𝑣 ∈ 𝐑  are uncorrelated white 
Gaussian noise with zero mean vectors and covariance matrices 𝑸  and 𝑹 ,  respec-
tively. The initial state 𝑿  is assumed to be a Gaussian distribution with mean vector 𝑿  
and the covariance matrix 𝑷 . 𝑿  is uncorrelated to 𝝎  and 𝒗  at any time [1]. 

For linear Gaussian state–space models, the Kalman filter (KF) algorithm is an opti-
mal estimation filter algorithm. If the noise covariance matrices 𝑸  and 𝑹  are fully 
known, KF estimates the state vector 𝑿  through the measurement information of 𝒁 : , 
and the estimation accuracy is satisfactory. However, the performance of the KF algorithm 
overly depends on the prior knowledge of the noise statistics. If the time-varying noise 
covariance matrices 𝑸  and 𝑹  are unknown or inaccurate, the accuracy of the KF algo-
rithm will decrease, and even cause the estimation to diverge. Besides, when most existing 
AKF algorithms estimate the PNCM 𝑸  and MNCM 𝑹  at the same time, the filtering 
will diverge. Therefore, a multi-fading factor and updated monitoring strategy AKF-
based variational Bayesian with inaccurate time-varying PNCM and MNCM is proposed. 

3. The Proposed Multi-Fading Factor and Updates Monitoring Strategy AKF-Based 
Variational Bayesian 

In the VBAKF algorithm, the independent state vector 𝑿  and the measurement 
noise covariance matrix 𝑹  are regarded as the parameters to be estimated. 

3.1. AKF-Based Variational Bayesian (VBAKF) 
3.1.1. Prediction Process and Distribution Selection 

In the traditional Kalman filter framework, the Gaussian distributions are selected as 
the distributions of one-step predicted probability density function (PDF) 𝑷(𝑿 |𝒁 : ) 
and likelihood PDF 𝑝(𝒁 |𝑿 ): 𝑝(𝑿 |𝒁 : ) = 𝑁 𝑿 ; 𝑿 : , 𝑷 : ,  (3)𝑝(𝒁 |𝑿 ) = 𝑁 𝒁 ; 𝑯𝑿 : , 𝑹 ,  (4)

where 𝑁(𝑮; 𝜇, 𝛴) is the Gaussian distribution and 𝜇 and 𝛴 represent the mean and vari-
ance of the distribution, respectively. The PDF of the Gaussian distribution is: 𝑁(𝑮; 𝜇, 𝛴) = 1|2𝜋𝛴| 𝑒𝑥𝑝 (𝑮 ) (𝑮 ),  (5)

According to Equation (1), the predicted state vector 𝑿 :  and the corresponding 
one-step predicted error covariance matrix (PECM) 𝑷 :  can be described as: 𝑿 : = 𝜱 𝑿 : ,  (6)𝑷 : = 𝜱 𝑷 : 𝜱 + 𝑸 ,  (7)

where 𝑿 :  and 𝑷 :  represent the state estimation at time 𝑘 − 1  and the corre-
sponding estimation error covariance matrix, respectively. (. )  represents the transpose 
of the matrix. Among them, it is assumed that the real PNCM 𝑸  is unknown due to the 
complex environmental factors in real applications, which will lead to an inaccurate 
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𝑷 :  in Equation (7). The estimation methods for 𝑸  and 𝑷 :  will be given in the 
next two sections. 

In this section, the aim is to infer 𝑿  with 𝑹 . For the purpose, the conjugate prior 
distributions need to be first selected for inaccurate MNCM 𝑹  since the conjugacy can 
ensure that the posterior distribution and the prior distribution maintain the same func-
tional form. 

According to Bayesian statistical theory, if the Gaussian distribution has a known 
mean, the conjugate prior distribution of the covariance matrix can be regarded as the 
inverse Wishart (IW) distribution [28]. 𝑪  is the inverse matrix of a positive definite ma-
trix 𝑪. If 𝑪  follows the Wishart-distribution 𝑊(𝑪 ; 𝜆, 𝛹 ), the matrix 𝑪 follows the 
IW distribution: 𝐼𝑊(𝑪; 𝜆, 𝛹) = |𝛹| ⁄2 ⁄ 𝛤 𝜆2 |𝑪| ( )⁄ 𝑒𝑥𝑝 .  (8)

In Equation (8), 𝑪 is a symmetric positive definite random matrix, distribution pa-
rameter 𝜆 is a dof parameter, 𝛹 is a symmetric positive definite matrix, d is the dimen-
sion of 𝑪, 𝛤 (. ) represents a multivariate gamma function, and 𝑡𝑟[. ] is the matrix trace 
calculation. Additionally, if 𝜆 > 𝑑 + 1 and 𝐸[𝑪 ]~𝐼𝑊(𝑪; 𝜆, 𝛹), then 𝐸[𝑪 ] = (𝜆 − 𝑑 −1)𝛹 . 𝐸(. ) stands for mathematical expectation calculation [29]. Since 𝑹  is the covari-
ance matrix of the Gaussian PDF, the prior distribution of 𝑃(𝑹 |𝒁 : ) can be written as 
IW distribution: 𝑝(𝑹 |𝒁 : ) = 𝐼𝑊 𝑹 : ; 𝒕 : , 𝑻 : ,  (9)

where 𝒕 :  and 𝑻 :  denote the degrees of freedom (dof) parameter and scale matrix 
of 𝑝(𝑹 |𝒁 ), respectively. Next, the values of 𝒕 :  and 𝑻 :  need to be assigned. 

Owing to the Bayesian theorem, the prior distribution 𝑝(𝑹 |𝒁 ) can be written as: 𝑝(𝑹 |𝒁 : ) = 𝑝(𝑹 |𝑹 )𝑝(𝑹 |𝒁 : ) 𝑑𝑹 ,  (10)

where 𝑝(𝑹 |𝒁 : )) is the posterior probability density function (PDF) of the MNCM 𝑹 . 
Utilizing (9), the distribution of posterior PDF 𝑝(𝑹 |𝒁 : ) can be replaced as in-

verse Wishart distribution, due to the prior distribution 𝑝(𝑹 |𝒁 : ) of MNCM 𝑹  
is selected as inverse Wishart distribution, and 𝑝(𝑹 |𝒁 : ) can be written as: 

( )1 1: 1 1 1: 1 1: 1
ˆˆ| ( ; , ).k k k k k k kp IW− − − − − − −=R Z R t T   (11)

To guarantee 𝑝(𝑹 |𝒁 : ) also obeys the inverse Wishart distribution, a changing 
factor 𝜌 is introduced to modify the one-step predicted values of the distribution param-
eters 𝒕 :  and 𝑻 : . The formulas are as follows: 𝒕 : = 𝜌(𝒕 − 𝑚 − 1) + 𝑚 + 1,  (12)𝑻 : = 𝜌𝑻 ,  (13)

among them, m is the dimension of 𝒁 , 𝜌 ∈ (0,1], the time-varying measurement noise 
covariance matrix can be changed with a certain probability distribution, and control the 
posterior and prior probability density functions to have the same distribution. 

In addition, the initial PDF distribution of MNCM 𝑹  is also assumed as inverse 
Wishart distribution. 𝑝(𝑹 ) = 𝐼𝑊 𝑹 ; 𝒕 : , 𝑻 : . At the initial moment, to formulate the 
prior information of the measurement noise covariance matrix, the mean value of 𝑹  is 
considered as the initial fixed measurement noise covariance matrix 𝑹 , i.e., 𝑹 = 𝑻 :𝒕 : − 𝑚 − 1  (14)
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Assuming that the prior distribution of the joint probability density function of the 
state variable and the MNCM is the product of the Gaussian distribution and the inverse 
Wishart distribution, the prediction process can be defined as: 𝑝(𝑿, 𝑹 |𝒁 : ) = 𝑝(𝑿 |𝒁 : )𝑝(𝑹 |𝒁 ) = 𝑁 𝑿 ; 𝑿 : , 𝑷 : 𝐼𝑊 𝑹 ; 𝒕 : , 𝑻 : (15)

3.1.2. Variational Update Process 
Aiming at estimating the state 𝑿  and the MNCM 𝑹 , their joint posterior PDF 𝑝(𝑿 , 𝑹 |𝒁 : ) needs to be calculated. However, the analytical solution of this joint poste-

rior PDF cannot be obtained directly. The variational Bayesian method is utilized to find 
an approximate PDF of a free form as follows [30]: 𝑝(𝑿 , 𝑹 |𝒁 : ) ≈ 𝑞(𝑿 )𝑞(𝑹 ),  (16)

where 𝑞(. ) means the approximate posterior PDF of 𝑝(. ). 
In the standard VB method, Kullback–Leibler divergence (KLD) is used to measure 

the degree of approximation between the approximation posterior PDF and the true pos-
terior PDF, and the optimal solution is obtained by minimizing KLD. The VB method can 
provide a closed form solution for the approximate posterior PDF. Minimizing the KLD 
between the approximation posterior PDF  𝑞(𝑿 ) , 𝑞(𝑹 )  and the true joint poste-
rior 𝑝(𝑿 , 𝑹 |𝒁 : ) is used to form the VB-approximation [30]: {𝑞(𝑿 )𝑞(𝑹 ) = arg 𝑚𝑖𝑛 𝐾𝐿𝐷 𝑞(𝑿 ), 𝑞(𝑹 ) || 𝑝(𝑿 , 𝑹 |𝒁 : ) ,  (17)

The divergence function KLD(.) is defined as: 𝐾𝐿𝐷 𝑞(𝐴) || 𝑝(𝐴) = 𝑞(𝐴) log 𝑞(𝐴)𝑝(𝐴) 𝑑𝐴 .  (18)

Combined with Equations (17) and (18), the optimal solution of Equation (16) is de-
rived as: log 𝑞(𝑿 ) = 𝐸𝑹 [log 𝑝(𝑿 , 𝑹 , 𝒁 : )] + 𝑐𝑿 ,  (19)log 𝑞(𝑹 ) = 𝐸𝑿 [log 𝑝(𝑿 , 𝑹 , 𝒁 : )] + 𝑐𝑹 ,  (20)

where log(. ) stands for natural logarithm calculation, 𝐸 [. ] denotes the expectation cal-
culation of the approximate posterior PDF of the variable 𝜑, 𝑐𝑿  and 𝑐𝑹  represent the 
constants of variable 𝑿  and MNCM 𝑹 , respectively. The solutions of Equations (19) 
and (20) cannot be solved directly since 𝑞(𝑿 ) and 𝑞(𝑹 ) are coupled. Therefore, the 
fixed-point iteration method is introduced to calculate the solution to these parameters. 

The further form of Equation (20) can be derived as (See Appendix A for details): log 𝑞( )(𝑹 ) = 𝑐𝑹 − 12 (𝑚 + 𝒕 : + 2) log|𝑹 | −12 𝑡𝑟𝑎𝑐𝑒 𝐸( )[(𝒁 − 𝑯 𝑿 )(𝒁 − 𝑯 𝑿 ) ] + 𝑻 : 𝑹 ,  (21)

where: 𝑞( )(. ) represents the approximate probability distribution of 𝑞(. ) at the 𝑖-th it-
eration, 𝑡𝑟𝑎𝑐𝑒(. ) is the calculation of the matrix trace, 𝐶𝑹  is a constant related to 𝑹  
which independent of the distribution form, and 𝑚 is the dimension of the real observa-
tion matrix. The expectation part of Equation (21) is defined as 𝑽( ), and expanded as: 𝑽( ) = 𝐸( )[(𝒁 − 𝑯 𝑿 )(𝒁 − 𝑯 𝑿 ) ] = (𝒁 − 𝑯 𝑿 )(𝒁 − 𝑯 𝑿 ) + 𝑁 𝑿 ; 𝑿𝒌:𝒌𝒊 , 𝑷 : 𝑑𝑿  = 𝒁 − 𝑯 𝑿𝒌𝒊 𝒁 − 𝑯 𝑿𝒌𝒊 + 𝑯 𝑷 𝑯 ,  

(22)

it can be seen that 𝑞( )(𝑹 ) obeys a new inverse Wishart distribution form as follows, 
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𝑞( )(𝑹 ) = 𝐼𝑊 𝑹 ; 𝒕( ), 𝑻( ) .  (23)

and the distribution parameters 𝒕( ) and 𝑻( ) are, respectively, as follows: 𝒕( ) = 𝒕 : + 1,  (24)𝑻( ) = 𝑽( ) + 𝑻( ),  (25)

Similarly, the logarithmic expression of the approximate distribution of the system 
state 𝑿  is as follows: log𝑞( )(𝑿 ) = − 12 (𝒁 − 𝑯 𝑿 ) 𝐸( )[𝑹 ](𝒁 − 𝑯 𝑿 ) − 12 𝑿 − 𝑿 : 𝑷 : 𝑿 − 𝑿 : + 𝑐𝑿 ,  

(26)

where 𝐸( )[𝑹 ]  is given by: 𝐸( )[𝑹 ] = 𝒕( ) − 𝑚 − 1 𝑻( ).  (27)

The likelihood PDF 𝑝(𝒁 |𝑿 ) in Equation (4) after updating the (𝑖 + 1)-th iteration 
can be derived as follows: 𝑝( )(𝒁 |𝑿 ) = 𝑁 𝒁 ; 𝑯𝒌𝑿 , 𝑹( ) ,  (28)

The corrected measurement noise covariance matrix (MNCM) 𝑹( ) can be written 
as: 𝑹( ) = 𝐸( )[𝑹 ]  (29)

Since 𝑞(𝑿 ) obeys the Gaussian distribution as 𝑞(𝑿 ) = 𝑁 𝑿 ; 𝑿𝒌, 𝑷 . Combining 
with the standard Kalman filter framework, the gain matrix 𝑲( ), system state 𝑿( ), 
and state covariance 𝑷( ) in the variational measurement update are corrected as fol-
lows, respectively: 𝑲( ) =  𝑷 : 𝑯 𝑯𝒌𝑷 : 𝑯 + 𝑹( ) ,  (30)𝑿( ) = 𝑿 : + 𝑲( ) 𝒁 − 𝑯𝒌𝑿 : ,  (31)𝑷( ) = 𝑰 − 𝑲( )𝑯𝒌 𝑷 : 𝑰 − 𝑲( )𝑯𝒌 + 𝑲( )𝑹( )(𝑲( ))  (32)

Analyzing the above derivation, it can be seen that the implicit solution of the varia-
tional update formula is constituted by the Equations (22), (24), (25), and (29)–(32). The 
expected maximum approach is used to iteratively calculate 𝑞(𝑿 ) and 𝑞(𝑹 ) to update 
the parameters 𝑿  and 𝑹  to be estimated continuously. When 𝑞(𝑿 ) and 𝑞(𝑹 ) are 
closer to 𝑝(𝑿, 𝑹 |𝒁 : ), the KLD value of Equation (17) is smaller, and the estimation 
results of the parameter to be estimated adaptively approach to the true value until the 
iteration of the variational update process is finished. At this time, the optimal estimation 
results of parameters 𝑿  and 𝑹  to be estimated at time 𝑘 can be calculated as follows 
(𝑁 is the number of fixed-point iterations): 𝑞(𝑿 ) ≈ 𝑞( )(𝑿 ) = 𝑿 ; 𝑿 ;( ), 𝑷 ;( ) = 𝑿 ; 𝑿 : , 𝑷 : ,  (33)𝑞(𝑹 ) ≈ 𝑞( )(𝑹 ) = 𝐼𝑊 𝑹 ; 𝒕( ), 𝑻( ) = 𝐼𝑊 𝑹 ; 𝒕 | , 𝑻 | . (34)

3.2. Updated Monitoring Strategy Based on Maximum a Posterior (MAP) for Estimating the 
PNCM 𝑄  

Some existing adaptive filtering methods estimate the process noise covariance ma-
trix (PNCM) 𝑸  and measurement noise covariance matrix (MNCM) 𝑹  at the same 
time, it is easy to cause the accuracy of the estimated value of the state 𝑿  to decrease or 
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even diverge. This is caused by the value of 𝑸  becoming negative definite matrix during 
the estimation process [17]. 

Aiming at realizing the simultaneous estimation of the PNCM 𝑸 , MNCM 𝑹  and 
improving the estimation accuracy of the state vector 𝑿 . An updated monitoring strat-
egy based on maximum a posterior (MAP) for estimating the PNCM 𝑸  is proposed. 

According to the state–space model as Equations (1) and (2), in paper [15], the maxi-
mum a posteriori suboptimal unbiased estimation method based on the noise statistics of 
measurement {𝒁 , 𝒁 , 𝒁 , ⋯ 𝒁  for estimating the PNCM 𝑸  is given as: 

𝑸 = 1𝑘 ∗ [𝑲 𝜸 𝜸 𝑲 + 𝑷 : − 𝜱 𝑷 : 𝜱 ], (35)

combining Equation (35) with the conclusion of Section 3.1, where 𝑲𝑠=𝑲( ) is the optimal 
gain calculated by VBAKF through 𝑁th variational iterations at time 𝑠, 𝑷 : = 𝑷( ) is the 
state covariance calculated after 𝑁th variational iterations at time 𝑠 and 𝜸 = 𝒁 − 𝑿 :  
is the residual. 

From a statistical point of view, Equation (35) is an arithmetic average, and the weight 
coefficient in the formula is 1 (𝑘 + 1)⁄ . However, when estimating the time-varying pro-
cess noise covariance matrix, the role of the latest information should be highlighted, 
which can be achieved by multiplying each item in ∑ [. ] by a different weighting coef-
ficient. Owing to the exponential weighting method, we can assign different weights to 
each item in ∑ [. ], and increase the weight of the latest information, thereby improving 
the accuracy of 𝑸  estimation. The exponential weighting method is introduced, and the 
weighting coefficient {𝝑  is selected to satisfy: 

𝝑 = 𝝑 𝑏;  𝑏 ∈ (0,1); 𝝑 = 1.  (36)

further deduced as follows: 𝝑 = 𝒅 𝑏 , 𝒅 = (1 − 𝑏)(1 − 𝑏 ) ;  𝑠 ∈ [0, 𝑘],  (37)

where 𝑏 is the attenuation factor. In ∑ [. ] of Equation (35), each item is multiplied by 
the weight coefficient 𝒅 , instead of the original weight coefficient. The time-varying pro-
cess noise covariance matrix (PNCM) 𝑸  estimation method is obtained, and the recur-
sive algorithm is derived as: 𝑸 = (1 − 𝑑 )𝑸 + 𝑑 𝑲( )𝜸 𝜸 𝑲( ) + 𝑷( ) − 𝜱 𝑷( ) 𝜱 .  (38)

Equations (7), (30)–(32), and (38) constitutes the VBAKF algorithm that simultane-
ously estimates the PNCM 𝑸 , MNCM 𝑹 , state vector 𝑿 , and one-step predicted state 
error covariance matrix (PECM) 𝑷 : . 

However, through simulation experiments, the estimation of the PNCM 𝑸  by the 
above algorithm is prone to abnormality; that is, it loses positive semi-definiteness, which 
leads to filtering divergence. 

To solve this problem, based on not losing the information of the original process 
noise estimation algorithm (38), an updated monitoring strategy of process noise param-
eters is designed. Firstly, it is judged whether 𝑸  calculated by Equation (38) is a positive 
semi-definite matrix. Then the adjustment factor 𝛽 is introduced to update the process 
noise estimation parameters to ensure that the corrected PNCM meets the requirements. 

The right side of the Equation (38) is shifted as follows: 𝑸 = 𝑸 + 𝑑 𝑲( )𝜸 𝜸 𝑲( ) + 𝑫 ,  (39)𝑫 = 𝑷( ) − 𝜱 𝑷( ) 𝜱 − 𝑸 .  (40)
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Generally speaking, the selection of the initial value of the state error covariance ma-
trix 𝑷𝟎 is imprecise, and the deviation from the ideal value is large in the initial stage of 
filtering, resulting in the absolute value of the theoretical process noise covariance matrix 𝑫  determined by Equation (39) being much larger than 𝜸 𝜸 . It is easy to cause 𝑸  to 
lose the positive semi-definiteness, and then the filtering will diverge. Therefore, it is nec-
essary to introduce an adjustment factor to attenuate the effect of the state error covariance 
matrix at the initial moment, to avoid the indefiniteness of the estimated value of the 
PNCM, to prevent the filter from diverging. The updated monitoring strategy of the 
PNCM is as follows: 𝑸 = 𝑸 + 𝑑 𝑲( )𝜸 𝜸 𝑲( ) + (𝛽 ) 𝑷( ) − 𝜱 𝑷( ) 𝜱 − 𝑸 , (41)

where 𝑝 ≥ 1 is a positive integer (the initial value is 1), 𝛽  is the adjustment factor, and 
the value of 𝛽  is related to the state error variance matrix as follows: 𝛽 = 𝑒𝑥𝑝 ,  (42)

𝑎 = 𝑡𝑟𝑎𝑐𝑒 𝑷( ) − 𝜱 𝑷( ) 𝜱 − 𝑸𝑡𝑟𝑎𝑐𝑒 𝑲( )𝜸 𝜸 𝑲( ) .  (43)

The specific process for the updated monitoring strategy is as follows: monitor the 
process noise covariance matrix calculated by Equation (38), and judge whether 𝑸  is a 
positive semi-definite matrix to determine whether 𝑸  needs to be updated. If not, out-
put 𝑸 . Otherwise, turn to Equation (41) and set 𝑝 = 1; Equation (41) is used to update 
the process noise parameters. Continue the monitoring of the updated estimated process 
noise covariance matrix to determine whether it is necessary to continue to update. If it is 
necessary, take 𝑝 = 𝑝 + 1; Equation (41) is used to recalculate 𝑸 . The loop is executed 
until 𝑸  is a positive semi-definite matrix. End the update of the process noise covariance 
matrix at the current moment. The flowchart of one time-step of the updated monitoring 
strategy is shown in Figure 1. 

So far, combined with the traditional Kalman filter framework, the VBAKF algorithm 
with updated monitoring strategy is derived to estimate system state vector 𝑿 , the pro-
cess noise covariance matrix (PNCM) 𝑸 , measurement noise covariance matrix (MNCM) 𝑹 , one-step predicted state error covariance matrix (PECM) 𝑷 : , and state error co-
variance matrix 𝑷  at the same time. 

3.3. Improved by Introducing Multiple Fading Factors 
If the statistical characteristics of the process and measurement noise are time-vary-

ing, the convergence speed of VBAKF will slow down, and there will be a particular error 
in the estimation result, which will be reflected by the residual sequence 𝜸  [31]. 

In view of this, to improve the accuracy of estimation, the multiple fading factor 𝐿  
is introduced to realize the correction of the one-step predicted error covariance matrix 
(PECM) 𝑷 : . Equation (7) can be rewritten as: 𝑷 :∗ = 𝐿 𝜱 𝑷 𝜱 + 𝑸 ,  (44)

adjusting the gain 𝑲( ) in real-time to keep 𝜸  orthogonal, forcing the filter to keep track 
of the actual state of the system. The tracking ability is thereby improved [31]. The calcu-
lation method of multiple fading factors 𝐿  is as follows: 𝐿 = 𝑑𝑖𝑎𝑔[𝜆 , 𝜆 , ⋯ , 𝜆 ],  (45)𝜆 = 𝜆 , 𝜆 > 11, 𝜆 ≤ 1  𝑖 = 1,2, ⋯ , 𝑛,  (46)

where 𝑛 is the dimension of the state vector 𝑿 , 𝜆 = 𝛼 ∙ 𝐺 , the value of 𝛼  is deter-
mined by the system prior information. The formula of 𝐺  is as follows: 
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𝐺 = 𝑡𝑟𝑎𝑐𝑒(𝑁 )∑ 𝛼 ∙ 𝑀 ,  (47)

where 𝑀  is the 𝑖-th element of the main diagonal of 𝑀 , the calculation formulas of 𝑁  
and 𝑀  are as follows: 𝑁 = 𝐵 − 𝑯 𝑸 𝑯 − 𝜏𝑹 ,  (48)𝑀 = 𝜱 𝑃 : 𝜱 𝑯 𝑯 .  (49)

 
Figure 1. The flowchart of one time-step of the updated monitoring strategy based on maximum a 
posterior (MAP) for estimating the process noise covariance matrix (PNCM). 

In Equation (48), 𝜏 is the weakening factor and 𝐵  is unknown and can be estimated 
by the following formula: 

𝐵 = 𝜸 𝜸 , 𝑘 = 1𝜇𝐵 + 𝜸 𝜸1 + 𝜇 , 𝑘 > 1  (50)

where 𝜇 ∈ (0,1] is the forgetting factor. 
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Since 𝐿  is used to correct the one-step predicted error covariance matrix (PECM) 
in the prediction step of the filtering algorithm, the initial value 𝑹  of the MNCM 𝑹  
must be set in advance, assuming that 𝑹  also obeys the inverse Wishart distribution. The 
estimated value of measurement noise covariance matrix 𝑹  in the time-update step is 
defined as: 

𝑹 = 𝑻(𝒕 − 𝑚 − 1) , 𝑘 = 1𝑹 , 𝑘 > 1 ,  (51)

In Equation (51), the variation range of the slowly time-varying measurement noise 
covariance matrix is small, and the estimated value 𝑹  at the previous time still has a 
great reference value for the current time estimation. Therefore, 𝑹  estimated by the 
variational update recursively of the previous time is used as 𝑹  at time 𝑘 > 1. 𝑹  is 
used as the time-varying parameter of 𝐿  to modify the one-step predicted error covar-
iance matrix (PECM) 𝑷 :∗  more accurately, and the accurate 𝑷 :∗  can affect the ac-
curacy of the estimation result of the variational iteration recursion directly. 

The multi-fading factor and updated monitoring strategy AKF-based variational 
Bayesian in this paper is composed of Equations (6), (12)–(14), (22)–(25), (27), (29)–(34), 
(41)–(51). The pseudo-code implementation of the proposed MFMS-VBAKF algorithm is 
listed in Algorithm 1. 

Algorithm 1: One time-step of the proposed multi-fading factor and updated monitoring strategy AKF-based variational Bayesian 

Inputs: 𝑋𝑘−1:𝑘−1, 𝑃 : , �̂� : , 𝑇 : , 𝛷, 𝐻, 𝑍 , 𝑚, 𝑛, 𝜌, 𝑏, 𝜇, 𝜏, 𝛼 , 𝑁 
Time update: 
1. 𝑋 : = 𝛷𝑋 : , 𝛾𝑘 = 𝑍𝑘 − 𝑋𝑘:𝑘−1 2. if 𝑘 = 1 then 3.   𝑅 = 𝑇 (�̂� − 𝑚 − 1)⁄ , 𝑄 = 𝑄  4.   𝐵 = 𝛾 𝛾 , 5. else 6.   𝑅 = 𝑅 , 𝑄 = 𝑄  7.   𝐵 = 𝜇𝐵 + 𝛾 𝛾 1 + 𝜇⁄  8. 𝑁𝑘 = 𝐵𝑘 − 𝐻𝑘−1𝑄𝑘−1𝐻𝑘−1𝑇 − 𝜏𝑅𝑘, 9. 𝑀𝑘 = 𝛷𝑘−1𝑃𝑘:𝑘𝛷𝑘−1𝑇𝐻𝑘−1𝑇 𝐻𝑘−1, 10. 𝐺 = 𝑡𝑟𝑎𝑐𝑒(𝑁 ) ∑ (𝛼 ∙ 𝑀 )⁄ , 𝜆 = 𝛼 ∙ 𝐺  11. if 𝜆 > 1 12.   𝜆 = 𝜆  13. else 14.   𝜆 = 1 15. 𝐿𝑚𝑑 = 𝑑𝑖𝑎𝑔[𝜆𝑘1, 𝜆𝑘2, ⋯ , 𝜆𝑘𝑛] 16. 𝑑𝑘 = (1 − 𝑏) (1 − 𝑏𝑘+1)⁄  17. 𝑄𝑘 = (1 − 𝑑𝑘)𝑄𝑘−1 + 𝑑𝑘 𝐾𝑘𝛾𝑘𝛾𝑘𝑇𝐾𝑘𝑇 + 𝑃𝑘 − 𝛷𝑘−1𝑃𝑘−1𝛷𝑘−1𝑇 , 𝑐 = 1 18. 𝜃 = 𝑚𝑖𝑛 𝑒𝑖𝑔  𝑄𝑘 , 19. 𝑎 = 𝑡𝑟𝑎𝑐𝑒 𝑃 − 𝛷 𝑃 𝛷 − 𝑄 𝑡𝑟𝑎𝑐𝑒 𝐾 𝛾 𝛾 𝐾  20. 𝛽 = 𝑒𝑥𝑝  21. while 𝜃 < 0 do 22.  𝑄 = 𝑄 + 𝑑 𝐾 𝛾 𝛾 𝐾 + (𝛽 ) 𝑃 − 𝛷 𝑃 𝛷 − 𝑄  23.  𝜃 = 𝑚𝑖𝑛 𝑒𝑖𝑔  𝑄 , 𝑐 = 𝑐 + 1 24. 𝑃𝑘:𝑘−1∗ = 𝐿𝑚𝑑𝛷𝑘−1𝑃𝑘−1:𝑘−1𝛷𝑘−1𝑇 + 𝑄𝑘−1 Iterated measurement update 25. Initialization 26. 𝑉𝑘(𝑖) = 𝑍𝑘 − 𝐻𝑘𝑋𝑘𝑖 𝑍𝑘 − 𝐻𝑘𝑋𝑘𝑖 𝑇 + 𝐻𝑘𝑃𝑘𝐻𝑘𝑇 27. �̂�𝑘(𝑖+1) = �̂�𝑘:𝑘−1 + 1, 𝑇( ) = 𝑉( ) + 𝑇( ) for 𝑖 = 0: 𝑁 − 1 
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Update 𝑞( )(𝑋 ) = 𝑋 ; 𝑋 : , 𝑃 :  given 𝑃 :∗ and 𝑞( )(𝑅 ): 28. 𝐸(𝑖+1)[𝑅𝑘−1]−1 = �̂�𝑘(𝑖+1) − 𝑚 − 1 −1 𝑇𝑘(𝑖+1) 29. 𝑅𝑘(𝑖+1) = 𝐸(𝑖+1)[𝑅𝑘−1]−1 30. 𝐾𝑘(𝑖+1) =  𝑃𝑘:𝑘−1∗ 𝐻𝑘𝑇 𝐻𝑘𝑃𝑘:𝑘−1∗ 𝐻𝑘𝑇 + 𝑅𝑘(𝑖+1) −1 31. 𝑋𝑘(𝑖+1) = 𝑋𝑘:𝑘−1 + 𝐾𝑘(𝑖+1)(𝑍𝑘 − 𝐻𝑘𝑋𝑘:𝑘−1) 32. 𝑃𝑘(𝑖+1) = 𝐼 − 𝐾𝑘(𝑖+1)𝐻𝑘 𝑃𝑘:𝑘−1 𝐼 − 𝐾𝑘(𝑖+1)𝐻𝑘 𝑇 + 𝐾𝑘(𝑖+1)𝑅𝑘(𝑖+1)(𝐾𝑘(𝑖+1))𝑇 End for 33. 𝑋 : =  𝑋 :( ), 𝑃 : =  𝑃 :( ), �̂� : =  �̂�( ), 𝑇 : = 𝑇( ), 𝑅 = 𝑅( ) Outputs: 𝑋𝑘:𝑘, 𝑃 : , �̂� : , 𝑇 : , 𝑅 , 𝑄  
4. Simulations and Results 

The application of the proposed algorithm in target tracking is simulated. The target 
moves according to the continuous white noise accelerated motion model in the two-di-
mensional Cartesian coordinate system. Sensors are used to collect the target location. The 
system state is defined as 𝑥 = [𝑥  𝑥  𝑦  𝑦 ], where 𝑥  and 𝑦  represent the Cartesian co-
ordinates of the target at time 𝑘, 𝑥  and 𝑦  represent the velocity of the target at the cor-
responding position [24,25]. The state transition matrix 𝜱  and the measurement ma-
trix 𝑯  are respectively set as: 𝜱 = 𝑰 ∆𝑡𝑰0 𝑰 , 𝑯 = [𝑰 0],  (52)

where the parameter ∆𝑡 = 1 𝑠 represent the sampling interval, and 𝑰  represent the n-
dimensional unit matrix. Similar to [25], the true process noise covariance matrix (PNCM) 
and the measurement noise covariance matrix (MNCM) are set to slow time-varying mod-
els, which are: 

⎩⎪⎨
⎪⎧𝑸 = (9.5 + 0.5𝑐𝑜𝑠 𝜋𝑘𝑇 )𝑞 ⎣⎢⎢

⎡∆𝑡3 𝑰 ∆𝑡2 𝑰∆𝑡2 𝑰 ∆𝑡𝑰 ⎦⎥⎥
⎤

𝑹 = (0.1 + 0.05𝑐𝑜𝑠 𝜋𝑘𝑇 )𝑟 1 0.50.5 1
 (53)

The simulation environment is set as follows: 𝑇 = 1000 s is the total simulation time, 𝑞 is a parameter related to process noise, and 𝑟 is a parameter related to measurement 
noise. The fixed PNCM and MNCM are set as 𝑸 = 𝜎𝑰  and 𝑹 = 𝜀𝑰 , respectively, 
where 𝜎 and 𝜀 are the prior confidence parameters used to adjust the initial fixed noise 
covariance matrix. 

The parameters in the MFMS-VBAKF algorithm proposed in this paper are set as 
follows: 𝜎 = 1, 𝜀 = 100, changing factor 𝜌 = exp (−4), the number of variational iterations 𝑁 = 10, the initial value of the variational parameter 𝒕 = 1, 𝑻 = 300𝑰 , forgetting factor 𝜇 = 0.95, the weakening factor 𝜏 = 0.4, the parameter [𝛼  𝛼  𝛼  𝛼 ] = [1.7 1.1 1.7 1.1], 
and the attenuation factor 𝑏 = 0.96. 

This paper compares MFMS-VBAKF and true noise covariance matrix Kalman filter 
(TCMKF) [1], fixed noise covariance matrix Kalman filter (FCMKF) [1], SH-KF [15], ML-
KF [20], ST-KF [21], and R-VBKF [26] algorithms. Table 1 lists the estimated parameters 
and parameter settings of the existing algorithms. All algorithms are programmed using 
MATLAB R2018a, and the simulation program runs on a computer with Intel® Core™ i5-
6300HQ CPU at 2.30 GHz and 8GB of RAM. 

With the aim of evaluating the accuracy of system state estimation, the root mean 
square error and average root mean square error of position and velocity are regarded as 
performance indicators, which are defined as follows: 
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𝐸 , ≜ 1𝑀 ((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) )  (54)

𝐸 , ≜ 1𝑀𝑇 ((𝑥 − 𝑥 ) + (𝑦 − 𝑦 ) )  (55)

where (𝑥 , 𝑥 ) and (𝑦 , 𝑦 ), respectively, represent the true value and estimated value 
of the position in the 𝑠-th Monte Carlo experiment and 𝑀 = 1000 represents the total 
number of Monte Carlo experiment runs. Similarly, the calculation formulas of RMSE and 
ARMSE for the corresponding velocity can be obtained. 

Table 1. Estimated parameters and parameter settings of the existing algorithms. 

Types of Filtering  
Algorithms Estimated Parameters Algorithm Parameters Value of Algorithm 

Parameters 
SH-KF 𝑋 , 𝑃 : ,𝑃 , 𝑄  Forgetting factor 0.96 
ML-KF 𝑋 , 𝑃 : , 𝑃 , 𝑄  The size of sliding window 150 
ST-KF 𝑋 , 𝑃 : , 𝑃  Forgetting factor 0.94 

R-VBKF 𝑋 , 𝑃 : ,𝑃 , 𝑅  The number of iterations  10 
  Forgetting factor 0.98 

SHKF, Sage–Husa Kalman filter in [15]; MLKF, maximum likelihood Kalman filter in [20]; ST-KF, 
strong-tracking Kalman Filter in [21]; R-VBKF, the Kalman filter algorithm that uses variational 
iteration to recursively estimate 𝑅  and 𝑋  in [26]. 

True and estimated trajectories of the target are shown in Figure 2. It can be seen that, 
compared to the existing adaptive filtering algorithm, the proposed filter maintains excel-
lent target tracking performance throughout the entire process. 

 
Figure 2. True and estimated trajectories of the target. 

Figure 3a,b plot the RMSE variation curves of the position and velocity of the existing 
filter and the proposed MFMS-VBAKF, respectively. The RMSE of the estimation result of 
TCMKF algorithm is regarded as the benchmark. It can be seen from Figure 2 that com-
pared with existing algorithms, the proposed algorithm has a faster convergence speed 
and higher accuracy. To further elaborate on the advantages of the proposed algorithm, 
Table 2 lists the average root mean square error (ARMSE) of different KF filtering algo-
rithms: 
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(a) Position estimation 

 
(b) Velocity estimation 

Figure 3. The root mean square errors (RMSEs) of the target position and velocity estimation. 

Table 2. Average root mean square error (ARMSE) of various Kalman filter algorithms. 

Filters 𝑬𝑨𝑹𝑴𝑺𝑬,𝒑𝒐𝒔/𝐦 𝑬𝑨𝑹𝑴𝑺𝑬,𝒗𝒆𝒍/(𝐦 ∙ 𝐬 𝟏) 
FCMKF 9.853 6.348 
ML-KF 4.596 29.759 
SH-KF 9.646 9.545 

R-VBKF 9.352 5.961 
ST-KF 6.157 5.653 

MFMS-VBAKF 4.073 3.946 
TCMKF 3.649 3.253 

According to the data in Table 2, it can be found that in comparison with other AKF 
algorithms, the MFMS-VBAKF algorithm has the smallest ARMSE and the highest accu-
racy in estimating target position and velocity. 

To compare the computational complexity with existing algorithms, Table 3 lists the 
single-step running time of each algorithm. It can be seen that, compared with the R-
VBAKF using the variational Bayesian method, the proposed MFMS-VBAKF increases the 
single-step running time by 0.21 μs. The design of multi-fading factors and updated mon-
itoring strategy has ensured a substantial increase in estimation accuracy while bringing 
higher computational complexity. 
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Table 3. Single-step running time of each algorithm. 

Filters Single-Step Running Time (μs) 
FCMKF 0.28 
ST-KF 0.41 
SH-KF 0.46 
ML-KF 0.54 
R-VBKF 0.71 

MFMS-VBAKF 0.92 

To evaluate the accuracy of the estimation of one-step predicted state error covari-
ance matrix PECM and the noise covariance matrices PNCM, MNCM, the square root of 
the normalized Frobenius norm (SRNFN) and the averaged SRNFN (ASRNFN) are used 
as the measure of error, which are defined as: 

𝐸 , ≜ 1𝑛 𝑀 𝑃 : − 𝑃 , : ⁄
 (56)

𝐸 , ≜ 1𝑛 𝑀𝑇 𝑃 : − 𝑃 , : ⁄
 (57)

where 𝑃 , :  and 𝑃 :  represent the true value and estimated value of the noise co-
variance matrix or one-step predicted state error covariance matrix in the 𝑠-th Monte 
Carlo experiment, respectively. The SRNFN and ASRNFN of the estimation result of 
PECM are shown in Figure 4 and Table 4, respectively. 

 
Figure 4. The SRNFN of PECM estimation. 

Table 4. ASRNFN of PECM estimation of various Kalman filter algorithms. 

Filters 𝑬𝑨𝑺𝑹𝑵𝑭𝑵,𝐏 
ML-KF 21.365 
ST-KF 5.573 
SH-KF 4.113 

FCMKF 3.852 
R-VBKF 3.115 

MFMS-VBAKF 2.945 

It can be clearly seen that, compared with the existing adaptive KF algorithm, if the 
noise covariance matrices are slowly time-varying, the SRNFN of the MFMS-VBAKF al-
gorithm is smaller than the SRNFN of the current algorithm. Compared with R-VBKF 
with similar performance, the ASRNFN of MFMS-VBAKF is reduced by 5.45%. 
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Figure 5 shows the SRNFN of the measurement noise covariance matrix (MNCM) 
estimation. Obviously, the MFMS-VBAKF algorithm has the strongest tracking ability, the 
highest estimation accuracy and the fastest convergence speed of the slowly time-varying 
measurement noise covariance matrix estimation. 

 
Figure 5. The square root of the normalized Frobenius norm (SRNFN) of the measurement noise 
covariance matrix (MNCM) estimation. 

Figure 6 and Table 5 show respectively the SRNFNs and the ASRNFNs of the PNCM 
from the existing filters and MFMS-VBAKF algorithm. It can be seen that the SRNFN and 
ASRNFN of the proposed MFMS-VBAKF are both smaller than the current filters. Thus, 
the MFMS-VBAKF has better estimation accuracy and satisfactory convergence speed in 
PNCM estimation. 

 
Figure 6. The SRNFN of the PNCM estimation. 

Table 5. The averaged SRNFN (ASRNFN) of PNCM estimation of various Kalman filter algo-
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Figure 8 plots the RMSE curves of position and velocity from the existing filters and 
the MFMS-VBAKF in the case of 𝜇 = 0.65, 0.75, 0.85, 0.95, 1.0. The MFMS-VBAKF with 𝜇 = 0.65, 0.75, 0.85, 0.95, 1.0. has better estimation accuracy than existing adaptive KF fil-
ters, and when 𝜇 = 0.95, the MFMS-VBAKF algorithm has the best estimation accuracy 
and convergence performance. 

Figure 9 plots the RMSE curves of position and velocity from the existing filters and 
the MFMS-VBAKF in the case of 𝜏 = 0.2, 0.4, 0.6, 0.8, 1.0. The MFMS-VBAKF with 𝜏 =0.2, 0.4, 0.6, 0.8, 1.0 has better estimation accuracy than existing adaptive KF filters, and 
when 𝜏 =  0.4, the MFMS-VBAKF algorithm has the best estimation accuracy and conver-
gence performance. 

Figure 10 shows the RMSEs of position and velocity from the existing filters and 
MFMS-VBAKF in the case of 𝑏 = 0.76, 0.86, 0.96, 0.99 . The MFMS-VBAKF with 𝑏 =0.76, 0.86, 0.96, 0.99. has better estimation accuracy than existing adaptive KF filters. And 
when 𝑏 = 0.96, MFMS-VBAKF algorithm has the best estimation accuracy and conver-
gence performance. 

For the sake of testing the robustness of the adaptive correction capability of the 
MFMS-VBAKF algorithm when the fixed noise covariance matrices are set to different 
initial values, the priori confidence parameters 𝜎 and 𝜀 are set to change in combination 
within the grid area of (𝜎, 𝜀) ∈ [0.1, 800] × [0.1, 800]. The ARMSEs estimated by the algo-
rithm for position and velocity are displayed in Figure 10. 

 
(a) Position estimation 

 
(b) Velocity estimation 

Figure 7. The RMSEs of the position and velocity estimation in the case of 𝜌 = 0.85, 0.93, 0.95, 1 −exp(−4) , 1.0. 

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

2

3

4

5

6

7

8

9

10

FCMKF
TCMKF
R-VBKF
ST-KF
MFMS-VBAKF(ρ=0,85)
MFMS-VBAKF(ρ=0,93)
MFMS-VBAKF(ρ=0,95)
MFMS-VBAKF(ρ=1-exp(-4))
MFMS-VBAKF(ρ=1,0)

0 100 200 300 400 500 600 700 800 900 1000
Time (s)

3

3.5

4

4.5

5

5.5

6

6.5

7

FCMKF
TCMKF
R-VBKF
ST-KF
MFMS-VBAKF(ρ=0,85)
MFMS-VBAKF(ρ=0,93)
MFMS-VBAKF(ρ=0,95)
MFMS-VBAKF(ρ=1-exp(-4))
MFMS-VBAKF(ρ=1,0)



Sensors 2021, 21, 198 17 of 22 
 

 
(a) Position estimation 

 
(b) Velocity estimation 

Figure 8. The RMSE of the position and velocity estimation in the case of μ = 0.65, 0.75, 0.85, 0.95, 
1.0. 
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(b) Velocity estimation 

Figure 9. The RMSE of the position and velocity estimation in the case of 𝜏 = 0.2, 0.4, 0.6, 0.8, 1.0. 
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Figure 10. The RMSE of the position and velocity estimation in the case of 𝑏 =0.76, 0.86, 0.96, 0.99. 
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It can be analyzed from Figure 11 that the ARMSEs of position and velocity estima-
tion are flat in a large area of the set grid, and the estimation results are close to the actual 
values. However, the initial setting values of the fixed noise covariance matrices in the 
extremely narrow area on the right edge of the grid are too different from the actual val-
ues, which leads to unsatisfactory performance of the estimation results. This is caused by 
the variational Bayesian method that can only guarantee local convergence. In general, 
the estimated effects of the MFMS-VBAKF algorithm can converge to near the actual val-
ues, with excellent robust performance. 

 
(a) Position estimation 

 
(b) Velocity estimation 

Figure 11. The ΑRMSEs of the position and velocity estimation under a combination of (𝜎, 𝜀) ∈[0.1, 800] × [0.1, 800]. 
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matrix. The estimated value of measurement noise covariance obtained by the variational 
iteration recursion and the estimated value of process noise covariance obtained by up-
dating the monitoring strategy are used as time-varying parameters of multiple fading 
factors, which can be corrected to obtain more accurate state predicted error covariance. 
Variational Bayesian and the updated monitoring strategy and multi-fading factors com-
plement each other, which not only enhances the responsiveness of target tracking, but 
also improves the estimation accuracy of variational iteration recursion. The simulation 
results show that the proposed MFMS-VBAKF algorithm realizes the simultaneous esti-
mation of the process noise covariance matrix and the measurement noise covariance ma-
trix, and has achieved satisfactory results in terms of estimation accuracy, convergence 
performance, and robustness. 

6. Future Work 
Compared with existing filtering algorithms, the MFMS-VBAKF algorithm proposed 

in this paper exhibits excellent performance in the state estimation problem of linear sys-
tems with inaccurate time-varying processes and measurement noise covariance matrix. 
However, in real applications, the influence of the control input of the system should not 
be underestimated. Control input will cause large changes in noise, and even noise will 
obey non-Gaussian distribution. Moreover, most of the systems in real applications are 
nonlinear systems. In the above cases, MFMS-VBAKF will not be applicable. Therefore, in 
future work, the theory of this paper will be further extended to the problem of nonlinear 
adaptive Kalman filtering. The problem of nonlinear AKF with inaccurate state transition 
matrix and non-Gaussian noise distribution will be further studied. 
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Appendix A. Derivation of (21) 
The Bayesian estimation theory states that the joint PDF can be defined as: 𝑝(𝑿 , 𝑹 , 𝒁 : ) = 𝑝(𝒁 |𝑿 , 𝑹 )𝑝(𝑿 |𝒁 : )𝑝(𝑹 |𝒁 : )𝑝(𝒁 : ) (A1)

Equations (3), (4), and (11) are substituted into (A1) to derive: 𝑝(𝑿 , 𝑹 , 𝒁 : ) = 𝑁(𝒁 ; 𝑯 𝑿 , 𝑹 )𝑁 𝑿 ; 𝑿 : , 𝑷 : 𝐼𝑊 𝑹 ; 𝒕 : , 𝑻 : 𝑝(𝒁 : ) (A2)

Combined with Equation (5), log 𝑁(𝑮; 𝜇, 𝛴) can be rewritten as: log 𝑁(𝑮; 𝜇, 𝛴) = log 1|2𝜋𝛴| 𝑒𝑥𝑝 (𝑮 ) (𝑮 )  (A3)
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= log 1√2𝜋 − 12 log|𝛴| − 12 (𝑮 − 𝜇) 𝛴 (𝑮 − 𝜇)= − 12 log|𝛴| − 12 (𝑮 − 𝜇) 𝛴 (𝑮 − 𝜇) + 𝑐𝑮,  

where 𝑐𝑮 denotes a constant related to the variable 𝑮. 
Combined with Equation (8), log 𝐼𝑊(𝑪; 𝜆, 𝛹) can be rewritten as: 

log 𝐼𝑊(𝑪; 𝜆, 𝛹) = log |𝛹| ⁄2 ⁄ 𝛤 𝜆2 |𝑪| ( )⁄ 𝑒𝑥𝑝  

= 𝜆2 log|𝛹| − (𝜆 + 𝑑 + 1)2 log|𝐶| − 12 𝑡𝑟[𝛹𝐶 ] − 𝜆𝑑2 log 2 − log 𝛤 𝜆2  

= − (𝜆 + 𝑑 + 1)2 log|𝐶| − 12 𝑡𝑟[𝛹𝐶 ] + 𝑐𝑪,  

(A4)

where 𝑐𝑪 denotes the constant related to the variable 𝑪. 
Combining (A2)–(A4), the logarithmic form of the joint PDF can be written as: log 𝑝(𝑿 , 𝑹 , 𝒁 : ) = log{𝑁(𝒁 ; 𝑯 𝑿 , 𝑹 )𝑁 𝑿 ; 𝑿 : , 𝑷 :  × 𝐼𝑊 𝑹 ; 𝒕 : , 𝑻 : 𝑝(𝒁 : ) = − 12 log|𝑹 | − 12 (𝒁 − 𝑯 𝑿 ) 𝑹 (𝒁 − 𝑯 𝑿 ) − 12 log|𝑷 : | 

− 12 𝑿 − 𝑿 : 𝑷 : 𝑿 − 𝑿 : − (𝒕 : + 𝑚 + 1)2 log|𝑹 | − 12 𝑡𝑟 𝑻 : 𝑹 + 𝑐∅ 

= − (𝒕 : + 𝑚 + 2)2 log|𝑹 | − 12 (𝒁 − 𝑯 𝑿 ) 𝑹 (𝒁 − 𝑯 𝑿 ) − 12 𝑡𝑟 𝑻 : 𝑹  

− 12 log|𝑷 : | − 12 𝑿 − 𝑿 : 𝑷 : 𝑿 − 𝑿 : + 𝑐∅

(A5)

where 𝑐∅ denotes a constant related to the variables 𝑿  and 𝑹 . 
Bring (A5) to Equation (20) to get the further derivation of Equation (21): log 𝑞( )(𝑹 ) = 𝐸𝑿( )[log 𝑝(𝑿 , 𝑹 , 𝒁 : )] + 𝑐𝑹  

= − (𝒕 : + 𝑚 + 2)2 log|𝑹 | − 12 𝐸( ) 𝑡𝑟 𝑽( ) + 𝑻 : 𝑹 − 12 𝐸( ) 𝑡𝑟 𝑻 : 𝑹  

− 12 𝐸( )[(𝒁 − 𝑯 𝑿 ) 𝑹 (𝒁 − 𝑯 𝑿 )] − 12 𝐸( ) 𝑿 − 𝑿 : 𝑷 : 𝑿 − 𝑿 :  

−𝐸( ) 12 log|𝑷 : | + 𝑐∅ 

= − (𝒕 : + 𝑚 + 2)2 log|𝑹 | − 12 𝑡𝑟 𝑽( ) + 𝑻 : 𝑹 + 𝑐𝑹

(A6)

where 𝑐𝑹 = −𝐸( ) 12 log|𝑷 : | − 12 𝐸( )[(𝒁 − 𝑯 𝑿 ) 𝑹 (𝒁 − 𝑯 𝑿 )] + 𝑐∅.  (A7)

Equation (26) can be derived in a similar way. 
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