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Abstract: The field of human activity recognition (HAR) often utilizes wearable sensors and machine
learning techniques in order to identify the actions of the subject. This paper considers the activity
recognition of walking and running while using a support vector machine (SVM) that was trained
on principal components derived from wearable sensor data. An ablation analysis is performed in
order to select the subset of sensors that yield the highest classification accuracy. The paper also
compares principal components across trials to inform the similarity of the trials. Five subjects were
instructed to perform standing, walking, running, and sprinting on a self-paced treadmill, and the
data were recorded while using surface electromyography sensors (sEMGs), inertial measurement
units (IMUs), and force plates. When all of the sensors were included, the SVM had over 90%
classification accuracy using only the first three principal components of the data with the classes
of stand, walk, and run/sprint (combined run and sprint class). It was found that sensors that
were placed only on the lower leg produce higher accuracies than sensors placed on the upper leg.
There was a small decrease in accuracy when the force plates are ablated, but the difference may not
be operationally relevant. Using only accelerometers without sEMGs was shown to decrease the
accuracy of the SVM.

Keywords: human activity recognition; surface electromyography; inertial measurement units;
feature selection; wearable sensors

1. Introduction

Human Activity Recognition (HAR) aims to classify motions with the goal of charac-
terizing the behaviors. HAR has previously been performed while using both wearable
and external sensors [1]. External sensors, such as cameras, photometric sensors, and
motion capture systems, are common tools in activity monitoring, but they have their
drawbacks. Cameras and photometric sensors are commonly used to represent “ground
truth” labeling [2], but they are limited by occlusions and shadows from other objects
in the environment. Additionally, activities present in a variety of ways when viewed
from different angles, so picking the proper view for observation becomes an issue for
two-dimensional (2D) systems [3]. Marker-based motion capture systems, where only the
three-dimensional (3D) marker coordinates are recorded, have been shown to be more
reliable at activity detection than cameras alone, but the system requires a setup that can
be quite costly and it can also be affected by occlusions and extraneous reflections [3].
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Wearable sensors, such as surface electromyography sensors (sEMGs) and inertial mea-
surement units (IMUs), have also been explored for HAR [4,5]. Walking and running are
not only biomechanically different, but they also present differences in EMG activity over
a range of fixed gait speeds [6]. The different EMG profiles make EMG useful for observing
activity differences on various subjects with self-selected natural gait speeds, where one
person’s running speed might be another person’s walking speed. Although, sEMGs are
not without their drawbacks. If the primary muscle used for a specific activity has a weak-
ened signal like in cases of patients going through rehabilitation, the sEMG would need to
be placed on another, related muscle [7], potentially decreasing the accuracy of the activity
classification in situations where the sEMG needs precise placement. If the muscle of
interest is in a region with multiple muscles, then sEMG signals might need to be processed
in order to separate out confounding signals [7]. Another common wearable sensor is the
accelerometer. Although useful on their own, these widely available sensors increase HAR
accuracy in combination with other sensors, such as sEMGs [5,8]. Every sensor has its
benefits and drawbacks, but it has been shown that sensors can be used in tandem with
HAR, and this fusion leads to increased accuracies in recognition of defined activities [9].
Examples of these fusions are using EMGs and IMUs (which contain accelerometers) for
HAR for flexion and extension motions of the trunk [10], as well as IMUs and pressure
sensors to recognize sitting, standing, walking, and running [11].

Data from sensors can be used in order to classify activities while using supervised
machine learning techniques, such as Support Vector Machines (SVMs). The accuracy of
an SVM is affected by the features selected and activities defined, as the methods are trained
while using these data. Supervised models are trained while using a set of features and
known activity labels. In machine learning, a feature is a characteristic of the data collected.
Creating a definition of activities and their specific characteristics is one of the largest
challenges of HAR [2]. Previous efforts across a range of activities have had accuracies that
range from 70 to 95% [5,12,13]. These studies differ in the sensors and features used and
the activities detected, leading to the different measured accuracies. It is unclear which
features or sensor signals drive accuracy and further effort is needed in order to assess
sensitivity and specificity for selected features.

The data and time needed for training will increase with the dimensionality of the
system, which can occur by adding additional sensors and features [2]. Dimensionality re-
duction techniques, such as singular value decomposition (SVD) and principal component
analysis (PCA), can be used in order to eliminate noise and reduce the need for large sets
of training data [14,15]. When PCA is used for HAR in literature, it is typically used only
for feature selection [1,8].

This paper seeks to understand which sensors drive accuracy, sensitivity, and speci-
ficity in human activity classification. The categories of “standing”, “walking”, “running”,
and “sprinting” were chosen because they are common activities that humans perform.
Furthermore, data ablation is used in order to show that sensors on the lower leg produce
higher classification accuracies than sensors on the upper leg. Through the ablation analy-
sis, this paper provides the novel contribution of determining which sensors and sensor
placements contribute to the classification accuracy and an interpretation of these findings.
The subjects performed these motions using a self-paced treadmill, which enables users
to select their own walk and run speeds, creating a natural variability within and across
subjects. In order to use data that are transformed by PCA to train an SVM, it must be
established that these classifications are appropriate for use between subjects and trials.
PCA weightings are vectors in a high dimensional space; therefore, to determine that these
weightings are similar and can be applied across subjects and trials, the angles between
the weighting vectors were analyzed. The effect of the sensor set on classification accuracy
will be presented. First, the paper will discuss the methods that were used to conduct the
study. Subsequently, the results of the principal component similarity test and accuracies
of the SVM training will be presented and discussed. This research informs how wearable
sensors can be selected for classifying standing, walking, and running.
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2. Materials and Methods
2.1. Experimental Setup

The experiment was performed at the MIT Lincoln Lab Sensorimotor Technology
Realization in Immersive Virtual Environments (STRIVE) Center in the Computer Assisted
Rehabilitation Environment (CAREN) (Motek Medical, Amsterdam, The Netherlands). The
CAREN is a 24-foot diameter virtual-reality dome with a six-degree of freedom platform.
The platform had a self-paced, split belt treadmill that was equipped with two force plates,
one under each foot. Though these force plates were not wearable sensors, they could
reasonably be replaced with force sensitive shoe insoles. For data collection, each subject
was outfitted with wireless Trigno sEMG sensors with onboard accelerometers (Delsys Inc.,
Natick, MA, USA) that were placed precisely on certain muscles (Figure 1). Additionally,
each subject was outfitted with motion capture markers, so the Vicon system (Vicon, Oxford,
UK) in the CAREN could record the subject’s motion. The marker set used was a modified
Plug-in-Gait marker set, where the marker that was set on the upper body was reduced, as
the focus of the study is on the lower body. These markers were used for the self-paced
treadmill control and they were not used for activity classification.

The experiment had five subjects with a mean weight of 69.6 ± 19.9 kg and a mean age
of 24.5 ± 4.3 years, all of whom were physically capable of completing all tasks. Subjects
performed six trials on a treadmill, where they were given commands of “stand”, “walk“,
“run”, and “sprint”, via on-screen text. New commands were issued every ten seconds,
and each trial lasted 150 s. The order of the commands was switched for each trial in order
to capture a roughly even distribution of transitions between different states (Figure 2).
The MIT Committee on the Use of Humans as Experimental Subjects approved the proce-
dure, and all of the subjects gave voluntary, informed, written consent to participate.

Figure 1. Trigno sensor locations on the subjects. These sensors include both a surface electromyography sensor (sEMG)
and an accelerometer
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(a) Experiment Commands

(b) Treadmill Speed

Figure 2. (a) The distribution of the commands each subject was given across time. There are six plots, one for each of
the six trials. (b) Example of the self-paced treadmill speed for the first trial Subject 4 completed, where the commands
are reflected in the speed at which the subject was moving. Note that while commands were given for the same duration,
the activities are not all performed for the same duration, justifying the decision to label data points by speed instead of
commanded activity.
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2.2. Feature Selection

All of the features were extracted while using a sliding window of 0.5 s with 0.30 s
overlap, similar to previous work [16,17]. The accelerometer data from all eight sensors
were used as features by taking the vector norm of the accelerometer data in each window
(ACC). The mean vertical force that was applied to the individual force plates (FP) as
well as the standard deviation of the force applied to the force plates were also used as
features. The median frequency (MF) of each sEMG sensor was used as a feature. It has
been found that the frequency domain is useful in assessing muscle fatigue, which is
important, because, as the trials progress, the subject tires, so it is important to ensure
that our classification works for all levels of fatigue [18]. The sEMG signal samples in
each window were binned by assessing the mean and standard deviation (SD) within that
window in order to generate amplitude bin features (H1, H2, H3). Three bins were used
for 0 to 1 SD from the mean (H1), 1 to 2 SD from the mean (H2), and >2 SD from the mean
(H3). This method was chosen, because histogram features work well in high dimensional
space, leading to higher robustness in recognizing activities [19].

In total, there were 44 features used: two force plate means (FPM), two force plate
standard deviations (FPSD), eight sets of accelerometer data (ACC), eight sets of median
sEMG frequencies (MF), and eight sets of three sEMG bins (H1, H2, H3). All of the features
were z-score normalized in order to ensure that all data are on the same scale.

2.3. PCA Analysis

PCA is a dimensionality reduction technique that creates new axes for a set of data that
maximizes the variance that occurs along the axes. From an m×n set of data, where m is the
number of observations and n is the number of features, PCA creates n orthogonal principal
components, where component 1 is a vector in the feature space where the data have the
most variance and each successive component contains decreasing variance, so component
n is a vector where the data show the least variance. These components are defined by
a n × n set of weights, known as coefficients, for each feature. The coefficients indicate how
much each feature is correlated to that particular principal component. Each feature has
a corresponding score, where the scores are representations of the data in the space of the
PCA coefficients, such that T = XW, where T is the original data set, the rows of X are the
coefficients of each score, and the columns of W are the scores of each component [20].

The comparison of PCA weightings between subjects was performed by determining
the angle between the orthogonal vector sets. The angle between every combination of
trials without repeating combinations and the median of every angle was found. An angle
between the PC coefficients can be calculated, because these weightings are the basis of
an orthogonal set of vectors. The angle between components can be found while using the
dot product of coefficients of the trials being compared. Smaller angles between principal
components indicates a greater similarity in the features. Similarity in a matrix comparing
two vectors would mean low values on the diagonal. Because PCA weightings indicate
variance in either direction of the corresponding vector in feature space, we can take
the supplementary angle when differences in vector angles are more than 90 degrees in
order to account for the axis being identical, whether it is srepresented as positive or
negative. In this study, the supplementary angle was taken for comparisons between like-
components. In this context, “like-components” refer to the same principal components
that originate from different trials and/or subjects (e.g., principal component 1 from trial
1 and principal component 1 from trial 2). Before the supplementary angle was taken,
there was a bi-modal distribution that was centered around zero. To more accurately reflect
how far from 0◦ these angles were, the like-components were reported in a range from 0◦ to
90◦. All of the comparisons were done between the first three principal components of each
dataset, as they describe approximately 85% of variance of each dataset. These comparisons
were performed across all trials and subjects.
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2.4. Support Vector Machines

A SVM was used in order to classify the PCA data into categories of motion. SVM finds
separating hyperplanes, such that data points with different labels are maximally sepa-
rated. These data can be “classified” by using the side of the hyperplane on which they are
located [21]. A SVM was chosen from other supervised learning techniques, because vi-
sual inspection and initial observations of the data supported the use of a hyperplane
to separate the data into categories. A Gaussian SVM, which uses a Gaussian kernel,
was used in order to separate the data into the categories of stand, walk, run, and sprint.
Because there was a natural delay between the subject reading the command and then
performing it, we were unable to classify actions based on the time that the command
was initially displayed. Instead, actions were classified manually (Table 1). For training,
speed thresholds were manually set based on the speed that the user was maintaining
at each point in time, as determined by an inspection of the treadmill speed across time.
This labelling also included the transition regions. For example, if the subject was com-
manded to transition from standing to running, then the portion of data where the subject
was moving with their determined walking speeds (Table 1) was labelled as walking
(Figure 2). Subsequently, the class labels that were used for training were filtered with
a sixth order Butterworth filter with a cutoff frequency of 50 Hz to smooth changes in speed
due to high frequency noise.

Table 1. Thresholds of Speeds Used for the Labelling of Each Subject’s Activities.

Speed Threshold (m/s)
Stand Walk Run Sprint

Subject 1 0 (0, 1.3] (1.3, 2.4] (2.4, ∞]
Subject 2 0 (0, 1.6] (1.6, 3.3] (3.3, ∞]
Subject 3 0 (0, 1.6] (1.6, 2.8] (2.8, ∞]
Subject 4 0 (0, 1.4] (1.4, 2.5] (2.5, ∞]
Subject 5 0 (0, 1.2] (1.2, 2.7] (2.7, ∞]

2.5. Accuracy

The accuracy of the SVM was found while using six-fold cross validation, where
whole trials were reserved one at a time for testing. The accuracies for each subject were
only calculated within each subject. During the cross-validation, PCA was performed on
the data that were reserved for training. The data reserved for testing were transformed
into the PCA space of the training data while using the coefficients found; no separate
PCA was performed on the testing data. The accuracy was defined as the percentage of
data points that were correctly classified by the SVM. Because the main difference between
running and sprinting is speed rather than a biomechanical difference, such as presence or
lack of double support as in walk vs. run, the accuracy was also computed when prediction
confusion between running and sprinting was allowed by grouping running and sprinting
labels together. Additionally, the sensitivity and specificity of each set of sensors are
reported. Sensitivity is the proportion of correctly-classified data points with respect to the
overall data points in that class, and specificity is the the proportion of correctly-classified
negative data points versus the number of data points that are truly negative. Positive data
is a correct activity classification, while the negative data is an incorrect classification. All of
the machine learning and mathematical calculations were completed using MATLAB.

2.6. Ablation

In order to determine which sensors were driving the SVM classification of activities,
features that were derived from certain sensors were removed from the total set in a process
that is known as ablation [22] (Figure 3). The ablation process serves two purposes: it will
help to determine which sensors and sensor placements lead to a higher classification
accuracy, and it will lead to a greater understanding regarding which elements of the sensor
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data gathered drives the classification. The PCA and SVM procedure were performed on
the case selected. Comparisons of mean accuracy between cases were evaluated while
using Cohen’s d effect size in order to consider the differences.

Figure 3. Locations of sensors during ablation. Case 1 includes all sensors. Case 2 includes sensors on the upper leg. Case 3
includes sensors on the lower leg. Case 4 includes sensors on the upper leg and the force plate. Case 5 includes sensors on
the lower leg and the force plate. Case 6 includes sensors on the gastrocnemius. Case 7 includes one accelerometer on each
segment of the leg. Case 8 includes one accelerometer per shank.

3. Results and Discussion
3.1. PCA Comparisons

Before discussing the comparisons between principal components, we must first un-
derstand what these principal components represent. Principal Component 1 was observed
to be correlated with treadmill speed, with a median correlation across subjects and trials
of ρ = 0.96 with an inter-quartile range of ρ = 0.02 (Figure 4). The correlations could
be positive or negative, depending on the directionality of the principal components of
each trial, so the absolute value of each trial’s correlation was taken. Additionally, the type
of locomotion was also observed to show distinct clusters across Principal Component
1 (Figure 4). Principal Component 2 of Subjects 2–5 appears to be correlated with the
difference between the left and right force plate, which can be used to infer mediolateral
positioning. The median correlation value was ρ = 0.83 with an inter-quartile range of
ρ = 0.16 (Figure 5). The difference in force plates readings was observed to show a distinct
gradient across the Principal Component 2 axis (Figure 5). Subject 1 did not appear to
have a correlation with the force plate data and PC 2, which was likely due to cross-plate
strikes, as discussed in more detail in Section 3.4. There was no clear relationship between
Principal Component 3 and the collected data observed.
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(a) Principal Component 1 and Treadmill Speed

(b) Striation of Locomotion Modes on Principal Component Plot

Figure 4. (a) A plot of the treadmill speed versus the scores of Principal Component 1. A high level of correlation between
these two parameters can be seen with the strong negative slope. This correlation can be seen over all trials, but Subject
5 Trial 3 was selected as a representative case. (b) A plot of principal component scores where each data point is colored
according to the mode of locomotion the subject was performing. A clear pattern emerges on the Principal Component
1 axis.
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(a) Experiment Commands

(b) Treadmill Speed

Figure 5. (a) A plot of the difference in force plate readings versus the scores of Principal Component 2. A high level of
correlation between the two can be seen with the strong negative slope. This correlation can be seen over all trials, but
Subject 5 Trial 3 was selected as a representative case. (b) Principal component scores plotted with a gradient representing
the difference in force plate readings. When the subject places all of their weight on a single leg (single support), the
difference between force plates is at the maximum absolute value. The gradient can clearly be seen along the axis of the
second principal component, which indicated that this principal component is driven by the variation of right and left
leg motion.
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Table 2 presents the median angle between the first three principal components of
each trial across subjects and they are individually plotted in Appendix A.

Table 2. Median Angle Between Components Across Trial and Subject Combinations.

Component 1 Component 2 Component 3

Component 1 21.05◦ 90.65◦ 89.97◦

Component 2 91.15◦ 51.05◦ 87.42◦

Component 3 90.58◦ 90.01◦ 59.71◦

The comparisons of both Components 1 (the first row and the first column) show the
smallest angle, 21.05◦, is between the like-components, while the other angles are nearly
orthogonal. If two sets of principal components were exactly the same, then the diago-
nal would show 0 degree differences, and all off-diagonal entries would show 90 degree
differences. These separation angles support that all first components are similar. The com-
parisons of Components 2 (the second row and the second column) and of Components 3
(the third row and the third column) have the smallest angle between the like-components
as opposed to non-like components. Although the comparisons between the second and
third components did not have ideal separations, since the like-components are the smallest,
we consider the components that are similar enough to be used for classification, because
the like-components are closer to each other than the non-like components. This assump-
tion is further investigated by determining the classification accuracy.

The spread observed in comparing Component 2 across trials (Figure A5) may be from
the alternation of left and right legs during locomotion, as supported by the correlation of
Component 2 and the force plate readings (Figure 5).

3.2. Classification Accuracy

The median accuracy across all classes for all sensors (Case 1) was 86.4%, with a median
absolute deviation (MAD) of 2.9%. Without allowing for run/sprint confusion, all of the
effect sizes for all comparisons between cases were over 0.8 and considered to be large.
Consequently, the discussion will only focus on the results when run and sprint confusion is
allowed (Table 3). With this confusion, the median accuracy for all sensors was 91.6% with
a MAD of 2.3% (Figure 6). A self-paced treadmill allows for subjects to perform locomotion
close to their natural gait, but it leads to increased variability in speeds when compared to
other studies that use fix-paced treadmills [23]. Despite the increased variability in speeds,
a high classification accuracy was obtained with the full suite of sensors and the first three
principal components.

The Cohen’s d effect sizes across all comparisons that are listed in Table 3 were all large
when directly using the predicted labels from the SVM. Only when run/sprint confusion
was allowed did the effect sizes range across small, medium, and large, meaning that our
reduced sensor sets do not contain enough information to accurately distinguish between
running and sprinting. Our subjects were not expert sprinters, so the run and sprint were
also similar to each other for this reason.

The results show that a higher level of accuracy is achieved when sensors are on the
lower leg (Cases 3 and 5) than when sensors are placed on the upper leg (Cases 2 and
4). Case 3 has a higher accuracy than Case 2 (large effect size), which demonstrates that
there is a significant impact on placing sensors on upper versus lower legs. Removing
sensors on the lower leg and maintaining sensors on the upper leg, with the force plates
(Case 4) as well as without the force plates (Case 2), led to losses in accuracy (large effect
size). This loss in accuracy might be because not enough information about the activity
is provided from the hamstring and vastus medialis, as they have similar EMG profiles
during walking and running [24]. The effect size when both of these cases are compared to
Case 1 is large, and Figure 6 shows that the median classification accuracy is lower than in
Case 1.
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Table 3. Cohen’s d effect sizes.

Comparison Cohen’s d Value- Allowed
Run/Sprint Confusion Effect Size

Case 1 vs. Case 2 1.12 Large
Case 1 vs. Case 3 0.65 Medium
Case 1 vs. Case 4 0.82 Large
Case 1 vs. Case 5 0.29 Small
Case 1 vs. Case 6 0.74 Large
Case 1 vs. Case 7 0.53 Medium
Case 1 vs. Case 8 0.91 Large
Case 7 vs. Case 8 1.66 Large
Case 2 vs. Case 3 −0.85 Large
Case 2 vs. Case 4 −1.04 Large
Case 3 vs. Case 5 −0.67 Medium
Case 3 vs. Case 6 0.65 Medium
Case 6 vs. Case 8 0.52 Medium

Figure 6. A box plot of the classification accuracy for all eight cases across all subjects with allowed run/sprint confusion.
The line on the box represents the median, while the whiskers reach 1.5 times the interquartile range. The cases here refer to
the cases that are defined in Figure 3.
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The number of sensors that are placed on the lower leg matters in accurately classifying
activities. When the sensors are only on the gastrocnemius muscle (Case 6), there is
a decrease in accuracy when compared to Case 1 (large effect size) and a decrease in
accuracy when compared to Case 3 (medium effect size). This difference in effect size
means that only having two sensors on the lower leg might be insufficient for classification
between stand–walk–run. During standing, walking, and running, the gastrocnemius and
tibialis anterior co-contract in order to provide stability to the ankle. The removal of the
tibialis sEMG sensors eliminates the ability for co-contraction to be captured within the
algorithm. These results support the method having a higher accuracy when co-contraction
is captured. Additionally, the lower leg is farther away from the center of rotation (the
hips), so the differences in gait are magnified in the lower-leg sensors. There is a greater
difference in how much the sensors on the lower leg swing during walking and running
than the sensors on the upper leg.

Removing the force plates results in changes to accuracy when compared to cases with
the force plate. The removal of the force plate led to reductions in accuracy as observed by
comparing the sensors on the lower leg, Case 3 vs. Case 5 (medium effect), as well as sensors
on the upper leg, Case 2 vs. Case 4 (large effect). The difference here is likely because the
magnitude of the normal force is greater during running than walking, which supported
the classification between those activities. When compared to the accuracy results from
the use of all sensors (Case 1), only using a sensor set on the lower leg with the use of
a force plate (Case 5) results in a small effect size (Table 3). If the sensors are limited and
the motions of standing, walking, and running need to be classified, utilizing the sensors
on the lower leg with force plates may not have operationally relevant differences from the
full suite of sensors. When the sensors are only placed on the lower leg and the force plate
is not utilized (Case 3), the median accuracy decreases by 0.82% compared to the set with
all sensors (Case 1, medium effect size, Table 3). Depending on the use case, this loss in
accuracy may or may not be functionally relevant.

Using accelerometers without sEMGs reduces classification accuracy. Using one
accelerometer on each segment of the leg (Case 7) decreases the median accuracy when
compared to Case 1 (medium effect size). The accelerometer signals provide information
on changing speeds, which can inform running and walking. It is likely that the variation
in acceleration profiles that comes from using a self-paced system yielded a decrease in
accuracy when compared to cases when sEMG signals were present. Case 8 (only four
accelerometers) has a decrease in accuracy when compared to Case 1 (large effect size).
Even removing two accelerometers when no sEMGs are present yields a large decrease in
accuracy, as seen by the large effect size between Cases 7 and 8. When sEMG are not present,
the relative motion between the thigh and shank is captured with the accelerometers on
these segments. More distal points on the leg experience greater accelerations, as linear
acceleration is a function of both the change in angular velocity and the distance from
the center of rotation. It follows that the accelerometers on the lower leg capture greater
relative motion. These results support that there is a higher accuracy when this segment
coordination is captured.

Accelerometers alone do not achieve as high accuracies from the SVM as they do
when used in tandem with other sensors. In Cases 7 and 8, when only accelerometers were
used for classifying all activities, the sensitivity of running sharply decreases (Figure 7).
From the lower sensitivity, it can be concluded that the use of accelerometers alone hinders
the accuracy of the SVM. Similarly, the walking sensitivity sharply decreases for Case 2,
which means that the use of sensors only on the upper leg makes it difficult for a SVM to
positively identify walking. Perhaps the lower accuracy in walking is a result of the lower-
leg muscles having a greater difference in EMG profiles during running than in walking [24].
Overall, the specificities were much higher than the sensitivities, with most of them being
over 90%, which implied that the SVM method of classification does not lead to many
false positives in the data, but mostly false negatives. For wearable robotic applications,
high specificity might decrease potential harm to subjects. It might be more harmful to
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misidentify a change in action than perform no change at all, as a misidentificiation might
lead to an injury if the robotic system performs in a way that the user is not expecting.

Figure 7. Sensitivities and specificities of each action per case.

This study extends the literature by examining the effect of sensor choice and place-
ment on classifying standing, walking, and running. Through ablation, we have found
that it is best to place sensors on the lower leg. Additionally, the ablation process has
helped to gain an understanding regarding how different features contribute to the classifi-
cation, such as the strong contributions of the lower leg when compared to the upper leg.
Although other studies have used PCA for HAR, we have demonstrated that three principal
components of this type of data are sufficient for a high degree of classification accuracy.

3.3. Applications of the Study

There are many applications to the results of this study. The results here can be used as
a heuristic in an exoskeleton controller in order to determine when the wearer shifts from
walking to running and vice-versa, supporting different controller needs. For applications,
such as fitness tracking, sensors can be placed closer to the ankle than the thigh for the
best results, using an EMG if possible. The ablated sensor sets can be used for optimal
sensor selection in future studies. The reduced sensor suites and PCA approach can be
dimensionally reduced for a faster computation time without compromising accuracy.

This paper demonstrated the successful classification of these data into standing,
walking, and running, and enhanced the understanding about which sensor types and
placements drive the classification. However, there are opportunities for further explo-
ration. First, other classifiers can be explored. This paper chose to explore the effects of
an SVM, which is a type of supervised learning, but there are other supervised learning
techniques, such as k-nearest neighbors approximation, which can be utilized. Unsuper-
vised techniques can also be evaluated. Additionally, the techniques that are listed here
can be used to classify other types of human activities, and then ablation can be used to
study which features drive those classifications.
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3.4. Limitations of the Study

The small number of subjects was one major limitation of this study. The methods
of this paper can be repeated with the use of a greater number of subjects, but, due to
global health concerns at the time this paper was written, this was not a possibility for this
particular study.

The ability of the subjects to perform the activities as another limitation of the study.
Some of the subjects experienced more fatigue than others and slowed during run and
sprint, leading to fewer data points for that specific activity to analyze for these cases.
Consequently, we have fewer instances of sprinting and running. Because of the space
that the study was completed in, we were unable to collect data for other common human
activities, such as climbing stairs, but there is opportunity in the future to extend this study
to additional activities.

The threshold speed values of each activity were manually set for truth labelling,
so some data points might have been mislabelled near transitions. The definition of the
truth states was based on the speed that the user was moving at, which was a self-selected
process. Occasionally, users transitioned unintentionally. Smoothing the treadmill speeds
with a Butterworth filter made the range of speeds for each task more clearly defined,
but it did not entirely smooth away every unintentional transition.

The sEMG readings vary from session to session. This study’s data were limited
to a single session per subject and, therefore, less variability was encountered in sEMG
readings than there would be multi-day study, which would be more similar to a daily use
case. It is recommended to collect more data longitudinally in order to assess this variability.

During the study, the subjects were instructed to strike the left force plate with the
left foot and the right force plate with the right foot. During analysis, it was observed that
cross-plate strikes occurred (e.g., a left foot striking the right force plate), with a greater
count towards the end of the study. These cross-strikes may occur, as subjects may have
placed less attention on lateral velocity control and foot placement with study duration or
fatigue onset. These cross-plate strikes were kept in the dataset. Cross-plate strikes do not
affect biomechanical modeling during single-support, but they do affect the modeling of
human joint torques during double-support due to the ambiguity in the length of the joints’
moment arm. We do not analyze moments directly in this work, although there would be
an effect on our force place sensor inputs.

4. Conclusions

This paper demonstrated which sensors were the most important for classifying
standing, walking, and running through ablated data sets and an SVM that was trained
on principal components. Although the ablated sets did not contain enough information
to distinguish between running and sprinting, the results show that using a reduced
sensor set on the lower legs will result in a classification accuracy similar to a classification
accuracy when all of the sensors are used. Although including the force plates resulted in
a higher classification accuracy than when the force plates were not included, the difference
might not be operationally relevant. It was also shown that only using accelerometers
decreases the sensitivity of the classification algorithm. Our methods involved a greater
variation in speeds of activities when compared to using a fixed-speed treadmill, and yet
our classification accuracy remained over 90% with all sensors included. This high accuracy
indicates that the SVM used on PCA data is an effective tool for HAR and relevant sets of
muscles for sensor placements have been found. Moving forward, it would be interesting
to learn more regarding why dissimilarities between principal components occur.
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Appendix A

The following figures are histograms of the angles of separations between all combi-
nations of the principal components.

Figure A1. Histogram of the comparisons between the first principal component of some Trial A and
the first principal components of some Trial B, where these comparisons are made across all trials
and subjects.
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Figure A2. Histogram of the comparisons between the first principal component of some Trial A and
the second principal component of some Trial B, where these comparisons are made across all trials
and subjects.

Figure A3. Histogram of the comparisons between the first principal component of some Trial A and
the third principal component of some Trial B, where these comparisons are made across all trials
and subjects.



Sensors 2021, 21, 194 17 of 21

Figure A4. Histogram of the comparisons between the second principal component of some Trial
A and the first principal components of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A5. Histogram of the comparisons between the second principal component of some Trial A
and the second principal component of some Trial B, where these comparisons are made across all
trials and subjects.
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Figure A6. Histogram of the comparisons between the second principal component of some Trial
A and the third principal component of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A7. Histogram of the comparisons between the third principal component of some Trial A
and the first principal components of some Trial B, where these comparisons are made across all
trials and subjects.
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Figure A8. Histogram of the comparisons between the third principal component of some Trial A
and the second principal component of some Trial B, where these comparisons are made across all
trials and subjects.

Figure A9. Histogram of the comparisons between the third principal component of some Trial A
and the third principal component of some Trial B, where these comparisons are made across all
trials and subjects.



Sensors 2021, 21, 194 20 of 21

References
1. Lara, O.D.; Labrador, M.A. A Survey on Human Activity Recognition Using Wearable Sensors. IEEE Commun. Surv. Tutor. 2013,

15, 1192–1209. [CrossRef]
2. Andreas, B.; Blanke, U.; Schiele, B. A Tutorial on Human Activity Recognition Using Body-Worn Inertial Sensors. ACM Comput.

Surv. 2014, 46, 33:1–33:33. [CrossRef]
3. Aggarwal, J.K.; Xia, L. Human Activity Recognition from 3D Data: A Review. Pattern Recognit. Lett. Celebr. Life Work. Maria Petrou

2014, 48, 70–80. [CrossRef]
4. Munguia, T.E.; Intille, S.S.; Larson, K. Activity Recognition in the Home Using Simple and Ubiquitous Sensors. In Pervasive

Computing; Lecture Notes in Computer Science; Ferscha, A., Mattern, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2004;
pp. 158–175. doi:10.1007/978-3-540-24646-6_10. [CrossRef]

5. Ferhat, A.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition
Using Wearable Sensors. Sensors 2015, 15, 31314–31338. [CrossRef]

6. Cappellini, G.; Ivanenko, Y.P.; Poppele, R.E.; Lacquaniti, F. Motor Patterns in Human Walking and Running. J. Neurophysiol. 2006,
95, 3426–3437. [CrossRef] [PubMed]

7. Wege, A.; Zimmermann, A. Electromyography Sensor Based Control for a Hand Exoskeleton. In Proceedings of the 2007 IEEE
International Conference on Robotics and Biomimetics (ROBIO), Sanya, China, 15–18 December 2007; pp. 1470–1475. [CrossRef]

8. Mantyjarvi, J.; Himberg, J.; Seppanen, T. Recognizing Human Motion with Multiple Acceleration Sensors. In Proceedings of
the 2001 IEEE International Conference on Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace
(Cat.No.01CH37236), Tucson, AZ, USA, 7–10 October 2001; Volume 2, pp. 747–752 . [CrossRef]

9. Xu, Z.; Chen, X.; Li, Y.; Lantz, V.; Wang, K.; Yang, J. A Framework for Hand Gesture Recognition Based on Accelerometer and
EMG Sensors. IEEE Trans. Syst. Man, Cybern. Part A Syst. Hum. 2011, 41, 1064–1076. [CrossRef]

10. Kadrolkar, A.; Sup, F. Classification of Trunk Motion for a Backbone Exoskeleton Using Inertial Data and Surface Elec-
tromyography. In Proceedings of the 2013 IEEE International Conference on Systems, Man, and Cybernetics, Manchester,
UK, 13–16 October 2013; pp. 3978–3983. [CrossRef]

11. Fabien, M.; Gonzenbach, R.R.; Arami, A.; Paraschiv-Ionescu, A.; Luft, A.R.; Aminian, K. Improving Activity Recognition Using
a Wearable Barometric Pressure Sensor in Mobility-Impaired Stroke Patients. J. Neuroeng. Rehabil. 2015, 12, 72. [CrossRef]

12. Khokhar, O.; Xiao, Z.G.; Menon, C. Surface EMG Pattern Recognition for Real-Time Control of a Wrist Exoskeleton. Biomed. Eng.
Online 2010, 9, 41. [CrossRef] [PubMed]

13. Andreas, B.; Roggen, D. Recognition of Visual Memory Recall Processes Using Eye Movement Analysis. In Proceedings of the
13th International Conference on Ubiquitous Computing—UbiComp’11, Beijing, China, 17–21 September 2011; ACM Press:
Beijing, China. [CrossRef]

14. Naik, G.R.; Pendharkar, G.; Nguyen, H.T. Wavelet PCA for Automatic Identification of Walking with and without an Exoskeleton
on a Treadmill Using Pressure and Accelerometer Sensors. In Proceedings of the 2016 38th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 1999–2002. [CrossRef]

15. Guo, M.; Wang, Z. Segmentation and Recognition of Human Motion Sequences Using Wearable Inertial Sensors. Multimed. Tools
Appl. 2018, 77, 21201–21220. [CrossRef]

16. Wolf, M.T.; Assad, C.; Stoica, A.; You, K.; Jethani, H.; Vernacchia, M.T.; Fromm, J.; Iwashita, Y. Decoding Static and Dynamic
Arm and Hand Gestures from the JPL BioSleeve. In Proceedings of the 2013 IEEE Aerospace Conference, Big Sky, MT, USA,
2–9 March 2013; pp. 1–9. [CrossRef]

17. Fogelson, B.; Stirling, L.; Siu, H. Anticipation of Speed Transitions Using Electromyography. In Proceedings of the IEEE
RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BIOROB), New York, NY, USA, 29 November–
2 December 2020.

18. Zardoshti-Kermani, M.; Wheeler, B.C.; Badie, K.; Hashemi, R.M. EMG feature evaluation for movement control of upper extremity
prostheses. IEEE Trans. Rehabil. Eng. 1995, 3, 324–333. [CrossRef]

19. Phinyomark, A.; Thongpanja, S.; Hu, H.; Phukpattaranont, P.; Limsakul, C. The Usefulness of Mean and Median Frequencies
in Electromyography Analysis. Comput. Intell. Electromyogr. Anal. Perspect. Curr. Appl. Future Chall. 2012, 2012, 195–220.
doi:10.5772/50639. [CrossRef]

20. Svante, W.; Esbensen, K.; Geladi, P. Principal Component Analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [CrossRef]
21. Noble, W. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef] [PubMed]
22. Meyes, R.; Lu, M.; de Puiseau, C.W.; Meisen, T. Ablation Studies in Artificial Neural Networks. arXiv 2019, arXiv:1901.08644.

http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1016/j.patrec.2014.04.011
http://dx.doi.org/10.1007/978-3-540-24646-6_10
http://dx.doi.org/10.3390/s151229858
http://dx.doi.org/10.1152/jn.00081.2006
http://www.ncbi.nlm.nih.gov/pubmed/16554517
http://dx.doi.org/10.1109/ROBIO.2007.4522381
http://dx.doi.org/10.1109/ICSMC.2001.973004
http://dx.doi.org/10.1109/TSMCA.2011.2116004
http://dx.doi.org/10.1109/SMC.2013.679
http://dx.doi.org/10.1186/s12984-015-0060-2
http://dx.doi.org/10.1186/1475-925X-9-41
http://www.ncbi.nlm.nih.gov/pubmed/20796304
http://dx.doi.org/10.1145/2030112.2030172
http://dx.doi.org/10.1109/EMBC.2016.7591117
http://dx.doi.org/10.1007/s11042-017-5573-1
http://dx.doi.org/10.1109/AERO.2013.6497171
http://dx.doi.org/10.1109/86.481972
http://dx.doi.org/10.5772/50639
http://dx.doi.org/10.1016/0169-7439(87)80084-9
http://dx.doi.org/10.1038/nbt1206-1565
http://www.ncbi.nlm.nih.gov/pubmed/17160063


Sensors 2021, 21, 194 21 of 21

23. Kim, J.; Heimgartner, R.; Lee, G.; Karavas, N.; Perry, D.; Ryan, D.L.; Eckert-Erdheim, A.; Murphy, P.; Murphy, P.; Galiana, I.;
et al. Autonomous and Portable Soft Exosuit for Hip Extension Assistance with Online Walking and Running Detection
Algorithm. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia,
21–25 May 2018; pp. 5473–5480. [CrossRef]

24. Gazendam, M.G.J.; Hof, A.L. Averaged EMG Profiles in Jogging and Running at Different Speeds. Gait Posture 2007, 25, 604–614.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICRA.2018.8460474
http://dx.doi.org/10.1016/j.gaitpost.2006.06.013
http://www.ncbi.nlm.nih.gov/pubmed/16887351

	Introduction
	Materials and Methods
	Experimental Setup
	Feature Selection
	PCA Analysis
	Support Vector Machines
	Accuracy
	Ablation

	Results and Discussion
	PCA Comparisons
	Classification Accuracy
	Applications of the Study
	Limitations of the Study

	Conclusions
	
	References

