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Abstract: Wheat head detection can estimate various wheat traits, such as density, health, and the
presence of wheat head. However, traditional detection methods have a huge array of problems,
including low efficiency, strong subjectivity, and poor accuracy. In this paper, a method of wheat-head
detection based on a deep neural network is proposed to enhance the speed and accuracy of detection.
The YOLOv4 is taken as the basic network. The backbone part in the basic network is enhanced
by adding dual spatial pyramid pooling (SPP) networks to improve the ability of feature learning
and increase the receptive field of the convolutional network. Multilevel features are obtained by a
multipath neck part using a top-down to bottom-up strategy. Finally, YOLOv3′s head structures are
used to predict the boxes of wheat heads. For training images, some data augmentation technologies
are used. The experimental results demonstrate that the proposed method has a significant advantage
in accuracy and speed. The mean average precision of our method is 94.5%, and the detection speed
is 71 FPS that can achieve the effect of real-time detection.

Keywords: deep learning; wheat head; real-time object detection; SPP

1. Introduction

Wheat is one of the most planted grains in the world, almost all of which is produced
for consumption and has high nutritional value. The Food and Agriculture Organization
of the United Nations shows that global wheat production was 765.76 million tons in
year 2019 [1]. These data suggest that the development of the global wheat industry is
crucial to global food security and directly affects social stability. Breeding is particularly
important to ensure a stable wheat yield. Predicting the yield of wheat is a key step in the
breeding work. The traditional counting methods rely on manual observation, which is too
subjective and has obvious defects. According to the results made by Madec et al. [2], the
measurement error is about 10%.

At present, image-processing technology and shallow learning are mainly used to
detect wheat head. For shallow-learning methods, Support-Vector Machines (SVMs), boost-
ing, and logistic regression are supposed to represent the shallow-learning methods with
one hidden layer node or without. Using the color, texture, shape, and other characteristics
of the wheat head itself, an image classifier is constructed to complete automatic detection.
Yangjun Zhu et al. [3] proposed a coarse-to-fine wheat-head detection method with two
steps. A complex method [4] is used to classify the wheat head and the image background
by binarization thresholds. K et al. [5] proposed an approach to detect the wheat-spike
characteristics by utilizing the geometric properties with around 80% accuracy. The above
types of detection methods rely on a large number of artificial feature designs and require
certain experience. The detection accuracy is easily affected by noises such as light, angle,
leaf color, and soil. Therefore, the detection accuracy needs to be improved.

Deep learning emphasizes the structure of the model with more hidden layers and
highlights the importance of feature learning [6]. With the development of deep-learning
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theory and the improvement of hardware performance, deep learning has become the
most advanced method of computer vision. Now there are a variety of popular computer
vision tasks, such as object detection, instance segmentation, and semantic segmentation,
all solved by deep neural networks. As well, the task of wheat-head detection can be solved
by using deep neural networks because these methods greatly improve the efficiency of
counting, reduce manual participation, and assist in the estimation of wheat yield.

In addition, these models have a high generalization ability, which reduces the pre-
processing work of images and the dependence on experience. Deep neural networks can
well promote the intelligent development of agricultural production. Zhao Zhang et al. [7]
proposed a tool for wheat-lodging detection that was novel and effective, using GoogleNet
and UAS RGB imagery. Pound et al. [8] applied CNN models to locate wheat spikes and
spikelets in glasshouse condition. Buzzy et al. [9] used the convolutional neural networks
and the Arabidopsis plant-images datasets to count the plant leaf. Based on the GAN and
CNN, Ze Luo et al. [10] proposed a detector for pine cone. Hasan et al. [11] used the R-CNN
network for training, and the average accuracy of wheat-ear detection was 93.4%. Spike
counting from images is also by using a deep-learning method [12]. Although the use of
deep-learning technology has obtained good performance, there are still serious problems.
There is always a problem of tradeoff between the detection speed and the detection
accuracy. The current methods for wheat-head detection still have this disadvantage. In
terms of dataset there are also some problems, for example, insufficient datasets, and not
taking into account the type of wheat, region, growth period, etc.

The main objectives of this paper are to detect the wheat head in the field images based
on a deep neural network, and enhance the accuracy and the speed of the wheat-head
detector. Specifically, we follow the latest development technology in the field of deep
neural networks, and propose a novel method for wheat-head detection based on the
object-detection algorithm YOLOv4 [13]. The backbone network is improved, and dual
SPP is added to increase the receptive field. Meanwhile, the CSPNet is used to intergrade
the multilevel features. In addition, the latest global wheat-head datasets GWHD [14] are
employed to train the proposed method, as shown in Figure 1. The proposed method can
detect wheat heads quickly and accurately, and also has a good ability of generalization.
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The rest of the paper is organized as follows. Section 2 briefly reviews the related
work. The proposed method is illustrated in Section 3. The experiments are conducted in
Section 4. The results are discussed in Section 5 and concluded in Section 6.
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2. Related Work

Two-stage object detection. As the basic task of computer vision, object detection
has developed a series of excellent deep-learning models. The current object-detection
frameworks are mainly divided into two types: single-stage and two-stage. The represen-
tatives of two-stage detectors include R-CNN [15], Fast R-CNN [16], Faster R-CNN [17],
FCOS [18], etc. R-CNN applies deep learning to the field of object detection, laying a
foundation for two-stage target detection. In the selection of region proposals, R-CNN uses
the selective-search algorithm [19]. In the classification stage, the Support-Vector Machines
(SVM) algorithm is applied. Girshick et al. [16] proposed the Fast R-CNN on the basis of
R-CNN, and its innovation was that it eliminated the need to send all candidate boxes into
the convolutional neural network. However, this method only needed to send one picture
to the network. According to the previous experience, Ren et al. [17] proposed a two-
stage object-detection method, Faster R-CNN, with faster detection speed. This method
introduces the region proposal network (RPN), which extracts candidate-bound boxes by
setting anchor boxes with different proportions and realizes an end-to-end network.

One-stage object detection. The representatives of single-stage object detection meth-
ods include Yolo series models (YOLO [20], YOLO9000 [21], YOLOv3 [22], YOLOv4 [13])
and SSD. One advantage of the single-stage target detection algorithm is a fast detection
speed. For example, the detection speed of YOLO can reach 45 FPS. The idea of Yolo is
to divide the input image into an S × S grid, and the grid generates a certain number of
bounding boxes when the center of an object falls into it. Finally, frame and classify the
objects by using non-maximum suppression (NMS) to select the appropriate prediction
bounding boxes. According to the previous research of Yolo, Redmon et al. [21] proposed
a novel method, YOLO9000. The main innovation of YOLO9000 is the use of multiple
computer vision techniques, such as batch normalization, high-resolution classifier, lo-
cation prediction, etc. The detection accuracy of YOLO9000 is 78.6% on the VOC2007
dataset. The backbone of YOLO9000 is Darknet-19, with a 3 × 3 convolutional kernel and
global average pooling, which reduces the computational complexity and parameters of
the model. Redmon et al. [22] put forward YOLOv3, which used the Darknet-53 network
as the backbone network, and introduced the FPN [23] network to achieve the purpose of
multiscale integration.

Components of YOLOv4. YOLOv4 [13] was proposed by Alexey et al. The original
intention of YOLOv4 was to optimize parallel computing and improve the speed of object
detection. A deep neural-network object detector is composed of three parts: backbones,
neck, and heads. The function of each part is different. The backbone part mainly extracts
the features. The neck is used to fuse the features extracted from the main part. The role of
the head is to predict, including predicting the bounding boxes and the object classification.
The backbone network part of YOLOv4 applies CSPDarknet53 [24]. The CSPDarknet53
network is a Cross Stage Partial Network (CSPNet) added on the basis of Darknet53 [22].
Darknet53 draws on the idea of ResNet [25] to ensure that the network has depth while
also alleviating the vanishing-gradient problem. CSPNet can enhance the learning ability
of CNN while reducing the amount of calculation and memory cost. A good detector
should have a larger receptive field. The neck of the YOLOv4 network uses two networks,
SPP [26] and Path Aggregation Network (PAN) [27]. The SPP network applied in the neck
can effectively increase the receptive field and help separate contextual features, as shown
in Figure 2. The PAN plays a role in shortening the path connecting low-level information
and high-level information, and converging parameters at different levels. The YOLOv4
network head inherits the head structure of YOLOv3. The head predicts the bounding box
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of the object, and outputs the center coordinates, width, and height, i.e., {xcenter, ycenter, w, h}.
Then the expression of the predicted bounding box is shown as follows.

bx= σ(tx)+cx
by= σ

(
ty
)
+cy

bw= pw·etw

bh= ph·eth

(1)

where Pw and Ph represent the width and height of the prior bounding box, respectively.
Also shown, (cx, cy) is the coordinate of the top left corner of the image. Each bounding
box can be described by tx, ty, tw, and th. Figure 3 shows the size of the prior bounding box
and the position of the predicted bounding box.
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height of the ground-truth bounding, respectively. bw and bh are the bounding boxes of prediction,
respectively.

3. Methods

In this paper, the proposed method with real-time and accurate features is illustrated
in Figure 4, which is mainly composed of three parts: backbones, neck, and heads. For
the backbone, the SPP is applied to improve the receptive field of the network. Owing
to the big size of the image in this article—1024 × 1024—the use of scaling and cropping
operations will make the picture with more noise. To solve this problem, we added a spatial
pyramid pooling network to the front of the backbone network. In addition, a fixed-size
feature vector and the original image information are output effectively. The SPP can solve
the multi size problem of the input image through multiscale pooling.
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3.1. Dual SPP on the Backbone of Our Detector

An excellent backbone network should learn as many features of pictures as possible.
To enhance the learning ability of the backbone network, a Cross Stage Partial Network
(CSPNet) [24] is applied. CSPNet was proposed by Wang et al. to enhance the learning
ability of convolutional neural networks. This network can still maintain or enhance the
learning ability of the CNN network while reducing the amount of calculation by 20%.
Therefore, in order to enhance the learning ability of the backbone network, we use the
CSPNet network and obtain a new network structure, CSPDarkNet53 [24]. The structure is
shown in Figure 5 and consists of two parts: skip connection and main part. The main part
retains the original DarkNet53 structure, and multiple residual blocks are stacked. The
skip-connection part is directly connected to a concat layer of the network, and it is also
spliced with the main part.
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In this paper, SPP [26] is introduced to the tail of the backbone network, denoted
as SPP-2. In addition, the purpose of introducing SPP-2 is different from SPP-1. This
part is to separate the context features and facilitate the neck network fusing the global
feature information. Firstly, the SPP-2 network performs a convolution operation on the
input features of the upper layer. Then, it performs a maximum pooling operation of
different scales. The pooling size of pool-1, pool-2, and pool-3 is 5, 7, and 13, respectively.
In addition, the step size is 4, 6, and 13, respectively. SPP-2 merges the output features
of the three pooling layers and inputs them to the next convolutional module to perform
feature learning to obtain the abundant local features.

3.2. MultiPath Neck

The low-level information contains the outline of the object. On the contrary, the
high-level features contain the details of the target. In the field of object detection, the
part of the detector that collects feature maps is usually called the neck. The neck usually
consists of a bottom-up path and a top-down path. In view of the particularity of the task
in this paper, the photos of wheat heads contain obvious structural features and abundant
detailed features. We use PAN as the neck of the detector to collect multilevel features
and connect with the SPP-2 to form a bottom-up and top-down combination. The inputs
of the neck of our proposed method come from three parts, two of which are from the
feature layer of the backbone network, and the other input is from the feature layer of
SPP-2. The output of the path-aggregation network is used as the input for the head of the
object-detection network.

The model in this paper uses YOLOv3 as the head to predict the bounding box.
First, calculate the coordinates, width, and height of the prediction boxes according to
Formula (1). Secondly, the confidence threshold is set to filter out the prediction frames
with low scores. Finally, non-maximum value suppression is used to determine the final
prediction frame.

3.3. Loss Function

The current object-detection method uses IOU to determine the degree of overlap
between the predicted and the ground-truth bounding box. IOU is represented as:

IOU =
M ∩ N
M ∪ N

(2)

where M is the prediction bounding box and N is the ground-truth bounding box. However,
with this optimization method IOU has the disadvantage of not being able to optimize
non-overlapping parts. Therefore, we introduce the generalized GIOU [28] loss function,
represented as:

GIOU = IOU− |Ac −U|
|Ac|

(3)

where Ac represents the minimum bounding box between the predicted bounding box
and the ground-truth bounding box. U is the union of the predicted and the ground-truth
bounding boxes, i.e., M∪N. The loss function not only pays attention to the overlapping
area but also focuses on the non-overlapping area of the two kinds of boxes, which better
reflects the overlap of the two boxes. Shown in Figure 6 are the intuitive schematic diagrams
of IOU and GIOU, respectively. The bounding-box regression-loss function used in this
article is:

LossGIOU = 1 −GIOU (4)
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Figure 6. GIOU, the loss function used in our method. The comparison of GIOU and IOU makes
obvious that GIOU is feasible to optimize with non-overlapping bounding boxes, but IOU is not.

The value range of GIOU is (−1, 1). The higher the overlap of the bounding box M
and N, the closer the GIOU is to 1. When M and N do not overlap, optimization can still be
performed, which benefits from the existence of the smallest bounding boxes. By contrast,
this advantage is missing from IOU.

4. Experiments
4.1. Datasets

The dataset applied in this paper is the Global Wheat Head Detection dataset
GWHD [14]. The GWHD dataset was constructed collaboratively by numerous coun-
tries. The GWHD dataset is the first large-scale dataset to detect wheat heads from field
optical images. The wheat-head pictures are varieties grown in different regions. The
dataset uses the web-based annotation tool coco annotator [29]. The platform is rich in
features, with all the tools required to label objects. Labeling the large-density bounding
boxes is difficult. Therefore, it is required to draw a box containing all the pixels of the
wheat head when the image is complete or the part of the veins is occluded. The labeled
part contains at least one wheatear. Figure 7 shows the ground-truth boxes and label files
of part of the dataset. The label information is the top-left coordinates (xmin, ymax) of the
bounding box and the width and height of the bounding box w, h. In consideration of the
numerous GWHDs, some data augmentation techniques are referenced, especially online
augmentation. Table 1 shows all the data augmentation techniques we used.
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Figure 7. An example of dataset annotation. (a) is the vision of ground-truth bounding boxes. (b) is
the txt format file including the four parameters of each wheat-head label.
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Table 1. Detailed information about wheat-head datasets. Some data augmentation techniques are
applied to the original training datasets.

Data
Augmentation Training Validation Testing Total

Original 3412 10 10 3432
Cutout

√
- -

Crop
√

- -
Blur

√
- -

Flips
√

- -

4.2. Evaluation Metrics

To evaluate the effect of wheat-head detection, the following evaluation metrics
are used:

(1) Recall and precision:

Precision =
TP

TP + FP
(5)

Recal=
TP

TP + FN
(6)

True positive (TP) represents that samples are predicted to be correct and actually positive.
False-Positive (FP) represents that samples are predicted to be positive but negative actually.
In addition, False-Negative (FN) represents that samples are predicted to be negative but
positive actually.

(2) The AP is to average the precision, and it is shown in Equation (4):

AP =
∫ 1

0
P(R)dR (7)

In practice, the PR curve is smoothed, and the area under the curve is used to calculate
the object’s AP value.

(3) Mean Average Accuracy (mAP) means that the average accuracy of all categories
is added, and it is divided by the number of categories, shown as follows:

mAP =
∑N

i=1 APi

N
(8)

where N is the number of object classifications. We use two ranges of average precision
mean, mAP50, and mAP95. The mAP50 represents the average accuracy of the confidence
threshold of 50%, which is recorded as mAP50 in this article. The mAP95 represents the
mean value of the average accuracy in the range of 50–95% confidence level, which is
expressed directly in this article.

(4) Frame Per Second (FPS), means the number of images that can be detected per
second, used to evaluate the speed of the detector. Only the detection speed of the method
is fast enough to realize real-time detection and meet the needs of the industry.

4.3. Training

In our experiment, we used Intel(R) Xeon(R)Silver 4110 CPU (Intel, Santa Clara,
California, USA), and GPU is GeForce RTX 2080 Ti (NVIDIA, Santa Clara, California, USA)
for accelerating model training. The programming language was python 3.7 in this paper,
based on Pytorch 1.5. The specific process of this experiment is shown in Figure 8. The
steps of this experiment were as follows: Firstly, we removed some pictures according to
the size of the bounding box from the original dataset, keeping the dataset with accurate
and clean labels. Then, a series of data enhancement operations were performed, including
rotation, cropping, adding noise, etc. Finally, the training datasets were input into the deep
neural network for training.
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In the training phase of this paper, all models were trained for 150 epochs, using SGD
(stochastic gradient descent optimization), and momentum and decay weights were set as
0.937 and 0.0005, respectively. The batch size was 16, and the initial learning rate was 0.01.
The training accuracy and recall-rate change curve are shown in Figure 9.
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5. Results and Discussion
5.1. Wheat-Head Detection Results

It can be seen from Figure 10 that the proposed method performs well for wheat-head
detection. The detection effect of the wheat head at the mature stage is better, which
benefits from the characteristic integrity and uniqueness of the wheat head at the mature
stage. In order to scientifically show the detection performance of our method, we trained
and tested the proposed method with other detectors on the same dataset and compared
the test results. Table 2 shows the detection performance of each detector.
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Table 2. The comparisons of numerous detection methods.

Method Datasets mAP50 mAP95 FPS

YOLOv3 [13] GWHD 90.5% 46.7% 38
YOLOv4 [14] - 91.4% 51.2% 52

Faster R-CNN [8] - 76.6% 49.1% 10
Our method - 94.5% 54.5% 71

It can be seen from Table 2 that our proposed method in this paper has achieved good
results on the task of wheat-head detection. Compared with the YOLOv3, the mAP50 and
mAP95 indexes of our method are improved by 4% and 7.8%, respectively. In addition, the
detection speed also increases by 33 FPS. Compared to YOLOv4, our proposed method
increases mAP50 and mAP95 up to 3.1% and 3.3%, respectively. The detection speed
increases by 19 FPS. Compared with the two-stage detection method, Faster R-CNN, our
method in this paper does not lose advantage in accuracy. Its mAP50 and mAP95 increase
by 17.9% and 5.4%, respectively. The speed of our detector increases by 61 FPS. In general,
our proposed method in this paper achieves a good performance in detecting wheat heads,
and its performance is slightly better than YOLOv4. Our method guarantees the speed and
accuracy of the detector all have a good performance.

5.2. Comparison of Different Backbone Model Detection Indexes

In order to illustrate the influence of different backbones on our detector, we experi-
mented and confirmed the three backbone networks. While keeping the neck and head of
our method unchanged, DarkNet-53, CSPDarkNet-53, and the backbone of our proposed
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method were used for the experiment. Table 3 lists the wheat-head detector accuracy and
the speed of the detector.

Table 3. Using different backbones for wheat-head detector training.

Backbones Datasets mAP50 mAP95 FPS

DarkNet-53 GWHD 87.6% 48.6% 55
CSPDarkNet-53 - 90.2% 50.4% 65
Our backbone - 94.5% 54.5% 71

It can be seen from Table 3 that compared with the other two backbone networks,
the improved backbone in this paper increases mAP50 by 6.9% and 4.3%, respectively. In
addition, our proposed backbone improves mAP95 by 5.9% and 4.1%, respectively. In
terms of detection speed, using the improved backbone is faster than the detector based on
DarkNet-53 and CSPDarkNet-53 by 16 FPS and 6 FPS, respectively. After comprehensive
consideration, our proposed backbone still has certain advantages that have the ability to
enhance the accuracy and the speed of the wheat-head detector. As the result of the data
augmentation, fewer labeled images are needed and the training time is reduced to only
22 h, less than the training time without data augmentation.

6. Conclusions

Wheat-head detection is a valuable method for wheat-production estimation, wheat
breeders, and crop management. In order to enhance the performance of the wheat-head
detector, in this paper a novel object method with dual SPP networks is proposed in the
backbone part. In addition, a multipath neck component with a bottom-up to top-down
strategy is proposed, which integrates effectively multiscale features. GIOU used as a
loss function also largely reduces the training time. The experimental results show that
the proposed method effectively solves the task of wheat-head detection and significantly
outperforms other methods. The accuracy is 94.5%, and the detection speed is 71 FPS.
However, there are some shortcomings of this study, e.g., we only tested one type of dataset
in experiments, and the accuracy of the proposed method needs to be higher. Therefore,
in future work we will consider updating our research and introduce a self-attention
mechanism to enhance the feature-learning ability of the detector. Regarding the datasets,
we consider to use a generative adversarial network for data augmentation and testing on
other types of datasets.
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