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Abstract: We formulate and analyze a generic coverage optimization problem arising in wireless
sensor networks with sensors of limited mobility. Given a set of targets to be covered and a set
of mobile sensors, we seek a sensor dispatch algorithm maximizing the covered targets under
the constraint that the maximal moving distance for each sensor is upper-bounded by a given
threshold. We prove that the problem is NP-hard. Given its hardness, we devise four algorithms
to solve it heuristically or approximately. Among the approximate algorithms, we first develop
randomized (1− 1/e)-optimal algorithm. We then employ a derandomization technique to devise
a deterministic (1− 1/e)-approximation algorithm. We also design a deterministic approximation
algorithm with nearly4−1 approximation ratio by using a colouring technique, where4 denotes
the maximal number of subsets covering the same target. Experiments are also conducted to validate
the effectiveness of the algorithms in a variety of parameter settings.

Keywords: approximation algorithm; Integer programming; mobile sensors; target coverage; wire-
less sensor network

1. Introduction

Wireless Sensor Networks (WSNs) are widely valued and have received significant at-
tention in the last two decades. They are low cost and flexible thus they are widely applied
in many applications scenarios ranging from health-care [1,2], industrial inspection [3],
environmental monitoring [4,5], military defense [6,7], agriculture monitoring [8,9]. Cover-
age, as a fundamental issue in WSNs, has a direct impact on the networks’ efficiency. Based
on the range of interesting, coverage problem was divided into area coverage [10,11], target
coverage and barrier coverage [12,13]. In area coverage, each point in the entire 2D/3D
range of interest (ROI) needs to be observed by at least one sensor. In target coverage,
the objective is to ensure that a set of finite points located in the ROI are covered. Barrier
coverage mainly focuses on detecting the intrusion across the borders of ROI. Most of the
research on deployment problem focused on the area coverage. However, target coverage
is also of primary importance as it is common in applications. For example, in information
collection, only the information on certain points needs to be collected. As sensors may be
randomly deployed in a large area, relocating a subset of mobile sensors is often required
to ensure effective coverage over the monitored area. For battery-powered sensors, the en-
ergy consumption in movement is much higher than that in sensing and communication.
Therefore, efficient sensor movement and scheduling strategies are called for to save energy
while still meeting the coverage requirement or improve coverage quality with limited
mobility [14–16].

In this paper, we study a target coverage problem with sensors of limited mobility
in Mobile Wireless Sensor Network (MWSM). The network model was first presented in
Reference [17]. In this network model, targets would be covered in a disk centred the sensor,
that is, the sensor covers a target if it locates in the disk of the target. Each mobile sensor can
cover more than one target if it locates in the overlapped region. The surveillance region
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is divided into several subareas, where a different subset of targets is detected/covered.
Liao et al. [17] aim to minimize the sum of movement distances subject to covering all the
targets. Considering there are not always enough sensors to cover all the targets and the
energy of each sensor is limited, we want to study how to cover maximized number of
targets with sensors of limited mobility. We call it Maximum Target Coverage with Limited
Mobility (MTCLM) Problem. As far as we know, the problem is first presented in this paper.
We prove that the MTCLM problem is NP-hard, and propose four algorithms, including
one heuristic algorithm and three approximation algorithms. The heuristic algorithm is to
choose an available subset at present that has the most increased profit. The approximation
algorithms include a randomized (1− 1/e) approximation algorithm, where e denotes
the base of the natural logarithm; a deterministic (1− 1/e) approximation algorithm by
applying derandomiziation technique, and a deterministic4−1 approximation algorithm
based on graph colouring technique, where4 is the maximal number of subsets covering
the same target. Approximation algorithms are usually related to NP-hard problems.
Since it is impossible to solve NP-hard in polynomial time, a polynomial-time suboptimal
solution is acceptable. Different from heuristic algorithms, approximation algorithms can
get a quality-guarantee solution, thus it requires provable solution quality and provable
running time range.

To sum up, our contributions in this paper are the following:

1. We formulate the MTCLM problem and prove it NP-hard.
2. We propose four algorithms for the MTCLM problem, including one heuristic algo-

rithm and three approximation algorithms.
3. We conduct experiments to validate the effectiveness of each algorithm in different

conditions.

The rest of this paper is organized as follows—Section 2 reviews related works. The net-
work model, the problem description and hardness are given in Section 3. Section 4 de-
scribes the four algorithms we present for the MTCLM problem. Section 5 presents the
simulation results and investigates the performance of the algorithms proposed. Section 6
concludes the paper.

2. Related Works

Coverage Problem is so crucial that much research has done in the literature. Sev-
eral survey papers related to the coverage issue in WSNs have been published [18–22],
conclude the existing studies in different view. Reference [20] is the latest one published
in 2019. It concluded the papers into three catalogues of coverage protocols: coverage-
aware deployment protocols, sleep scheduling protocols and cluster-based sleep schedul-
ing protocols. It proposed that the more realistic model in WSNs is the future direction.
Reference [22] described the deployment techniques in WSNs in detail, including Genetic
Algorithms, Computational Geometry, Artificial Potential Fields, and Particle Swarm
Optimization, and classifies the recent studies to the techniques. Reference [18] mainly
concluded the studies on mobile wireless sensor networks (M-WSNs). It concluded that
there were mainly four techniques to solve these problem proposed in M-WSNs, including
optimization technique, computational geometry based technique, the virtual force-based
technique, and geometry pattern based technique. Connectivity was usually considered
in coverage problems [21]. Different from the above papers focusing on the deterministic
model, Reference [19] concluded the coverage problem with uncertain properties and
summarized the relevant models. Although the coverage problem had gotten so much
attention, when a new technique was introduced to WSN, there were still considerable new
researches. For example, with energy harvest technique getting mature, References [23–28]
were proposed to study the coverage problem on the rechargeable WSN.

Most of the research on deployment problem focused on the area coverage. Target cov-
erage is also an important topic. Most target coverage problems were NP-hard problem, op-
timization algorithms were applied to them including evolutionary algorithms [11,29–32]
and combinatiorial algorithms [17,33–36].
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A constrained Pareto-based multi-objective evolutionary approach (CPMEA) was
proposed to find Pareto optimal layouts that maximized the coverage and minimized the
sensors energy consumption while maintaining full connectivity between sensors [11].
A centralized genetic approach was provided to minimize the number of sensors and
ensure targets K-coverage and M-connectivity simultaneously in Reference [29]. The fitness
function was defined as a weighted sum of three factors: minimizing the number of sensors,
maximizing the coverage performance and maximizing the communication connectivity.
Dahiya et al. [30] proposed an algorithm to maximize the coverage of moving targets.
They sampled the points on the trajectories of the mobile sensors uniformly to build a
stationary probability distribution so that the uncertainty in the position of targets was
fixed. A particle swarm intelligence (PSI)-based deployment algorithm was proposed
to find the minimum number of static sensors to cover given targets in Reference [32].
Roselin et al. [31] proposed a sleep scheduling protocol to find disjoint covered set to
extend the network lifetime while fulfilling the coverage and connectivity. Considering
there were some crucial targets not be covered well, they classified sensors into four
kinds and set their heuristic value, handled carefully the sensors which monitored the
crucial targets.

The network model in our paper was first presented by Liao et al. [17]. In this paper,
the Minimum Movement Target Coverage (MMTC) Problem was proved to be NP-hard.
An extended Hungarian method was proposed to solve a particular case of the MMTC
problem in which the distance between each pair of targets was longer than two times of
sensing radius of sensors and a target based Voronoi greedy algorithm to solve the general
case of MMTC. Another heuristic solution by minimizing the number of sensors needed
was proposed in Reference [33]. Besides that, network connectivity was also considered
in this paper. Another special case of MMTC, k-sink MMTC problem was proposed by
Chen et al. [34], in which the sensors were located at k base stations and each station had
infinite sensors, and a PTAS was proposed to obtain a (1 + ε) approximation solution.
Reference [35] studied the MMTC problem with restricted mobility that sensors could
move only in two mutually perpendicular directions. A heuristic algorithm was proposed
to ensure coverage and connectivity. Nguyen et al. [36] proposed a more general problem
for the target coverage and network connectivity than the MMTC problem, termed the
Maximum Weighted Target Coverage and Sensor Connectivity with Limited Mobile Sensors
(TAR-CC) problem. In this paper, a maximum-coverage-based algorithm and a Steiner-tree-
based algorithm were proposed. In Reference [37], they also showed the hardness of some
related topic on target coverage problem and rectified the incorrectness of the proof in
Reference [17] by reducing MMTC problem to the minimum geometric disk cover problem.
No approximation algorithm for the MMTC problem has been presented until now.

In our paper, we study the MTCLM problem to cover maximum number of targets
with sensors with limited mobility, which is different from the Maximum Weighted Target
Coverage problem in Reference [36] because the mobility is limited. And the maximum-
coverage-based algorithm is not suitable anymore.

3. Preliminary and Problem Statement
3.1. Network Model and Problem Definition

We study the MTCLM problem in the following model. All the networking nodes are
located in an obstacle-free surveillance region, including sensors and targets. The network is
represented as N(T ,S ,D). T = {t1, t2, ..., tN} is the set of N targets distributed uniformly
and randomly, each of which has its known position. S = {s1, s2, ..., sM} is a set of M
homogeneous mobile sensors with the same sensing radius r, which are supposed to
schedule to cover all the targets. The disk model is adopted. That means a target t is said
to be covered if and only if at least one mobile sensor’s final position is in the disk centred
target t with radius r. The mobile sensors have known initial position, and they can move
in any direction and stop anywhere. In Figure 1, the mobile sensor s can cover target a,
b,c because s is in the disk O(a), O(b),O(c) at the same time, where O(t) is a disk centred
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a target t with radius r. As a result, the surveillance region can be divided into several
subareas. In some subarea, a subset of targets is covered. Let U ⊆ T denote a subset of
targets, R(U ) be the corresponding subarea where the sensors cover the subset U of targets.
Let SU = {U | U ⊆ T and R(U ) = ⋂

t∈U R(t)} denote the set of subsets corresponding
to the subareas in surveillance region. Let K denote the number of the subareas/subsets,
that is, |SU | = K.

a

b

s

c

Figure 1. Subareas divided by targets.

Considering the limited energy of each mobile sensor, we present a maximum target
coverage problem with sensors of limited distance. Let D = {d1, d2, ..., dM} be the mobile
sensors’ corresponding moving distance constraint. The maximum target coverage problem
with sensors of limited mobility is defined below:

Definition 1. Maximum Target Coverage with Limit Mobility (MTCLM) Problem: Given M
mobile sensors and N targets located at surveillance domain with known positions, the mobile sensor
are homogeneous with the same sensing radius. With the maximal moving distance of sensors
constrained, to find how to schedule the sensors to cover as many targets as possible.

Table 1 summarizes the notations used in this paper.

Table 1. Notations.

Symbol Definition

T the set of targets: {t1, t2, ..., tN}
S the set of sensors: {s1, s2, ..., sM}
D the distance constraint of sensors: {d1, d2, ..., dM}
U a subset of sensors: U ⊆ T
SU the set of subsets: {U1,U2, ...,UK}
M the number of sensors: |S|
N the number of targets: |T |
K the number of subareas: |SU |
r the sensing radius of sensors

R(t) the sensing region of target t
R(U ) the intersection of R(t) for all t ∈ U

3.2. Hardness of The Problem

We prove the MTCLM problem is NP-hard by reducing the minimum geometric disk
cover (MGDC) problem to it as in Reference [37]. The MGDC problem is NP-hard and its
definition is showed as following:

Definition 2. The minimum geometric disk cover problem (MGDC) [38]: Given a set of m points
P = {p1, p2, ..., pm}, a disk radius r, and a constant k ∈ Z+, does there exist a set of centers
C = {c1, c2, ..., cn} such that every point in P is covered by a disk centred at one of the centers in
C and the cardinality of C, that is, n is not greater than k?
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Then we prove the MTCLM problem is NP-hard.

Theorem 1. The MTCLM problem is NP-hard.

Proof. We consider a special case of the MTCLM problem when the maximal distance
of each mobile sensors is not constrained, that is, di = ∞ for di ∈ D, each mobile sensor
alway be able to reach any subarea to cover targets. By reducing the MGDC problem to the
special case of the MTCLM problem, we prove the MTCLM problem is NP-hard.

Given an MGDC instance like Definition 2, we construct an MTCLM instance. In this
instance, there are M = n mobile sensors and N = m targets; the sensing radius of mobile
sensors is r. The set of centers C = {c1, c2, ..., cn} is the set of final positions of the mobile
sensors. If the MGDC instance is satisfied, that is, there exist n ≤ k = M disks covering all
the points P , there must be less than M sensors located in centers C = {c1, c2, ..., cn} and
the maximum number of covered targets in the MTCLM problem is N. Conversely, if the
maximum number of targets covered in the MTCLM instance is m, there exist n ≤ k centers
to cover all the points in P . The MGDC instance is satisfied. Else if the maximum number
of targets covered in the MTCLM instance is less than m, there does not exist n ≤ k centers
all the points in P . The MGDC instance is not satisfied.

Thus, the MTCLM problem is NP-hard.

4. Algorithms

In this section, we propose four algorithms for the MTCLM problem, a heuristic algo-
rithm, a randomized approximation algorithm, a derandomized approximation algorithm,
and a deterministic approximation algorithm, respectively. Given an MTCLM instance,
we should first find the subareas and its corresponding subsets, then find the minimal
distances ωij between each mobile sensor i and each subarea j. We will use the distance
algorithm proposed in Reference [34] to solve the above two problems. That will take
O(MN2) time. After pretreatment, we focus on the core issue on how to schedule the
mobile sensors to cover the targets.

With the moving distance constraint, sensors can reach only some subareas. We con-
struct a bipartite graph G , ((S ,J U ), E). Each vertex i ∈ S denotes a sensor in S . Each
vertex j ∈ J U denotes a subarea covering a set of targets Uj ∈ SU . When the distance
between sensor i and subarea R(Uj) is smaller than the constrained moving distance of
sensor i, that is, ωij ≤ di, there is an edge between vertex i and j, where ωij is the minimum
distance between sensor i and subarea j obtained in the pretreatment. The MTCLM prob-
lem is turning to be a matching problem except the weight is submodular. We formulate
the MTCLM problem by an integer linear program (ILP) as following:

max ∑
t∈T

yt, (1)

s.t. ∑
j∈J U

xij ≤ 1 f or every sensor i ∈ S , (2)

∑
i∈S

∑
j:t∈Uj ,(i,j)∈E

xij ≥ yt f or every target t ∈ T , (3)

xij ∈ {0, 1} i ∈ S , j ∈ J U , (4)

yt ∈ {0, 1} t ∈ T , (5)

where yt ∈ {0, 1} denotes if target t ∈ T covered or not. xij ∈ {0, 1} denotes if sensor i ∈ S
is scheduled to subarea R(Uj), Uj ∈ SU . The first constraint is the feasibility constraint,
the second is the coverage constraint.

4.1. Greedy Algorithm

In this subsection, we propose a heuristic algorithm by choosing the available subset
which contains the most uncovered targets for each sensor.
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In Algorithm 1, let X = {xij : (i, j) ∈ E , xij ∈ {0, 1}} denote the solution. Let Ûj ⊆ Uj
denote the uncovered targets in current iteration, ∀ j ∈ J U . Let CT ⊆ T denote the
covered targets. For each sensor i ∈ S, to find the accessbile subset with the most uncovered
targets. The time complexity of this algorithm is O(M ∗ N).

Algorithm 1: MTCLM_GREEDY(G, SU ).
Input: graph G, SU
Output: X,CT .

1: X = {xij ← 0, ∀(i, j) ∈ E};
2: CT ← ∅;
3: Ûj ← Uj, ∀j ∈ J U ;
4: for each i ∈ S do
5: l ← arg maxj∈J U ,(i,j)∈E |Ûj|;
6: xil = 1;
7: CT ← CT ⋃Ul ;
8: Ûj ← Ûj\U l , ∀j ∈ J U ;
9: end for

10: return X, CT ;

4.2. Randomized Algorithm

The Greedy algorithm presented above can not guarantee algorithm’s performance.
Thus, we present three approximation algorithms which can make sure that the deviation
of approximate solutions from the optimal value would not exceed a certain range. In this
subsection, we propose a randomized approximation algorithm to obtain the expected
value of the solution relative to the optimal value.

In this algorithm, we first obtain the optimal solution, {y∗t } and {x∗ij}, of the Linear Pro-
gram Relaxation (LPR) of formulas ILP, by replacing the constraints (4), (5) with xij ∈ [0, 1]
and yt ∈ [0, 1]. Then for each vertex i ∈ S , we choose edge (i, j) with prob. x∗ij. With-
out changing the approximation ratio, we shift the covered targets by avoiding to cover
the same subset. We run the algorithm for several times until we obtain the acceptable
approximation solution.

Theorem 2. Algorithm 2 is a randomized (1− 1/e)-approximation algorithm for the MTCLM
problem.

Proof. In this algorithm, the prob. for sensor i ∈ S covering target t ∈ T is ∑j:t∈Uj ,(i,j)∈E x∗ij
and each sensor i ∈ S sends to cover subsets independently. Therefore, the overall prob.
of not covering target t sums up to ∏i:(i,j)∈E (1− ∑j:t∈Uj

x∗ij). According to Arithmetic-
geometric mean inequality and the coverage constraint of ILP, we can show that

∏
i∈S :(i,j)∈E

(1− ∑
j:t∈Uj

x∗ij) ≤ (1− y∗t /m)m,

where m denotes the maximal degree of any vertex in SU in graph G. Again, it holds
algebraically that 1− (1− y∗t /m)m ≥ y∗t ∗ (1− 1/e). It then follows that the prob. of
covering target t in the algorithm is

1− ∏
i∈S :(i,j)∈E

(1− ∑
j:t∈Uj

x∗ij) ≥ y∗t ∗ (1− 1/e),

Remind that ∑t∈T y∗t is the optimal value of LPR, bigger than the optimal value of ILP.
Let OPT denote the optimal value of ILP. Then the expected number of covered targets is

∑
t∈T

(1− ∏
i∈S :(i,j)∈E

(1− ∑
j:t∈Uj

x∗ij)) ≥ OPT ∗ (1− 1/e).
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It holds that the randomized rounding algorithm gives a randomized (1 − 1/e)-
optimal solution.

Linear programs can be solved in polynomial time and so is Algorithm 2. The theorem
is proved.

In Algorithm 2, we use the recycle variable max_round to avoid the sensors covering
the same subset that would improve results and reduce instability in experiments.

Algorithm 2: MTCLM_RANDOM (G, SU ).
Input: graph G, SU
Output: X,CT .

1: X = {xij ← 0 : ∀i ∈ S , j ∈ J U};
2: CT ← ∅;
3: computer the optimal solution to the LP x∗,y∗;
4: for each i ∈ S do
5: set max_round a positive constant.
6: while max_round > 0 do
7: set xij = 1 with probability x∗ij;
8: if xkj = 0 ∀ k ∈ [1, i− 1] then
9: set xij = 1;

10: CT = CT ⋃Uj
11: break;
12: else
13: set xij = 0
14: max_round = max_round− 1;
15: end if
16: end while
17: end for
18: return X,CT ;

The method of conditional expectation can be used to derandomize the solution,
but the computing complexity depends on the maximal degree n of any vertex i ∈ S
in graph G, that is, the maximal number of subareas a sensor can reach. We show the
derandomized algorithm as below: Let Ji denote the set of vertices {j : (i, j) ∈ E} for
sensor i. j̄ = {q ∈ J U , q 6=j}. In each iteration k, Xk−1 = {xij | i ∈ [1, k − 1], j ∈
J U} is fixed. Set xkq = 1 to let the current conditional expectation maximized, that is,
q = argmaxi∈Jk E[SL | xki = 1; xkī = 0; Xk−1], where SL denotes the value of the LPR. Af-
ter M iterations, we can obtain deterministic (1− 1/e)-optimal solution. In this algorithm,
O(Mn) linear programs need to be solved. At the worst cast, n = K is the number of
vertices in J U . The number of subareas K ≤ 4N2 was proved in Reference [34]. Thus,
n = O(N2) at the worst case. That would make the time complexity of the derandomized
algorithm too high. Even though, there are still lots of situations in which n is constant
in practical. With the moving distance constraint, each sensor is only allowed to reach a
constant subarea, that is the derandomized algorithm suitable for.

Theorem 3. Algorithm 3 is a deterministic (1− 1/e)-approximation algorithm when n is constant.

Proof. As the explanation above, we prove the theorem by induction.
When k = 0, E0 = E[SL] with no xij is fixed, is the expectation of the total number of

covered targets. E0 ≥ (1− 1/e) ∗OPT is proved in Theorem 2, where OPT is the optimal
solution of the ILP.

In each iteration k, Ek−1 = E[SL | Xk−1] where Xk−1 is fixed. And Ek−1 = ∑j∈Jk
E[SL |

xkj = 1, xkj̄ = 0; Xk−1]p(xkj = 1, xkj̄ = 0). We choose q = argmaxi∈Jk E[SL | xki = 1; xkī =

0; Xk−1], thus Ek = E[SL | xkq = 1, xkq̄ = 0; Xk−1] ≥ Ek−1.
After M iterations, the number of covered targets is EM ≥ E0 ≥ (1− 1/e) ∗OPT.
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To sum up, there are M iterations, and in each iteration, we need to solve at most n
linear programs. Thus the time complexity is O(MnL), assuming the time complexity of
a linear program is O(L). When each sensor is only allowed to reach a constant subarea,
that is, n is a constant, Algorithm 3 is linearly solvable. Now, we prove that Algorithm 3 is
a deterministic (1− 1/e)-approximation algorithm.

Algorithm 3: MTCLM_DERANDOMIZED(G, SU ).
Input: graph G, SU
Output: X,CT .

1: X = {xij ← 0 : ∀i ∈ S , j ∈ J U};
2: CT ← ∅;
3: computer the optimal solution to the LP: x∗,y∗;
4: for each i ∈ S do
5: q = argmaxj∈Ji E[SL | xkj = 1, xkj̄ = 0; Xk−1];
6: set xiq = 1, xiq̄ = 0;
7: CT = CT ⋃Uq;
8: end for
9: return X, CT ;

4.3. Deterministic Algorithm

The randomized algorithm needs to run several times to reduce instability. The deran-
domized algorithm can obtain an approximation solution determinately but costs too much
time complexity at most time. In this subsection, we propose a deterministic algorithm
to obtain a nearly 4−1 approximation value with less time complexity, where ∆ is the
maximal number of subsets covering the same target. Let {y∗t | t ∈ T } and {x∗ij | (i, j) ∈ E}
denote the optimal solution of the LPR. We round up each of them to the closest fraction of
the form a/H, H is a large integer and a is an integer between 0 and H. Mathematically,
let ŷt , dy∗t He/H and x̂ij is defined similarly. (The rounding would incur a quantization
error which we analysis later). For the graph G , ((S ,J U ), E), we duplicate each node
j ∈ J U to Hx̂ij identical nodes covering the same set of targets and connect each duplicated
node to the neighbor of j. We call the new graph the auxiliary graph Ḡ. We then find an
edge-colouring of Ḡ such that any pair of edge sharing the same vertex in S is coloured
differently. We can prove that H colours are sufficient. We can show by pigeon-hole
principle that we can always find a colour that the vertices in J U covered by the edges
in the colour cover at least ∑t∈T y∗t /∆ targets, that is, ∑i∈ S ∑j∈J U :(i,j)∈E x̂ij ≥ ∑t∈ T y∗t /4.
To prove this by contradiction, assuming that this is not true. Then the

∑
i∈S

∑
t∈T

∑
j:t∈Uj ,(i,j)∈E

x̂ij ≤ 4∑
i∈S

∑
j∈J U :(i,j)∈E

x̂ij ≤ ∑
t∈T

y∗t .

It is leading to contradiction with the constraint (3) of the ILP.
The above analysis immediately implies that selecting the edges covered by the best

coloured induced a ∆−1-optimal solution. More applications of the method can be seen in
Reference [39].

Each yt increases by at most 1/H by the rounding, hence increases the objective func-
tion by at most N/H. Taking quantization error into consideration, the approximation ratio
is (1− N

H )4−1. The auxiliary graph Ḡ has at most M + HN nodes, M ∗HN edges, to find a
proper coloration by greedy will take time O(MHN). If we set H = N2, the approximation
ratio is (1− 1/N)4−1 and the time complexity is O(MN3). Thus we get the Theorem 4.

Theorem 4. Algorithm 4 is a nearly4−1 approximation algorithm.
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Algorithm 4: MTCLM_COLOUR (G, SU ).
Input: graph G, SU
Output: X,CT .

1: X = {xij ← 0 : ∀i ∈ S , j ∈ J U};
2: CT ← ∅;
3: computer the optimal solution to the LP: x∗,y∗;
4: ŷt , dy∗t He/H;
5: x̂ij , dx∗ij He/H;
6: build auxiliary graph Ḡ;
7: obtain a legal colouring of Ḡ greedily;
8: for k ∈ [1, H] do
9: calculate the number of targets covered by each colour k;

10: end for
11: obtain colour q with the maximum number of covered targets;
12: obtain the edges Eq coloured by q in graph Ḡ;
13: for (i, j′) ∈ Eq do
14: if j′ is the duplication nodes of j in graph G then
15: set xij = 1;
16: CT = CT ⋃Uj;
17: end if
18: end for
19: return X, CT ;

5. Simulation Experiments

Even though the performance of some algorithms we proposed have been proved in
theory, we still conduct a set of simulation experiments by using Matlab to compare them,
validate their effectiveness, and show the impression of some parameters. We consider
four network parameters that may impact on the number of covered targets: the number of
targets M, the number of sensors N, the size of the surveillance region, the moving distance
constraint D. In the experiments, there are 200 targets and 20 mobile sensors uniformly,
randomly generated in a square region of size 200 m× 200 m. The sensors’ coverage radius
is r = 20 m, and their moving distance constraint is 40 m. Even though the moving distance
constraint of each sensor can be different, in our experiments, we assume they are the same.
To test the impression of each parameter, we vary it in experiments and keep the other
parameters keep the same. For each combination of network parameters, we randomly
generate ten instances of the network and report the mean performance result. We show
the results in Figure 2 below. In Figure 2, we compute the results of the algorithms we
present and compare them to the optimal solutions. The optimal solutions can be obtained
by using Matlab’s toolbox ‘Yalmip’, which is a free optimization solution tool developed
by Lofberg.

In Figure 2a, the number of targets varied from 100 to 250. In Figure 2b, four different
numbers of sensors are considered, namely N = 10, 20, 30, 40. We can observe that,
when the number of targets increases or the number of sensors increases, the number of
targets covered increases.

In Figure 2c, four different sizes of area are considered, namely 200 m × 200 m,
400 m × 400 m, 600 m × 600 m, 800 m × 800 m. We observe that when the size of
the surveillance regionincreases, the number of targets covered decreases. It is easy to
understand that when the size of the surveillance region increases whereas the number of
targets remain unchange, the average density of targets gets low. The average number of
targets in a subset decrease hence the total number of covered targets decreases.

In Figure 2d, the moving distance constraint varied from 10 to 60. It is observed that
when the moving distance constraint increases, the number of targets covered increase,
but the growth rate would become slower.
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Figure 2. To show the impression of four parameters on the four algorithms and the optimal solution. (a) shows the
impression of the number of targets; (b) shows the impression of the number of sensors; (c) shows the impression of size of
area; (d) shows the impression of the moving distance constraint of sensors.

In the simulation experiments, we obtain the numbers of maximum covered tagets
through four algorithms, which are smaller than the optimal solutions. We calculate the
lower bound of the performance of each algorithm, which is the minimum ratio of the
algorithm solution to the optimal solution in the experimental data. Table 2 lists the lower
performance bound of each algorithm:

Table 2. The experimental lower bounds of the performance of the algorithms.

Name of the Algorithm Lower Bound of the Performance

MTCLM_GREEDY 0.78
MTCLM_RANDOM 0.75

MTCLM_DERANCOMIZED 0.91
MTCLM_COLOUR 0.86

The approximation ratio is a performance lower bound, for example, in a maxi-
mization problem, approximation ratio α of the algorithm indicates the approximate
solution obtained by the algorithm would at least α times greater than the optimal so-
lution. Remind that the approximation ratio of algorithm MTCLM_RANDOM and MT-
CLM_DERANDOMIZED is 1− 1/e ≈ 0.63, the approximation ratio of algorithm MT-
CLM_COLOUR is4−1 ≤ 0.5 which depends on the parameter4, where4 denotes the
maximal number of subsets covering the same target. As shown in Table 2, the experimen-
tal lower bounds of the performance of the algorithms meet the theoretical analysis. Also,
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we can see that MTCLM_GREEDY algorithm achieves relatively worse results especially
when the size of area is small and the number of targets and sensors remains unchange.
That is because when the density of the target and the sensor becomes higher, it cannot
just greedily select the target area, it needs to rely on global information. The performance
of algorithm MTCLM_RANDOM is with a certain degree of randomness. The algorithm
MTCLM_DERANDOMIZED has the best performance but it has higher time complexity
than others. The algorithm MTCLM_COLOUR performs better than the theoretical analy-
sis. There are two possibilities, one is that the example with the worst performance is not
found, and the other is that there is a more accurate approximation analysis method for
algorithm MTCLM_COLOUR, which can be studied further.

Combined with theoretical analysis, we know how to choose a suitable algorithm
among these four algorithms according to the actual situation. When the accuracy require-
ments are not very high and the time requirements are very strict, the MTCLM_GREEDY
algorithm and the MTCLM_RANDOM algorithm are good choices. Because these two
algorithms only need linear time complexity, but the MTCLM_GREEDY algorithm cannot
get a provable performance and the MTCLM_RANDOM has a randomly biased perfor-
mance. When the target density is not large, that is, the parameter 4 is small, the MT-
CLM_COLOUR algorithm will achieve good performance. When a sensor can only reach
a constant number of target areas, that is, the parameter n denoting the number of target
areas a sensor can reach is a constant, the time complexity of the MTCLM_DERANDOM
algorithm is not high, and a good approximation ratio can be obtained.

6. Discussion

In this paper, we are the first to present the MTCLM problem to maximize the number
of covered targets with sensors under limited mobility constraints. It applies to improving
the utilization efficiency of insufficient sensors. Considering that the MTCLM problem is
NP-hard and the requirements for time and performance are different in actual situations,
we have proposed four algorithms and provided proof of algorithm performance for three
of them. Through theoretical and experimental analysis, we also provide the direction of
the algorithm selection in actual situations. Moreover, the proposed solutions are applicable
to solving relevant resource allocation problems with the same model. In the future, it is
interesting to find a more efficient algorithm with a better approximation ratio.

Author Contributions: Author Contributions: Conceptualization, D.L. and H.S.; Methodology, D.L.,
L.C.; Software, D.L.; Validation, D.L., H.S.; Investigation, D.L.; Resources, H.S.; Writing—original
draft preparation, D.L.; Writing—review, H.S., L.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by National Key R&D Program of China Project #2017YFB0203201,
Key-Area Research and Development Plan of Guangdong Province #2020B010164003. The corre-
sponding author is Hong Shen.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
of in the decision to publish the results.

References
1. Hackmann, G.; Guo, W.; Yan, G.; Sun, Z.; Lu, C.; Dyke, S. Cyber-physical codesign of distributed structural health monitoring

with wireless sensor networks. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 63–72. [CrossRef]
2. Shahin, M.K.; Tharwat, A.; Gaber, T.; Hassanien, A.E. A wheelchair control system using human-machine interaction: Single-

modal and multimodal approaches. J. Intell. Syst. 2019, 28, 115–132. [CrossRef]
3. Li, X.; Li, D.; Wan, J.; Vasilakos, A.V.; Lai, C.F.; Wang, S. A review of industrial wireless networks in the context of industry 4.0.

Wirel. Netw. 2017, 23, 23–41. [CrossRef]

http://dx.doi.org/10.1109/TPDS.2013.30
http://dx.doi.org/10.1515/jisys-2017-0085
http://dx.doi.org/10.1007/s11276-015-1133-7


Sensors 2021, 21, 184 12 of 13

4. Lombardo, L.; Corbellini, S.; Parvis, M.; Elsayed, A.; Angelini, E.; Grassini, S. Wireless sensor network for distributed environ-
mental monitoring. IEEE Trans. Instrum. Meas. 2017, 67, 1214–1222. [CrossRef]

5. Roy, A.; Sarma, N. A synchronous duty-cycled reservation based MAC protocol for underwater wireless sensor networks. Digit.
Commun. Netw. 2020. [CrossRef]

6. Pawgasame, W. A survey in adaptive hybrid wireless sensor network for military operations. In Proceedings of the 2016 Second
Asian Conference on Defence Technology (ACDT), Chiang Mai, Thailand, 21–23 January 2016; pp. 78–83.

7. Shakila, R.; Paramasivan, B. Performance Analysis of Submarine Detection in Underwater Wireless Sensor Networks for Naval
Application. Microprocess. Microsyst. 2020. [CrossRef]

8. Mois, G.; Folea, S.; Sanislav, T. Analysis of three IoT-based wireless sensors for environmental monitoring. IEEE Trans. Instrum.
Meas. 2017, 66, 2056–2064. [CrossRef]

9. Srbinovska, M.; Gavrovski, C.; Dimcev, V.; Krkoleva, A.; Borozan, V. Environmental parameters monitoring in precision
agriculture using wireless sensor networks. J. Clean. Prod. 2015, 88, 297–307. [CrossRef]

10. Gupta, H.P.; Tyagi, P.K.; Singh, M.P. Regular Node Deployment for k-Coverage in m-Connected Wireless Networks. IEEE Sens. J.
2015, 15, 7126–7134. [CrossRef]

11. Khalesian, M.; Delavar, M.R. Wireless sensors deployment optimization using a constrained Pareto-based multi-objective
evolutionary approach. Eng. Appl. Artif. Intell. 2016, 53, 126–139. [CrossRef]

12. Zhang, Y.; Sun, X.; Wang, B. Efficient algorithm for k-barrier coverage based on integer linear programming. China Commun.
2016, 13, 16–23. [CrossRef]

13. Kim, D.; Wang, W.; Son, J.; Wu, W.; Lee, W.; Tokuta, A.O. Maximum lifetime combined barrier-coverage of weak static sensors
and strong mobile sensors. IEEE Trans. Mob. Comput. 2016, 16, 1956–1966. [CrossRef]

14. Gao, X.; Chen, Z.; Wu, F.; Chen, G. Energy Efficient Algorithms for k -Sink Minimum Movement Target Coverage Problem in
Mobile Sensor Network. IEEE/ACM Trans. Netw. 2017, 25, 3616–3627. [CrossRef]

15. Guo, J.; Jafarkhani, H. Movement-Efficient Sensor Deployment in Wireless Sensor Networks With Limited Communication
Range. IEEE Trans. Wirel. Commun. 2019, 18, 3469–3484. [CrossRef]

16. Elhoseny, M.; Tharwat, A.; Yuan, X.; Hassanien, A.E. Optimizing K-coverage of mobile WSNs. Expert Syst. Appl. 2018, 92, 142–153.
[CrossRef]

17. Liao, Z.; Zhang, S.; Cao, J.; Wang, W.; Wang, J. Minimizing movement for target coverage in mobile sensor networks. In Proceed-
ings of the 2012 32nd International Conference on Distributed Computing Systems Workshops, Macau, China, 18–21 June 2012;
pp. 194–200.

18. Mohamed, S.M.; Hamza, H.S.; Saroit, I.A. Coverage in mobile wireless sensor networks (M-WSN). Comput. Commun. 2017,
110, 133–150. [CrossRef]

19. Wang, Y.; Wu, S.; Chen, Z.; Gao, X.; Chen, G. Coverage problem with uncertain properties in wireless sensor networks: A survey.
Comput. Netw. 2017, 123, 200–232. [CrossRef]

20. Elhabyan, R.; Shi, W.; St-Hilaire, M. Coverage protocols for wireless sensor networks: Review and future directions. J. Commun.
Netw. 2019, 21, 45–60. [CrossRef]

21. Khoufi, I.; Minet, P.; Laouiti, A.; Mahfoudh, S. Survey of deployment algorithms in wireless sensor networks: Coverage and
connectivity issues and challenges. Int. J. Auton. Adapt. Commun. Syst. 2017, 10, 341–390. [CrossRef]

22. Deif, D.S.; Gadallah, Y. Classification of wireless sensor networks deployment techniques. IEEE Commun. Surv. Tutor. 2013,
16, 834–855. [CrossRef]

23. Shi, T.; Li, J.Z.; Gao, H.; Cai, Z.P. Coverage in Battery-Free Wireless Sensor Networks. In Proceedings of the IEEE Conference on
Computer Communications (IEEE Infocom 2018), Honolulu, HI, USA, 16–19 April 2018; pp. 108–116.

24. Lin, C.; Zhou, Y.; Ma, F.; Deng, J.; Wang, L.; Wu, G. Minimizing charging delay for directional charging in wireless rechargeable
sensor networks. In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France,
29 April–2 May 2019; pp. 1819–1827.

25. Shi, T.; Cheng, S.; Li, J.; Cai, Z. Constructing connected dominating sets in battery-free networks. In Proceedings of the IEEE
INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

26. Wang, C.; Li, J.; Yang, Y.; Ye, F. A hybrid framework combining solar energy harvesting and wireless charging for wireless
sensor networks. In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer
Communications, San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

27. Wu, T.; Yang, P.; Dai, H.; Xu, W.; Xu, M. Charging oriented sensor placement and flexible scheduling in rechargeable WSNs.
In Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 73–81.

28. Shi, T.; Cheng, S.; Cai, Z.; Li, J. Adaptive connected dominating set discovering algorithm in energy-harvest sensor networks.
In Proceedings of the IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications,
San Francisco, CA, USA, 10–14 April 2016; pp. 1–9.

29. Gupta, S.K.; Kuila, P.; Jana, P.K. Genetic algorithm approach for k -coverage and m -connected node placement in target based
wireless sensor networks. Comput. Electr. Eng. 2016, 56, 544–556. [CrossRef]

30. Dahiya, S.; Singh, P.K. Optimized mobile sink based grid coverage-aware sensor deployment and link quality based routing in
wireless sensor networks. AEU - Int. J. Electron. Commun. 2018, 89, 191–196. [CrossRef]

http://dx.doi.org/10.1109/TIM.2017.2771979
http://dx.doi.org/10.1016/j.dcan.2020.09.002
http://dx.doi.org/10.1016/j.micpro.2020.103293
http://dx.doi.org/10.1109/TIM.2017.2677619
http://dx.doi.org/10.1016/j.jclepro.2014.04.036
http://dx.doi.org/10.1109/JSEN.2015.2471837
http://dx.doi.org/10.1016/j.engappai.2016.03.004
http://dx.doi.org/10.1109/CC.2016.7489970
http://dx.doi.org/10.1109/TMC.2016.2606403
http://dx.doi.org/10.1109/TNET.2017.2756925
http://dx.doi.org/10.1109/TWC.2019.2914199
http://dx.doi.org/10.1016/j.eswa.2017.09.008
http://dx.doi.org/10.1016/j.comcom.2017.06.010
http://dx.doi.org/10.1016/j.comnet.2017.05.008
http://dx.doi.org/10.1109/JCN.2019.000005
http://dx.doi.org/10.1504/IJAACS.2017.088774
http://dx.doi.org/10.1109/SURV.2013.091213.00018
http://dx.doi.org/10.1016/j.compeleceng.2015.11.009
http://dx.doi.org/10.1016/j.aeue.2018.03.031


Sensors 2021, 21, 184 13 of 13

31. Roselin, J.; Latha, P.; Benitta, S. Maximizing the wireless sensor networks lifetime through energy efficient connected coverage.
Ad Hoc Netw. 2017, 62, 1–10. [CrossRef]

32. Senouci, M.R.; Bouguettouche, D.; Souilah, F.; Mellouk, A. Static wireless sensor networks deployment using an improved binary
PSO. Int. J. Commun. Syst. 2016, 29, 1026–1041. [CrossRef]

33. Liao, Z.; Wang, J.; Zhang, S.; Cao, J.; Min, G. Minimizing movement for target coverage and network connectivity in mobile
sensor networks. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1971–1983. [CrossRef]

34. Chen, Z.; Gao, X.; Wu, F.; Chen, G. A PTAS to minimize mobile sensor movement for target coverage problem. In Proceedings of
the INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications, San Francisco, CA, USA,
10–14 April 2016; pp. 1–9.

35. Choudhuri, R.; Das, R.K. Coverage of targets in mobile sensor networks with restricted mobility. IEEE Access 2018, 6, 10803–10813.
[CrossRef]

36. Nguyen, N.; Liu, B.; Wang, S. On New Approaches of Maximum Weighted Target Coverage and Sensor Connectivity: Hardness
and Approximation. arXiv 2018, arXiv:1811.00487

37. Nguyen, N.; Liu, B. The Mobile Sensor Deployment Problem and the Target Coverage Problem in Mobile Wireless Sensor
Networks are NP-Hard. IEEE Syst. J. 2019, 13, 1312–1315. [CrossRef]

38. Hochbaum, D.S.; Maass, W. Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM
1985, 32, 130–136. [CrossRef]

39. Barnoy, A.; Guha, S. Approximating the Throughput of Multiple Machines in Real-Time Scheduling. SIAM J. Comput. 2002,
31, 331–352. [CrossRef]

http://dx.doi.org/10.1016/j.adhoc.2017.04.001
http://dx.doi.org/10.1002/dac.3040
http://dx.doi.org/10.1109/TPDS.2014.2333011
http://dx.doi.org/10.1109/ACCESS.2018.2801941
http://dx.doi.org/10.1109/JSYST.2018.2828879
http://dx.doi.org/10.1145/2455.214106
http://dx.doi.org/10.1137/S0097539799354138

	Introduction
	Related Works
	Preliminary and Problem Statement
	Network Model and Problem Definition 
	Hardness of The Problem

	Algorithms
	Greedy Algorithm
	Randomized Algorithm
	Deterministic Algorithm

	Simulation Experiments
	Discussion
	References

