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Abstract: Bearings are some of the most critical industrial parts and are widely used in various types 

of mechanical equipment. Bearing health status can have a significant impact on the overall 

equipment performance, and bearing failures often cause serious economic losses and even 

casualties. Thus, estimating the remaining useful life (RUL) of bearings in real time is of utmost 

importance. This paper proposes a data-driven RUL prediction method for bearings based on 

Bayesian theory. First, time-domain features are extracted from the bearing vibration signal and 

data are fused to build a health indicator (HI) and a state model of bearing degradation. Then, 

according to Bayesian theory, a Bayesian model of state parameters and bearing life is established. 

The parameters of the Bayesian model are updated and bearing RUL is predicted by the Metropolis–

Hastings algorithm. The method was validated by the XJTU-SY bearing open datasets and the 

prediction results are compared with the existing methods. Accuracy of the proposed method was 

demonstrated. 

Keywords: data-driven method; Bayesian model; Metropolis–Hastings algorithm; remaining useful 

life prediction 

 

1. Introduction 

Bearings are some of the most basic yet critical components used in the 

manufacturing industry and the overall performance and reliability of mechanical 

equipment are closely related to bearing performance [1]. Although bearings are the most 

commonly used components in mechanical equipment, bearings are also the most 

susceptible to failure [2]. Moreover, abnormal operating states can seriously affect 

production activities and may even lead to catastrophic consequences; therefore, 

predicting bearing remaining useful life (RUL) is of both theoretical and practical value. 

Since bearing RUL prediction is an important element of equipment prognostics and 

health management, extensive research has been carried out. Condition monitoring and 

RUL prediction of bearings in operation can help guide timely and reasonable 

maintenance, prolong service life of equipment, improve reliability of mechanical 

systems, and avoid catastrophic accidents caused by bearing damage [3,4]. 

Current methods for RUL prediction can be divided into two categories: model-

based and data-driven methods. Model-based methods typically establish a degradation 

model according to the physical structure of the bearing, which is then used to predict the 

RUL of the bearing [5,6]. Jiang [7] proposed a prediction method for RUL based on the 

convex optimization-life parameter degradation mechanism model. Sun [8] established a 

Hertzian contact dynamic theory model of a bearing ball and raceway and showed that 

optimal damping can improve bearing life. Model-based methods require an accurate 

degradation model; however, complex structure of components and operation 
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mechanisms, as well as environmental uncertainties in engineering practice, make it 

difficult to establish an accurate model [9]. Data-driven methods mainly rely on machine 

learning and deep learning algorithms to predict bearing RUL in the absence of a physical 

model of system degradation. This type of method can be universally applied for cases 

where the physical system cannot be accurately modeled. Numerous effective data-driven 

methods have been developed for RUL prediction. Wu [10] introduced long short-term 

memory (LSTM) networks to realize high-precision RUL prediction for complicated 

industrial objects. Ren [11] proposed a bearing RUL prediction method based on a deep 

neural network (DNN) and deep autoencoder. Xia [12] presented an innovative two-stage 

automated approach using a DNN to accurately determine the RUL of bearings. Li [13] 

constructed a modified health index based hierarchical gated recurrent unit network to 

improve the accuracy of bearing RUL prediction. Both supervised and unsupervised 

learning have also been applied in bearing fault diagnosis with good results [14–17]. 

Data-driven methods can overcome difficulties associated with model construction 

and can achieve more accurate prediction results. However, uncertainties still exist in 

practical applications, such as uncertainties in material properties, measurement errors, 

processing technologies, and operating conditions, which are often ignored. Owing to the 

high costs of product testing, and limitations of existing data transmission and storage 

technologies, sufficient data on the typical life cycle of bearings are usually unavailable. 

Therefore, in practice, data are insufficient to support data-driven prediction methods. 

Realizing a more accurate bearing RUL real-time prediction with limited bearing vibration 

signal data and considering the random factors is of great difficulty in related research. 

Bayesian theory is an effective method for data analysis with uncertain factors, which are 

regarded as random parameters. Expert knowledge, theoretical analyses, and historical 

data are used to obtain probability distributions of certain parameters (i.e., prior 

distributions). Then, updating methods are used to transform real-time data into more 

accurate distribution information (i.e., posterior distributions). Thus, the quantitative 

method of uncertainty based on the Bayesian theory has great research value in the field 

of RUL prediction. Mosallam [18] proposed a Bayesian approach for predicting the RUL 

of key components in systems with variable operating conditions. Cheng [19] presented a 

prediction method based on functional principal component analysis and the Bayesian 

method for Li-ion batteries RUL evaluation. Liu [20] proposed a dynamic data-driven 

layered Bayesian degradation model to tackle structural damage growth prediction. Tang 

[21] introduced a Bayesian Monte Carlo method to predict the aging trajectory of Li-ion 

batteries with significantly reduced experimental tests. Li [22] proposed a sequential 

Bayesian, which updated the Wiener process model improved the accuracy of RUL 

prediction. Martha [23] introduced a Bayesian hierarchical model to estimate the RUL of 

civil aerospace gas turbine engines. 

This paper proposes a new data-driven bearing RUL prediction method based on 

Bayesian theory. A flowchart of the prediction process is illustrated in Figure 1. First, time-

domain features are extracted from training bearing vibration signals and are screened. 

Standardization and dimensional reduction are carried out to build an appropriate health 

indicator (HI). Then, a state model of the bearing degradation process is established based on 

the processed data and a Bayesian model of state parameters and bearing life is constructed. 

Finally, parameters of the Bayesian model are updated according to real-time bearing data 

using the Metropolis–Hastings (M-H) algorithm to realize real-time prediction of bearing 

RUL. 
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Figure 1. Flowchart of proposed bearing remaining useful life (RUL) prediction method. 

2. Data-Driven State Model 

2.1. Feature Index Selection 

Time-domain indicators are commonly used in equipment fault detection and fault 

trend prediction, and can fully reflect the overall health degradation process of the system 

[24]. Common time-domain feature indexes include the mean value, root mean square 

value, peak value, and absolute mean amplitude. Considering the complex working 

conditions of bearings, a single feature index offers limited information for characterizing 

the bearing degradation process. Therefore, 16 time-domain feature indexes of bearing 

vibration signal data are extracted for the bearing RUL prediction. For details, see Table 

1. 

Table 1. Selection of feature indexes. 
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2.2. Data Fusion 

Due to differences in the dimension and magnitude of each feature index, the 

multidimensional feature index data must be normalized. The Z-score standardization 

method is applied [25]: 
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where 
  nttxi ,2,1, 

 is the time series of the ith dimensional feature index composed 

of n data, 
  nttxX ii ,2,1,** 

 is the normalized i-dimensional time series data, and 

i  and i  correspond to the mean and standard deviation of the ith dimensional time 

series data, respectively. 

Although the multidimensional eigenvalue index contains sufficient information 

about the bearing degradation process, invalid information can be introduced resulting in 

increased computational complexity and reduced prediction efficiency. To overcome this, 

the multidimensional feature index data can be fused to construct a single bearing HI 

associated with the degradation process. Principal component analysis (PCA), which is 

one of the most widely used methods in data fusion, is applied [26,27]. The basic principle 

is to replace a large number of related variables with a small set of unrelated variables 

while retaining as much information as possible about the initial variables. Derived 

variables are called principal components, and are linear combinations of the initial 

variables. The basic steps of the PCA can be summarized as follows. 

n groups of evaluation samples are set and each sample is evaluated by m indicators. 

The sample data can be expressed in the following form: 
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1. Calculate the correlation coefficient matrix of standardized data 
*X . Then use the 

correlation coefficient to determine similarity among index variables. 

2. Calculate the eigenvalues and eigenvectors of the correlation coefficient matrix. 

Eigenvalue i  is the variance of the ith principal component iY . The eigenvector 

corresponding to each eigenvalue is a linear coefficient of variation, and the 

principal component iY  can be defined as 

*

1

1,2,
m

i ij j
j

Y X i n


    (2)

where iY  is the ith principal component data (i.e., output data), 
*
jX  is the jth 

dimensional original time series data (i.e., input data) after standardization, and ij  is 

the linear transformation coefficient corresponding to the ith principal component and jth 

dimensional original time series data. 

3. Calculate the variance contribution rate and cumulative contribution rate. The 

variance contribution rate reflects the role of index variables in the evaluation; the 

larger the value, the more effective the principal components are at retaining 

information. Generally, a principal component with an 85% cumulative contribution 

rate will meet calculation requirements. 

The variance contribution rate of the pth principal component pY  can be expressed as 
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The cumulative contribution rate of principal components 1Y 2Y … pY  can be defined 

as 





m

i
i

p

i
ipZ

11

/  . 

2.3. Establishment of HI and State Model 

In this paper, the state model is established in the negative time scale based on two 

considerations: First, many studies assume the degree of degradation of the system is 

consistent at the initial time; however, due to complex working conditions and errors in 

manufacturing and assembly, the initial degradation of different systems will vary quite 

considerably. Second, many studies have only used system status monitoring data, 

whereas system life information is ignored. To improve the information utilization rate 

and facilitate prediction of the remaining life, bearing life in the negative time scale can be 

taken as one of the Bayesian model parameters. The negative time scale transformation 

formula is 

n0*  iTtt iii  (3)

where n is the number of training bearings, 
*
it  is time in the negative time scale, it  is 

time in the positive time scale, and iT  is the system life. Thus, the state model in the 

negative timescale is 

 0,1),( **
iiiii TttFH    (4)

where 
 0,1*

iTt 
 is the negative time scale, with 0 representing bearing failure; iH  

is the HI of the bearing; 
 F  is the state degradation model, which can be determined 

according to the trend of the maximum principal component over time; and i  are the 

state model parameters. By transforming the model into the negative time scale using 

Equation (3), the state model in the positive time scale can be obtained as 

   iiiiii TtTtFH ,0,   . (5)

3. Remaining Useful Life Prediction Model Based on Bayesian Theory 

3.1. Bayesian Model 

The bearing degradation process will be affected by uncertain factors, such as 

material properties, manufacturing and assembly processes, complex working conditions, 

and so on. In this paper, uncertainty in the prediction problem can be effectively dealt 

with by adopting the Bayesian model and probability method. There is a certain deviation 

between the bearing HI  tH  and the measured value of HI  tY  (maximum principal 

component data), referred to as system noise. Noise usually obeys the standard normal 

distribution [1]. Therefore, the relationship between the measured value of  tY  and 

 tH  is 

     tHtY  (6)
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where  2,0~  N  is noise with a standard normal distribution. According to the 

properties of a normal distribution, the measured value of  tY  
satisfies the following 

normal distribution: 

    2,~ tHNtY . (7)

Bayesian theory can be used to deduce the probability of unknown events based on 

the probability of known events [28]. The basic ideas behind Bayesian theory can be 

summarized as follows. An unknown parameter is regarded as a random variable. 

According to existing empirical information, a probability distribution of the variable, i.e., 

prior distribution, is obtained. The likelihood function is established and the distribution 

of variables is updated by fusing new information with existing prior distribution 

information to obtain a new posterior distribution. As the new data are gradually 

updated, the posterior distribution of the parameter will be closer to the real distribution. 

The process can be summarized as: the posterior distribution is proportional to the 

product of the prior distribution and the likelihood function. Considering uncertainty of 

bearing properties and randomness of service conditions, a Bayesian model of state 

parameters in the positive time scale can be established. The posterior distribution of state 

parameter   and bearing life T  can be expressed as 

       TfTtYftYTf PYIPPIY ,,||,    (8)

where   TtYfYIP ,|  is the likelihood function of the measured value of  tY  under 

state parameter   and bearing life T;  TfP ,  is the prior distribution of state parameter 

  and bearing life T, which can be obtained from historical data on the bearing life cycle. 

Since the vibration signal of the bearing is independently measured at each time 

point and the measured value  tY  of the HI is obtained by fusing multidimensional 

feature indexes extracted from the vibration signal, data are independent at each time for 

each value of HI. According to the nature of the independent variable, the total likelihood 

function is equal to the product of the likelihood functions at each time. From Equation 

(8), the posterior distribution of state parameters   and system life T at the predicted 

time k can be obtained as 

       TfTtYfkttYTf P

k

t
YIPPIY ,,|):1|(|,

1

 







 

 . 
(9)

3.2. Remaining Useful Life Prediction 

To predict the RUL of the bearing at time k, parameters are updated according to the 

Bayesian model established in Equation (5) and measured HI values before time k. Then, 

the posterior distribution of model parameters  T，  at time k is obtained. In general, 

calculating the posterior distribution of Bayesian model parameters is difficult. To solve 

this problem, the Markov chain Monte Carlo (MCMC) method can be applied to solve the 

posterior distribution [29]. 

The MCMC method is a sampling technique that can be used to extract samples from a 

probability density function (pdf). Posterior distribution samples are generated through 

stationary distribution of the Markov Chain and a Monte Carlo simulation is conducted. Here, 

the M-H algorithm is applied to calculate the posterior distribution [30]. The M-H algorithm 

constructs the proposal distribution  xq  and generates samples, which are accepted or 

rejected according to a certain probability. Thus, a sample set conforming to the target 

distribution  xp  is achieved. The specific steps of the algorithm are as follows: 
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1. Initialize starting point 
0x . 

2. For N − 1 iterations, complete the following four steps: 

a. Draw a sample, x*, from the proposal distribution; the pdf value is  ixxq |*  

where i denotes the current iteration and the distribution mean is xi with a 

selected standard deviation. 

b. Sample u from a uniform distribution with a lower limit of zero and an upper 

limit of 1, U(0,1). 

c. Compute the acceptance ratio,          iii xxqxpxxqxpA |/|1min ***， , 

where  *| xxq i  is the pdf value of the proposal distribution at 
ix  for the 

selected standard deviation,  *xp  is the pdf value of the target distribution at 

x*, and  ixp  is the pdf value of the target distribution at xi. 

d. If u < A, set the new value of x, i.e., 
*1 xxi 
. Otherwise, x remains unchanged, 

ii xx 1
. 

In theory, any proposal distribution chain will gradually converge to the target 

distribution. Therefore, the M-H algorithm has good sampling effects for any target 

distribution. The selection of the proposed distribution affects the acceptance probability 

of the sample and convergence rate of the chain. In this paper, the proposal distribution 

is chosen as a uniform distribution based on empirical considerations and expert 

information. In addition, if the number of iterations is large enough, the initial value of 

the chain has no effect on the final sampling result [31]. Samples of the initial iteration are 

usually discarded as the training process and after the Markov chain is stable, the 

distribution can be taken as the sampling result. 

4. Application of Proposed Method 

4.1. Bearing Data 

Datasets containing the complete run-to-failure data of 15 rolling element bearings 

(XJTU-SY) under accelerated degradation experiments were provided by the Institute of 

Design Science and Basic Component at Xi’an Jiaotong University (XJTU) and the 

Changxing Sumyoung Technology Co., Ltd., Zhejiang, China, (SY) [32]. For accelerated 

degradation experiments, a total of three different operating conditions were set and five 

bearings were tested under each operating condition. The sampling period was 1 min and 

the sampling frequency was set to 25.6 kHz. A total of 32,768 data points were recorded 

in 1.28 s during each sampling process. In our analysis, the bearing dataset of working 

condition 1 was selected for RUL prediction. Bearing 1_1 was taken as the test bearing and 

bearings 1_2, 1_3, 1_4, and 1_5 were selected as training bearings 1–4, respectively. 

Specific information extracted from the bearing datasets are shown in Table 2. 

An HI and state model were established using signal data of the training bearings and 

prior information for the Bayesian model of state parameters and bearing life were obtained. 

Bearing 1_1 data were used as the test data to carry out the real-time RUL prediction. Finally, 

the prediction results were compared with the real RUL to verify the method. 
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Table 2. Bearing datasets. 

Operating 

Condition 
Bearing Dataset Number of Files Bearing Lifetime Fault Element 

Condition1 

(35 Hz/12 kN) 

Bearing 1_1 

(Test bearing) 
158 2 h 38 min Outer race  

Bearing 1_2 

(Training bearing 1) 
161 2 h 41 min Outer race 

Bearing 1_3 

(Training bearing 2) 
123 2 h 3 min Outer race 

Bearing 1_4 

(Training bearing 3) 
122 2 h 2 min Cage 

Bearing 1_5 

(Training bearing 4) 
52 52 min 

Inner and 

outer race 

4.2. Data Processing 

As listed in Table 1, 16 time-domain feature indexes of the four training datasets were 

extracted and plotted in the negative time scale to observe the degradation trends over 

time. To ensure the feature indexes accurately reflected the degradation process of the 

bearings, feature indexes 2, 4, 5, 6, 7, 8, and 12 with obvious degradation trends were 

selected for further analysis, as shown in Figure 2. 
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(e) Feature index 7 (f) Feature index 8 

 

 

(g) Feature index 12  

Figure 2. Data trends of selected feature index. 

The seven selected feature indexes were standardized using Equation (1), and then 

the PCA method was applied to effectively achieve dimension reduction. Figure 3 shows 

the contribution rate of each principal component after data fusion. Principal component 

1 retains sufficient information from the original data as the variance contribution rate of 

principal component 1 is up to 89.1969%. Therefore, principal component 1 was selected 

as the measurement value of the HI. Table 3 shows the corresponding linear 

transformation coefficients of 7 selected feature indexes in principal component 1. The 

principal component 1 can be calculated by introducing the linear transformation 

coefficient into Equation (2). 

7
*
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j j
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   (10)

where 1 j  represents the transformation coefficient of principal component 1 

corresponding to the j selected feature indexes. Figure 4 shows the trends of principal 

component 1 of the four training bearings. Principal component 1 clearly changes over 

time, which can adequately reflect degradation of the bearing and further verifies the 

rationality of selecting principal component 1 to build HI and state model. 
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Figure 3. Variance contribution rates of each principal component. 

Table 3. Linear transformation coefficients of principal component 1. 

Selected feature index X  maxX  rX  pX  rmsX  p pX   kurX  

Coefficient value 1 j  0.3960 0.3940 0.3947 0.3959 0.3959 0.3859 −0.2692 

 

Figure 4. Principal component 1 data. 

4.3. Establishment of HI and State Model 

Selection of a reasonable model is the foundation of high-precision prediction. To 

reflect changes in the value of HI (principal component 1) over time (Figure 4), an 

exponential model was selected and used to establish the state model, expressed as 

   0,1]exp[ ***
iiiii TtcbtatH   (11)

where  *tHi  is the HI and ia , ib , and ic  are the state parameters of the ith training 

bearing. According to Equation (3), the state model can be expressed in the positive time 

scale as 
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Measured values of health indicators (HIs) and the bearing life of the training 

bearings were introduced into Equation (12) and the parameter estimation values of each 

training bearing state model were obtained using the least squares method. Figure 5 

shows state curves of the four training bearings. The degradation process of training 

bearing 3 is stable until unexpected breakdown occurs at the last sampling point, which 

shows a lack of universality. Thus, data of training bearing 3 are not considered when 

building the Bayesian model. Differences can be observed in the degradation process and 

state parameters of training bearings 1, 2, and 4. Therefore, three prior samples of state 

parameters a, b, and c and bearing life T provide a suitable reference for the Bayesian 

model. In addition, the mean and variance of noise were obtained using statistics. Since 

noise is assumed to follow a normal distribution, the mean value of noise was zero and 

the three prior samples of noise variance were obtained. 

  

(a) Training bearing 1 (b) Training bearing 2 

  

(c) Training bearing 3 (d) Training bearing 4 

Figure 5. Training bearing state model. 

4.4. Bayesian Model and RUL Prediction 

The feature indexes screened in Section 4.2 were extracted from the test data and 
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standardized feature index data. One-dimensional data obtained from the transformation 

were used as the measured values of  tY . A Bayesian model in the positive time scale 

was established using Equation (9) and Equation (12). Since the posterior distribution of 

parameters a, b, c, and T cannot be solved directly, the M-H algorithm was applied to 

perform independent sampling. For the test bearing, the prior distribution of parameters 

a, b, and c was set as a uniform distribution. According to three prior samples obtained 

from the historical data, the range of uniform distribution was determined to be 

 zaza  , , where a  is the mean value of three prior samples and z is a known 

constant used to describe differences among bearing degeneration. The prior distribution 

of b and c is determined in the same way. When the M-H algorithm was applied, the prior 

distribution of parameters a, b, and c were taken as the proposal distribution. The prior 

distribution of parameter T was set as a normal distribution. The mean value depends on 

the current value of the Monte Carlo chain and the standard deviation is 0.2. For example, 

the current value of the Monte Carlo chain is 
iT  with prior distribution  2.0,iTN  in 

the ith iteration. A candidate sample 
*T is randomly selected from the proposed 

distribution  2.0,iTN . If the acceptance ratio A is greater than random variable u, 

sample 
*T  is accepted with 

*1 TTi 
; otherwise, 

ii TT 1
. Following the above 

method, the prior distribution of parameter T was selected as the normal random walk 

distribution and the prior distribution was taken as the proposal distribution of parameter 

T sampling. 

Considering the bearing is in the normal working state and runs smoothly in the early 

sampling stage, it is necessary to determine the starting point of bearing failure as the 

initial point of the RUL prediction, which better reflects the degradation trend of the 

bearing. The HI of the test data increases suddenly when the time series reaches 60 in the 

positive time scale; therefore, this point was taken as the starting point of bearing failure. 

Using the measured value of the test HI and the Bayesian model, the MCMC algorithm 

was applied to update the model parameters. A total of 10,000 iterations were used for 

each prediction. The first 5000 were used for the training process and the final 5000 update 

samples were taken as the posterior distribution samples of the model parameters. The 

posterior distribution of the predicted bearing life T was obtained, and the RUL posterior 

distribution was then obtained by subtracting the cut-off time of the test data. The 

expectation of the distribution sample was taken as the final prediction result. Figure 6 

shows the distribution of the bearing life posteriori samples at the predicted time of 110. 

 

Figure 6. Posteriori distribution diagram of bearing predicted life (predicted time k = 110). 
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After the prediction update, the posterior distribution of bearing RUL is composed 

of 5000 samples. The probability distribution of the posterior sample is shown in Figure 

7. Inspection numbers 1 to 10 correspond to the prediction time series 68, 78, 88, …, 158. 

The posteriori samples are represented by the probability density of the normal 

distribution and the expectation of each posteriori distribution is taken as the final 

prediction result. Comparison with the real bearing RUL demonstrates the accuracy of the 

proposed method. At the same time, the probability density distribution of the prediction 

results is relatively concentrated, indicating good stability. Moreover, the probability 

density curve tends to become more concentrated over time, indicating that the impact of 

uncertainty gradually decreases as the prediction progresses. A certain deviation exists 

between the predicted result and the actual value at the inspection number 7, which is 

related to the trend of the predicted bearing vibration signal data. The unstable, 

fluctuating trend of the original data causes deviation of the predicted result. Figure 8 

shows a certain error in the prediction time between 110 and 140, which is caused by 

divergence of the measured values of the test HI that are used to update the Bayesian 

model. However, the subsequent prediction deviations gradually decrease, and 

prediction results are stable around the real RUL value, indicating that the overall 

prediction result is accurate. 

 

Figure 7. Probability density diagram of bearing RUL. 

 

Figure 8. Comparison of predicted RUL and real RUL. 
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4.5. Evaluation of Prediction Results 

In order to quantitatively evaluate the prediction effect, three RUL prediction 

evaluation methods were adopted in this paper: root mean square error (RMSE), mean 

relative error (MARE) and error function based on asymmetric exponential [33,34]. 

RMSE denotes the root mean square of the prediction errors, which can be expressed as: 

 
2

1

1 N

i i
i

RMSE x z
N 

   (13)

where xi and zi, respectively, represent the predicted value and the real value of the ith 

prediction; N is the total number of real-time predictions. A smaller RMSE value means 

that RUL predicts better effectiveness. 

MARE is the mean value of relative error among all time point. The expression of 

MARE is as follows: 

1

1
100%

N
i i

i i

x z
MARE

N z


  . (14)

Obviously, the approaches with smaller MARE would be better than others. 

Error function based on asymmetric exponential can comprehensively evaluate the 

accuracy of the prediction method by constructing the exponential error between the 

predicted value and the true value and synthesizing the prediction accuracy of each 

prediction time series. According to RUL prediction results, the total evaluation error S 

can be calculated as follows: 





N

i
iSS

1

, (15)










01)10/(exp

01)13/(exp

ii

ii

i
dd

dd
S , (16)

i i id x z  , (17)

where S is the total evaluation error of N predictions; id  is the RUL estimation error of 

the ith prediction; iS  
is the evaluation error of the ith prediction. As the overall error 

evaluation value S decreases, the prediction accuracy increases. 

The support vector machine (SVM) method and Pairs-based particle filter (PF) 

method were selected to illustrate the accuracy of the proposed method. The SVM is a 

widely used machine learning algorithm for classification and prediction, and can predict 

the RUL of bearings under small sample conditions with good prediction accuracy [35]. 

The Paris-based PF method combines physical model and observation data to identify 

model parameters, which is a model-based RUL prediction method [36]. Using the same 

bearing data and characteristic indexes as above, the SVM method and PF method were 

respectively introduced to predict the RUL of the bearing. The comparison of prediction 

results and errors is shown in Figures 9 and 10, indicating that the method proposed in 

this paper has certain stability and accuracy. Then, the prediction errors of several 

methods are calculated according to Equations (13)–(17).Results of the analysis are 

presented in Table 4. The proposed method has good prediction accuracy and good 

stability. 
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Figure 9. Comparison of prediction result. 

 

Figure 10. Comparison of prediction error. 

Table 4. Comparison of prediction results 

Prediction Method SVM Method Pairs Based PF Method Proposed Method 

RMSE 7.1005 8.7427 4.8843 

MARE 3.2405 4.7628 2.3079 

S value 80.7027 94.8183 46.5061 

5. Conclusions 

This paper proposed a method of bearing RUL prediction based on Bayesian theory. 

Feature indexes reflecting the degradation trend were extracted from bearing vibration 

signals. The corresponding HIs were obtained through PCA and a state model was 

established. Information was extracted from limited historical data of samples to construct 

the prior distribution of the model parameters. A Bayesian model of state parameters was 

established and the MCMC algorithm was applied to update the Bayesian model 

parameters to obtain the posterior distribution of the RUL and its predicted value. The 

accuracy and stability of the method were verified using actual bearing data. In addition, 
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the prediction results were compared with those obtained using an existing prediction 

method and the advantages of proposed method in terms of prediction accuracy were 

demonstrated. 

Compared with other data-driven life prediction methods, the proposed method can be 

used to build a degradation model from limited existing data. Furthermore, the Bayesian 

approach effectively deals with parameter uncertainties in the degradation process. Therefore, 

prediction error is reduced and prediction accuracy and stability are greatly improved. 
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