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Abstract: This paper reports the high-temperature characteristics of a laterally vibrating piezoelectric
lithium niobate (LiNbO3; LN) MEMS resonator array up to 500 ◦C in air. After a high-temperature
burn-in treatment, device quality factor (Q) was enhanced to 508 and the resonance shifted to a lower
frequency and remained stable up to 500 ◦C. During subsequent in situ high-temperature testing,
the resonant frequencies of two coupled shear horizontal (SH0) modes in the array were 87.36 MHz
and 87.21 MHz at 25 ◦C and 84.56 MHz and 84.39 MHz at 500 ◦C, correspondingly, representing a
−3% shift in frequency over the temperature range. Upon cooling to room temperature, the resonant
frequency returned to 87.36 MHz, demonstrating the recoverability of device performance. The first-
and second-order temperature coefficient of frequency (TCF) were found to be −95.27 ppm/◦C and
57.5 ppb/◦C2 for resonant mode A, and −95.43 ppm/◦C and 55.8 ppb/◦C2 for resonant mode B,
respectively. The temperature-dependent quality factor and electromechanical coupling coefficient
(kt

2) were extracted and are reported. Device Q decreased to 334 and total kt
2 increased to 12.40%

after high-temperature exposure. This work supports the use of piezoelectric LN as a material
platform for harsh environment radio-frequency (RF) resonant sensors (e.g., temperature and infrared)
incorporated with high coupling acoustic readout.

Keywords: lithium niobate; RF MEMS; piezoelectric resonators; high-temperature; SH0 mode

1. Introduction

Radio-frequency (RF) components capable of operating within environments extreme
in temperature, pressure, corrosion, and radiation are desirable in a variety of indus-
tries, including aerospace, military, automotive, and energy harvesting. For instance,
reliable devices that can combine passive RF/wireless signal processing with sensing
modalities are particularly crucial to the length and scope of many proposed space mis-
sions, such as exploration of hostile planets like Venus (surface temperature 465 ◦C).
Such devices could potentially eliminate the need for active electronics for in-sensor signal
processing and seamlessly integrate the sensing and wireless readout in one battery-less
package. To this end, piezoelectric RF microelectromechanical systems (MEMS) devices
are particularly promising, as they offer compact and uncooled sensors monolithically
integrated with acoustic readout devices that can survive on hot planets, as well as other
Earth-based systems (e.g., oil, gas, and geothermal) [1–4].

Several piezoelectric devices fabricated with materials such as langasite (La3Ga5SiO14),
aluminum nitride (AlN), and gallium nitride (GaN) have been examined for high-temperature
RF applications [5–12]. Yet, the effective electromechanical coupling of the devices reported
in these demonstrations is limited (kt

2 < 1.4%), due to the inherently low piezoelectric
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coupling coefficients (K2) in the selected materials. The performance of piezoelectric
lithium niobate (LiNbO3; LN) surface acoustic wave (SAW) devices was investigated
at elevated temperatures as high as 600 ◦C in air, due to the attractive material prop-
erties of stoichiometric LN, such as a high Curie point of 1140 ◦C, chemical inertness,
and the ability to maintain its favorable piezoelectric properties up to 750 ◦C [13–18].
However, the performance of LN SAW devices is still limited by only moderate coupling
(kt

2 ≈ 1.5%) and energy leakage into the substrate [19]. The low coupling and high loss in
the aforementioned platforms fundamentally limit the bandwidth, signal-to-noise ratio,
and the multiplexing capabilities needed for effective and robust passive wireless readout
of sensor data at elevated temperatures.

Therefore, to address the need for low-loss, high coupling, and harsh environment
capable sensors with integrated wireless readout, we examine the use of LN laterally
vibrating resonators (LVRs). A distinct advantage of the LN LVR is its high electrome-
chanical coupling coefficient (kt

2 up to 30%) [20]. High kt
2 values, along with compa-

rable quality factors to other materials, can result in a higher figure of merit (kt
2 × Q),

lower insertion loss, and wider bandwidths in LN acoustic devices. In this paper,
we present the high-temperature characteristics of an array of LN LVRs up to 500 ◦C
in air. The laterally vibrating LN MEMS device exhibits recoverability after 500 ◦C expo-
sure, a high temperature coefficient of frequency (TCF), and high kt

2, demonstrating the
potential of this material platform for low-loss and ultra-sensitive extreme environment
remote RF sensing.

2. Device Design and Experimental Setup

Optical and scanning electron microscopy (SEM) images of the microfabricated LN
LVR array are shown in Figure 1. The one-port array consists of 26 identical LVRs in parallel.
Each individual resonator has two 100-nm-thick gold interdigitated electrodes, acting as
signal and ground, on 700-nm-thick suspended stoichiometric LN. The resonator array
was fabricated on an X-cut LN epitaxial thin film on nonstoichiometric LN substrate at
−10◦ to the Y-axis, to excite the shear horizontal mode (SH0). The total device dimensions
are 728 µm by 440 µm. Further fabrication and design details can be found in prior
work [21,22].
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Figure 1. The microfabricated LN MEMS LVR array. Top-view optical image (a) and tilted SEM image of an individual 
resonator within the array (b). 

The modified Butterworth-Van Dyke (MBVD) model obtained from the 25 °C post 
burn-in device admittance measurements is depicted in Figure 2. The MBVD model has 
two motional branches that represent two coupled SH0 modes very close to each other in 
resonance that were exhibited by the device after burn-in and during testing up to 500 °C 
[22,23]. The appearance of a second mode is attributed to a slight variation in mechanical 
boundary conditions, and thus resonant frequencies, among individual resonators in the 
array [22]. This variation could be due to particle mass loading on the day of testing, or 
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Figure 1. The microfabricated LN MEMS LVR array. Top-view optical image (a) and tilted SEM image of an individual
resonator within the array (b).

The modified Butterworth-Van Dyke (MBVD) model obtained from the 25 ◦C post
burn-in device admittance measurements is depicted in Figure 2. The MBVD model
has two motional branches that represent two coupled SH0 modes very close to each
other in resonance that were exhibited by the device after burn-in and during testing up
to 500 ◦C [22,23]. The appearance of a second mode is attributed to a slight variation
in mechanical boundary conditions, and thus resonant frequencies, among individual
resonators in the array [22]. This variation could be due to particle mass loading on the



Sensors 2021, 21, 149 3 of 9

day of testing, or non-uniform changes in the residual thin film stress due to temperature
cycling. The extracted parameters of both modes, denoted as mode A (RmA, LmA, CmA) and
mode B (RmB, LmB, CmB), are listed in Table 1.
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Figure 2. Modified Butterworth-Van Dyke (MBVD) model for the array at 25 ◦C, after the 500 ◦C burn-in.

Table 1. Extracted values for the MDVD model shown in Figure 2.

Parameter Mode A Mode B

Rm (Ω) 166 383
Cm (fF) 26.37 9.39
Lm (µH) 126 355
C0 (fF) 371

The experimental setup consisted of a network analyzer (Agilent E5063A) connected
by 50 Ω impendence coaxial cable to a custom high-temperature ground-signal-ground
(GSG) probe (Supplier: GGB Industries, Naples, FL, USA). As a further precaution against
detrimental heating effects on the system, aluminized heat shielding was affixed to the
bottom of the probe body and wrapped around the coaxial cable region closest to the
probe. The probe was housed within an open-air high-temperature probe station (Supplier:
Signatone Inc., Gilroy, CA, USA) equipped with a proportional-integral-derivative (PID)
controlled heated chuck. The probe station setup was contained within a dark box and the
door was shut during measurements. This prevented air flow throughout the room from
causing local temperature variation on the sample. As per the heated chuck data sheet,
the temperature accuracy and temperature uniformity were both ±1 ◦C. The temperature
resolution of the PID controller was 1 ◦C. Figure 3 shows a photograph of the heat-shielded
probes touching down on the ceramic calibration substrate on the heated chuck.
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Using this setup, the resonator array was first subjected to a burn-in cycle up to
500 ◦C and back to room temperature in air. The purpose of the burn-in treatment was
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to stabilize any annealing effects (e.g., alloying due to diffusion of metal contacts) in the
device. Initial and post-burn-in data was acquired. The device performance was then
characterized in situ from 25 ◦C to 500 ◦C in 100 ◦C increments. To avoid thermal shock,
the sample was gradually heated by a ramp not exceeding 10 ◦C/minute. To allow for
sample temperature stabilization, the device was held at each temperature for twenty
minutes before data were acquired. With this slow ramp and long soak time, the sample
surface was assumed to have reached equilibrium with the heated chuck temperature by
the time the measurements were taken.

After cooling back down from 500 ◦C to 25 ◦C, the device was measured again at room
temperature. This room temperature measurement taken after the in situ high-temperature
cycling is denoted “post in situ” throughout this paper.

3. Experimental Results and Discussion

Figure 4 shows the measured admittance (Y11) of the LN MEMS LVR array initially,
post burn-in, and post in situ testing. Extracted device parameters are listed in Table 2.
During initial and post in situ testing, only one SH0 mode was measured and extracted,
attributed to the mechanical boundary variations (see Device Design and Experimen-
tal Setup). Two distinct peaks, mode A and mode B, could be seen in the post burn-in
spectrum at different frequencies (blue line in Figure 4c; modes labelled). After the burn-
in temperature cycle, the resonance peak shifted down in frequency. The peak experi-
enced a negligible shift after the in-situ testing up to 500 ◦C and back (Figure 4c; Table 2).
This indicates that the burn-in stabilized the resonant frequency, likely due to an anneal-
ing effect on the gold electrodes. Yet, while the burn-in procedure enhanced the quality
factor, Q, subsequent in situ high-temperature testing reduced Q below its initial value
(Table 2). The kt

2 of the array increased by a small amount from the initial to post in situ de-
vice testing (Table 2). The changes in Q and kt

2 were likely caused by temperature-induced
changes in the residual stress introduced during the fabrication process.

Table 2. Extracted key parameter values initially, post burn-in and post in situ testing as shown in
Figure 4.

Parameter Initial Post Burn-In (Mode A/B) Post In Situ Testing

fs (MHz) 87.62 87.36/87.21 87.30
Q 348 415/508 334

kt
2(%) 11.39 8.75/3.12 12.40

The scattering parameter (S11) of the LN LVR array was measured in situ during tem-
perature ramp up from 25 ◦C to 500 ◦Cand normalized to 50 Ω impedance. The admittance
was determined from the scattering parameter and is plotted over the temperature and
frequency range in Figure 5. Both the magnitude and phase of the admittance experience a
downward shift in frequency from 25 ◦C to 500 ◦C, due to material softening. The stiffness
constants of LN have negative temperature coefficients, indicating that the material softens
with increasing temperature [24]. As the temperature is raised and the material softens,
the elastic properties and the wave velocity are reduced, causing the resonant frequency to
shift towards a lower value.

Figure 6 reports the temperature-dependent resonant frequency over the tempera-
ture range for both coupled SH0 modes A and B. The resonance of device mode A was
87.36 MHz at 25 ◦C and 84.56 MHz at 500 ◦C. The resonance of device mode B was
87.21 MHz at 25 ◦C and 84.39 MHz at 500 ◦C. This represents a −3.2% resonance shift
for both modes. Upon cooling to room temperature, the resonant frequency returned
to 87.30 MHz and only one mode was present, likely due to mechanical changes in the
array after temperature cycling. The recoverability of resonance to within 0.1% of its
post burn-in value after the high-temperature in situ exposure is promising (Table 2).
Further temperature cycling studies are needed to determine whether the two shear hori-
zonal modes permanently converged to one mode after the in situ testing.
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Experimental frequency versus temperature results were best fit with quadratic equa-
tions and are displayed on Figure 6 as dashed lines. Using 25 ◦C as the reference tempera-
ture, the fractional frequency variation for mode A can be expressed as follows [9]:

∆ f
f0

=
f (T)− f (25)

f (25)
= − 95.27 × 10−6(T − 25) + 57.5 × 10−9(T − 25)2 (1)

where T is temperature in degrees Celsius. The frequency variation can be similarly
expressed for mode B and is shown in Figure 6. The R2 value of the fit was 0.9998.
For mode A, the extracted first- and second-order temperature coefficient of frequency
(TCF) were −95.27 ppm/◦C and 57.5 ppb/◦C2, respectively. The quadratic fit indicates an
expected turnover temperature of 854 ◦C in air. For mode B, the first- and second-order
TCF were −95.43 ppm/◦C and 55.8 ppb/◦C2, respectively. First-order TCF values were
near the reported range for LN LVRs of −50 ppm/◦C to −90 ppm/◦C [24,25]. The TCF is a
composite parameter that describes the change in frequency with temperature and captures
the effects of material softening, linear thermal expansion, and the temperature coefficient
of permittivity, among other mechanisms [26]. The large TCF implies high-resolution tem-
perature sensing capabilities in LN LVRs compared to AlN and GaN piezoelectric thin film
resonators, which exhibit uncompensated TCFs from −24 ppm/◦C to −30 ppm/◦C [1,8].
The second-order TCF largely depends on the temperature derivatives of higher order elas-
tic coefficients, which are not currently known for lithium niobate. Reported values were
not found in existing literature for comparison to the second-order TCF values extracted in
this work.

The extracted Q and kt
2 of device modes A and B at each temperature are shown in

Figure 7a,b, respectively. The Q of mode A exhibits a steady 33% decrease with temper-
ature, from 415 at 25 ◦C to 274 at 500 ◦C. The Q of mode B fluctuates with temperature,
but decreases by 25% from 508 to 377 over the temperature range. The temperature
dependence of Q is set by the energy loss mechanisms that are dominant within a mi-
cromechanical resonator’s regime of operation (e.g., temperature, pressure, and ambient
environment). The total device quality factor, Qtotal, is related to each individual energy
loss mechanism present within the micromechanical structure

1
Qtotal

= ∑
i

1
Qi

(2)
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where Qi is the quality factor associated with a particular mechanism [26]. This indi-
cates that the mechanism with the lowest individual Qi will fundamentally limit Qtotal.
Well-known loss mechanisms include air damping, thermoelastic dissipation (TED),
phonon–phonon dissipation (Akhiezer effect), anchor loss, and electrical losses. In this
work, we report the overall temperature dependency of Q. Identifying the dominant Q-
limiting loss mechanisms was not the focus of the work and requires further investigation
in a future study. The fluctuations in Q were attributed to mechanical boundary changes in
individual resonators within the array, during thermal exposure.
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The kt
2 of boths modes changed during the temperature rise (Figure 7b). This fluctuation

of coupling in individual modes could be explained by the slight differences in TCF between
the two modes. However, the sum of kt

2 for both modes steadily increased, rising from 11.9%
at 25 ◦C to 15.1% at 500 ◦C. The rise in total electromechanical couplingis due to the positive
temperature coefficients of the piezoelectric coupling constants of LN [24].

4. Conclusions

This article presents the experimental results of high-temperature (500 ◦C) opera-
tion of a laterally vibrating (shear horizontal mode) lithium niobate MEMS resonator
array. The lithium niobate laterally vibrating resonator device displayed recoverability
of resonant frequency after 500 ◦C air exposure. The large first-order frequency varia-
tion with temperature of (−95 ppm/◦C TCF) supports the use of uncompensated lithium
niobate laterally vibrating resonators as high-sensitivity extreme environment sensors
(e.g., infrared sensors for space exploration and other high-temperature applications).
The high and stable total electromechanical coupling coefficient, kt

2, was 15% at 500 ◦C and
12.4% upon return to room temperature, demonstrating the potential for low insertion loss,
wide bandwidth lithium niobate laterally vibrating acoustic delay lines to be integrated
with resonant sensors for passive wireless readout of sensor data at high-temperature.
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