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Abstract: The elevated concentrations of various trace metals beyond existing guideline recommen-
dations in water bodies have promoted research on the development of various electrochemical
nanosensors for the trace metals’ early detection. Inspired by the exciting physical and chemical
properties of nanomaterials, advanced functional nanocomposites with improved sensitivity, sensi-
tivity and stability, amongst other performance parameters, have been synthesized, characterized,
and applied on the detection of various trace metals in water matrices. Nanocomposites have been
perceived as a solution to address a critical challenge of distinct nanomaterials that are limited by
agglomerations, structure stacking leading to aggregations, low conductivity, and limited porous
structure for electrolyte access, amongst others. In the past few years, much effort has been dedicated
to the development of various nanocomposites such as; electrochemical nanosensors for the detection
of trace metals in water matrices. Herein, the recent progress on the development of nanocomposites
classified according to their structure as carbon nanocomposites, metallic nanocomposites, and metal
oxide/hydroxide nanocomposites is summarized, alongside their application as electrochemical
nanosensors for trace metals detection in water matrices. Some perspectives on the development of
smart electrochemical nanosensors are also introduced.

Keywords: nanomaterials; nanosensors; sensitivity; selectivity; trace metals; nanocomposites

1. Introduction

The key factor to mitigating trace metals pollution and keeping the water quality up
to standard is the early detection of trace metals within the environmental water bodies [1].
Undoubtedly, the global economic expansion and industrial developments necessary to
meet demand and the continued sustainability of human lives have been appreciated
worldwide. At the same time, the discharges from the increased chemical processes, agri-
cultural processes, and energy conversions, amongst other applications, have elevated
water pollution. These anthropogenic processes have been observed to be the major con-
tributors to the elevated concentrations of trace metals in water bodies [2–6]. The statistics
published by the World Health Organization (WHO), based on the 2017 figures, pronounce
that 785 million people lack basic drinking-water services, including 144 million people
who are dependent on surface water. Globally, at least 2 billion people use a drinking water
source contaminated with faeces, leading to the transmission of diseases such as; diarrhea,
cholera, dysentery, typhoid, and polio, amongst others. It is well known that a class of
essential trace elements, such as; zinc (Zn), copper (Cu), molybdenum (Mo), selenium (Se),
chromium III (Cr), cobalt (Co), manganese (Mn), amongst others, play significant roles
in nutrition balance and other biological aspects [7,8]. However, their excessive ingestion
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above the maximum permitted guidelines provided by the World Health Organization
(WHO) may lead to various adverse effects ranging from acute to chronic impacts, de-
pending on the type, species and level of exposure [9,10]. Another class of toxic trace
metals, comprised of mercury (Hg), arsenic (As), thallium (TI), tin (Sn), antimony (Sb)
and lead (Pb), amongst others, are poisonous and provide minimal health benefits even at
trace levels [7,11]. To avoid a trace metal-based catastrophe, the amount of trace metals,
predominantly toxic trace metals, in environmental water bodies ought to be frequently
monitored and regulated. Traditional methods for the detection and monitoring of trace
metals in water bodies include, but are not limited to, spectrometric techniques such as;
inductively coupled plasma-optical emission spectrometry (ICP-OES) [6], inductively
coupled plasma-mass spectrometry (ICP-MS) [12], flame atomic absorption spectroscopy
(FAAS) [13], graphite furnace atomic absorption spectroscopy (GFAAS) [14] and x-ray
fluorescence (XRF) [15]. However, these techniques require sample collection, sample pre-
treatment, high energy input, pure gas input, infrastructure and skilled engineers, scientists,
or technicians to operate the instruments [6,12–16]. As an alternative to these techniques,
electroanalytical devices, particularly electrochemical sensors, have been identified as
potential candidates for the low cost, sensitive and selective detection of trace metals
in environmental water bodies [17–19]. Nowadays, nanomaterial technology plays an
important role in providing opportunities and possibilities for the development of a new
generation of sensing tools [20,21]. Considering their low cost, high efficiency, multiple
functionality, flexibility, selectivity, and sensitivity, nanosensor devices account for the
shortcomings encountered by the traditional analytical detection techniques [22]. Due to
the incorporation of nanomaterials into their working electrode systems, significant en-
hancements on the sensitivity and selectivity of electrochemical nanosensors, amongst
other performance parameters, have been reported [23]. It is without any doubt that the
properties of nanomaterials, such as; the shape, size, aggregation/agglomeration state,
size distribution, crystallinity and defect structure, play a significant role on the electrode’s
performance in electrochemical sensors [24–26]. Tuning/engineering the nanomaterials
on the surface of the electrode enables the detection of various toxic trace metals simul-
taneously or independently [27,28]. In the past few decades, extensive research has been
carried out on electrochemical sensors incorporating engineered carbon [29,30], transi-
tion metals [31,32], and transition metal oxide/hydroxide [33,34] nanostructured materials
as recognition elements, with promising results reported. To this end, three major strate-
gies, including the engineering of active sites, engineering the electronic conductivity,
and constructing a porous structure in nanomaterials, have been identified to improve the
electrode’s surface chemistry and therefore enhance the electrode’s performance [35–38].
On the basis of this rationalization, we systematically reviewed the recent nanomaterials,
specifically nanocomposites, for electrochemical nanosensors and their applications in
toxic trace metal detection in environmental water samples. Current developments have
also seen attempts to use smart technology, incorporating 4IR technologies in nanosensors
to produce smart nanosensor devices for monitoring trace metals within the environ-
ment. Following the comprehensive review of the nanosensors and their applications,
smart nanosensors were evaluated and key concerns, challenges, and future forecasts in the
monitoring and detections of trace metals in environmental water bodies were deliberated.

2. Nanosensors

Nanosensors are sensing devices that are dependent on the unique properties of nano-
materials to recognize and detect the behavior of matter within a given environment at the
nanoscale to macromolecular level [22]. These sensing devices can be large or small devices
that utilize the nanomaterials incorporated as recognition elements to detect changes at
a nanoscale [39]. The sensing mechanism follows either the optical, electrochemical or
mechanical route of detection [22,40], as a result of the combination of the recognition
element and the detector used as illustrated in Scheme 1. Evidently, as key technologi-
cal and economic drivers, various nanosensors have been developed for the detection of
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chemical and toxic gases, food packaging, medical diagnostics, and water quality monitor-
ing, amongst other applications [41–43]. Interestingly, the recognition element has been
identified amongst these applications as the key element giving the identity of the nanosen-
sor [44]. Owing to their unique physico-chemical properties enhancing the signal detection,
nanomaterials have been incorporated as recognition elements in sensors [22]. Nanoma-
terials allow for the amplified binding of target molecules on their available active sites,
which lead to detectable signals [44]. It is worth noting that if the recognition element is a
nanostructured material, then a nanosensor is obtained [22]. To this end, various classes of
nanostructured materials ranging from carbon-based nanomaterials to organic-based nano-
materials, inorganic-based nanomaterials, and nanocomposite materials (incorporated in
Scheme 1) have been synthesized and deployed in the afore-mentioned applications [41–43].
Various synthetic methods for the synthesis of these classes of nanomaterials are outlined
in the next section.
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Scheme 1. Operational mechanisms of nanosensors.

3. Nanosensor Fabrication

Nanomaterials properties such as; high surface area-volume ratio, dimensionality
(<100 nm), high adsorption surface area, high mobility of particles, reproducibility of
the particles, uniformity, composition, rapid/delayed particle agglomeration and high
electric/heat conductivity are crucial in nanosensors [45,46]. Miniaturization of the nano-
materials improves the surface-to-volume ratio of nanomaterials, resulting in variations in
chemical, mechanical, optical, and magnetic properties, resulting in the increased sensitiv-
ity and specificity in nanosensors [47,48]. The nanomaterials synthesis method is therefore
crucial for improving the performance of the nanosensors. Moreover, synthesis methods
leading to the production of uniformly distributed particles and consistent shapes are
necessary to improve the linearity and the detection limits of the nanosensor, amongst
other performance parameters [47]. There are two common approaches for the synthesis
of nanomaterials, namely top down and bottom up methods [49]. Common top down
methods involve mechanical methods such as; mechanical grinding, high energy ball
milling, mechanical alloying, reactive milling and lithography [16]. Common bottom up
methods include chemical methods such as; hydrothermal, co-precipitation, microemul-
sion, sol-gel, chemical-vapor deposition, electrodeposition, epitaxial growth, and colloidal
dispersion [50].

From the perspective of this review, the classification of the nanomaterials was done
based on the structural composition, such as; carbon based nanomaterials, metallic nanoma-
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terials, and metal oxides/hydroxide nanomaterials. After the identification and description
of the key performance parameter, the three classes’ classifications are used in Section 5 to
discuss various nanomaterials for sensing trace metals in environmental water samples for
water quality assessment applications.

4. Performance Parameters of Nanosensors

Since the first report on the use of nanomaterials in sensors to improve their perfor-
mance, extended efforts have been made to synthesize various nanomaterials and applying
them as nanosensors for the detection and monitoring trace metals in water [51–53]. To this
effect, a variety of parameters influencing the extended improvements to nanosensors have
been assessed. These include, but are not limited to, the increased sensitivity, increased se-
lectivity, lower detection limit, fast response time, good linearity, stability and the extended
lifetime [47,54–57], as shown in Figure 1.
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4.1. Increased Sensitivity

The sensitivity of a sensor is generally defined as the ratio between a physical pa-
rameter and the output signal generated from that physical parameter [58]. The general
equation (Equation (1)) is shown below:

Sensitivity (S) = ∆Y/∆X (1)

where Y = output signal variation and X = input signal variation.
It has been noted that improving the conductivity of the sensor increases the sensitivity

of the sensor. Through their increased surface area to volume ratio, nanomaterial-based
sensors have been shown to possess an increased sensitivity over traditional sensors [59].
The increased sensitivity is often ascribed to the improved conductivity resulting from the
controlled dimensions and shapes leading to increased electrical and optical properties,
in electrochemical and optical nanosensors, respectively [22,60]. Furthermore, it has been
reported that any type of anisotropy in the shape of the nanomaterial, including the
aggregation of the nanomaterial, can greatly enhance the signal amplification and thereby
enhance the sensitivity of the nanosensor [61].

4.2. Good Linearity

The linearity is related to the operational window of the sensor discriminating the
actual measured curve from the model curve. This is formulated as a range from the
minimum to maximum permitted input and output estimates [62]. The linear relationship
expressed in Equation (2) is a key fundamental equation that needs to be satisfied by any
sensor’s linear calibration curve.

Y = mX + c (2)
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where Y = output signal, X = input signal, m = slope/sensitivity of the sensor, and c = the
constant parameter related to the baseline offset.

In addition to the above linear relationship, the correlation coefficient of the calibra-
tion curve is deemed critical in evaluating the linearity of the designed sensor. However,
according to the FDA, statistical methods such as; ANOVA or standard relative deviation
in particular can be used to evaluate the linearity of the calibration curve(s) [39,62]. Sub-
sequently, nanomaterial-based sensors have been reported to show a good linearity as a
result of the reproducibility and uniformity of the nanomaterials adopted on the generation
of the calibration curves [39,63].

4.3. Lower Limit of Detection

The limit of detection (LOD), defined as the lowest amount of the analyte in the
test sample that can be reliably distinguished from zero, is a key parameter in sensors
that intertwines both the sensitivity and the theoretical instrument resolution [64,65].
The universal expression used in the determination of the LOD is shown in Equation (3).

LOD = 3(SD/S) (3)

where SD = standard deviation of the blank solution and S = slope of the calibration curve.
Traditional sensors suffer greatly from the generation of non-linear calibration curves,

leading to the over/under assessment of the target analyte(s) [56]. Nanomaterials have
provided a feasible solution owing to the reproducibility of the particles and the uniformity
in size and shape. These significant properties of nanomaterials enable the linear calibration
curves generation leading to the increased sensitivity of the target analyte(s). Furthermore,
the increase in the surface area resulting in the miniaturization of materials has shown
to result in low LODs [60]. The signal-noise ratio is also reduced with the application of
nanomaterials in sensors [57].

4.4. Increased Selectivity

Selectivity refers to the capability of the sensor to simultaneously discriminate the
response of other competing substances whilst generating the maximum output of the
target analyte(s) [66]. The low selectivity is a major drawback for sensor deployment in
environmental-based applications. However, the emancipation of nanomaterial-based
sensors has successfully reformed these dynamics. Nanomaterials with unique shapes
corresponding to the target analyte have been prepared to selectively target the analyte
of interest from competing substances within the complex sample matrix [26,66]. Ad-
ditionally, the increase in the binding sites resulting from the increase in the surface to
volume ratio of the nanomaterials has been shown to increase the selectivity of the nanosen-
sors [60]. Thus, tuning the nanomaterial structure plays a significant role in the selectivity
of the nanosensors.

4.5. Fast Response Time

The responsiveness of any sensor is usually defined according to the time (or frequency
in some cases) taken to effect an applied input parameter change [67]. Evidently, the input
parameter change in sensors does not come into effect immediately; instead, it takes a
certain period of time, known as the response time [60]. Interestingly, the response times
of the nanosensors have been observed to be lower than those of traditional sensors [68].
This denotes that the nanomaterial-enabled sensors respond quicker to the input parameter
change than the traditional sensors.

4.6. Good Reproducibility, Repeatability and Stability

Sensors reproducibility and repeatability, represented as an inter-day and intra-day
precision, is one of the most important parameters to consider whilst assessing the per-
formance of a sensor [69]. Equally, the ability of the sensor to withstand long operational
hours under hostile environments is monitored [70]. Nanosensors often retain their com-
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pact structure even after operating repeatedly for a long time period without a significant
decrease in the performance, as opposed to traditional sensors that appear to degrade in
performance when used for a long time under hostile environments [71].

Now that the key performance parameters are known and assessed, various mate-
rials are reviewed against these parameters following the three afore-identified classes
of nanomaterials.

5. Nanocomposites in Electrochemical Sensors for Trace Metal Detection
5.1. Carbon Based Nanomaterials

Compared to their bulky counterpart, carbon-based nanomaterials possess extraor-
dinary properties, such as; high surface area, electrical conductivity, heat conductivity,
and mechanical properties [72]. As a result, various carbon nanomaterials and their
derivatives, such as; graphene, carbon nanotubes (CNTs), reduced graphene oxide (rGO),
graphitic carbon nitride (g-C3N4) and carbon nanofibers (CNF), have been adopted for use
in electrochemical nanosensors for trace metal detection in water. To this end, the synthe-
sis, post-treatment, optimization and characterization of the carbon-based nanomaterials,
and the influence of their structural properties in electrochemical sensors, have been
explored. Although various carbon nanomaterials have been synthesized, graphene deriva-
tives (rGO and graphene oxide (GO)) and g-C3N4 have been shown to be the most ideal
candidates for electrochemical sensors as a result of their extraordinary physical and chem-
ical properties. For the purpose of this review, we will focus on the discussions of graphene
derivatives (rGO and GO) and g-C3N4-based materials, with some examples of other
carbon materials shown in Table 1.

5.1.1. Graphene-Based Nanocomposites

Graphene, GO, and rGO form part of the graphene nanostructured family consisting
of 2D carbon atoms arranged in a single-layer hexagonal honeycomb pattern [73]. Ow-
ing to the high electrical conductivity, large surface area, chemical stability, environmental
friendliness and high electrocatalytic activities of graphene, graphene-based nanostructures
have attracted extensive interest in electrochemical applications [74]. However, consid-
ering the hydrophobic nature of graphene and the inability to form stable homogenous
dispersions, the highly oxidized GO and the less oxidized rGO have played a key role in
electrochemical reactions [73,75,76]. Subsequently, GO possesses oxygenated graphene
sheets with hydroxyl and epoxy groups on the basal plane alongside carboxyl and carbonyl
groups on the edges, leading to an intensive interaction with a variety of metal ions [74].
However, the high concentration of sp3 C-O bonds in GO decreases the electron transfer,
which therefore reduces the electron conductivity [77]. To this end, the reduction of GO via
the removal of some oxygen based groups by chemical/thermal treatment forms rGO with
increased electron conductivity [78]. Although the reduction of GO to rGO leads to abun-
dant structural defects (oxygen vacancies) and desired functional groups influencing their
use in electrochemical sensors, the aggregation and π−π stacking interactions of graphene
layers still persists [79]. To overcome these drawbacks, various materials including; metal
nanoparticles, conducting polymer, and silver nanowires have been incorporated into
rGO suspensions [77,79]. Engineering the electronic conductivity by the introduction of
oxygen vacancies (through the reduction of GO to rGO) [77,78] and the doping of the rGO
materials with other heteroatoms appears to be an effective strategy to improve the rGO
electrochemical activity [80]. To attempt this, Hassanpoor and Rouhi [81] incorporated
the hydrothermally prepared MnO2 nanorods on rGO layers using the facile mixing and
stirring method for the determination of trace amounts of cadmium (II) in environmental
water samples. Post the reduction of GO to rGO, the restacking and aggregation of the rGO
layers were observed on the SEM images, which necessitated the incorporation of MnO2
nanorods (Figure 2). The close contact between rGO nanosheets and MnO2 nanorods was
also observed on the SEM images, which has proven to be very important for improving
the high degree of electrical conductivity. Under optimum conditions, the α-MnO2/rGO
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nanocomposite displayed good analytical figures of merits with a linear range and LOD
of 4.0 to 130 µg L−1 and 1.12 µg L−1 for Cd (II), respectively. The application of the α-
MnO2/rGO nanocomposite in tap water and river water displayed good recoveries of 103.8
and 102.4%, respectively, which were attributed to the synergic effect of rGO resulting on
the good conductivity and high surface area, as well as the good catalytic activity of MnO2
nanorods that can form other species of manganese such as; MnOOH, Mn2+, Mn(OH)2,
Mn3O4 in solution. The electrochemical sensor also demonstrated higher sensitivity and
selectivity towards the detection of Cd2+ in a complex matrix with other co-existing metal
ions. Although this strategy yielded good results, it appears less feasible than the doping
with polymers [30] and binder specific aptamers [40]. Further examples of the rGO-based
nanomaterials as electrochemical sensors for a variety of trace metals are shown in Table 1.
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Figure 2. FE-SEM images of (a) graphene oxide (GO), (b) reduced graphene oxide (rGO), (c) α-MnO2,
(d) α-MnO2/rGO nanocomposite (reproduced with permission from [81]; copyright 2019, Taylor &
Francis Group).

5.1.2. Graphitic Carbon Nitride-Based Nanocomposites

As a derivative of graphite exhibiting a unique electronic structure, graphitic carbon
nitride (g-C3N4) has attracted significant attention in various electrochemical applications,
such as; water splitting, photocatalysis, sensors, batteries, and fuel cells, amongst oth-
ers [82,83]. However, the widespread applications of g-C3N4 in electrochemical sensors
have been limited by the low electrical conductivity and a small specific surface area [84].
However, inspired by the presence of N and H atoms forming an electron-rich graphitic
like tri-s-triazine units, whose layers are combined together with weak van der Waals
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forces, g-C3N4 has been regarded as a potential candidate to complement carbon in various
material-based applications. The interlayer distance between g-C3N4 layers allows for the
ultrasonic exfoliation into g-C3N4 nanosheets [85] or g-C3N4 nanorods [86], leading to more
engineered active sites due to an increase in the surface area. To demonstrate this, Zhang
et al. [87] exfoliated the bulky g-C3N4 prepared by thermal polycondensation to produce
ultrathin g-C3N4 nanosheets employed as a sensing platform for the determination of trace
mercury (Hg2+) using an anodic stripping voltammetry (ASV) technique in water samples
(Scheme 2). For this purpose, the ultrathin g-C3N4 nanosheets modified glassy carbon
electrode (GCE) with increased surface sites showed enhanced electrochemical response
to Hg2+ than the bulky g-C3N4 modified GCE. The strong affinity of Hg2+ and ultrathin
g-C3N4 through surface -NH and -NH2 groups, leading to increased electron conductiv-
ity based on the lone pairs of electrons in N atoms, resulted in the high sensitivity and
selectivity of the electrochemical sensor towards Hg2+ detection. Thus, under optimized
conditions, the linear sweep anodic stripping voltammetry (LSASV) showed a linear re-
sponse in the range of 0.1–15 ppm and a LOD of 0.023 ppm. The feasibility of the developed
electrochemical sensing strategy was demonstrated by applying it for the detection of Hg2+

in various real samples including tap, lake, and river water, with acceptable recoveries
ranging from 95% to 107.5% for the ultrathin g-C3N4/GC electrode, which agreed well
with the ICP-AES measurements.
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Another strategy involves the surface modifications to further enhance the electronic
conductivity by the incorporation of other conductive materials [84] or doping with other
heteroatoms [88], leading to enhanced electrochemical properties of the g-C3N4 materials.
To illustrate this, Karthika et al. [89] developed a graphene carbon nitride decorated with
silver molybdate nanocomposite using a solvothermal method for the electrochemical
detection of chromium (VI) in water samples. The TEM images (Figure 3) clearly show the
interaction of g-C3N4 with AgM that resulted in the improvement of the electrochemical
activity of the sensor. The amperometric electrochemical method showed tremendous
sensitivity of 65.8 µA µM−1 cm−2, good linear ranges from 0.1 to 0.7 µM, and a lower LOD
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of 0.0016 µM that can be attributed to the availability of greater surface area and adsorption
sites. Furthermore, the authors indicated that graphene carbon nitride-based metal oxides
enhance the electrochemical sensing due to their large surface area, electrical conductivity,
thermal conductivity, interlayer structure and stability. The electrochemical sensor was
employed for the determination of Cr6+ in tap, drinking, river, and industrial water samples,
respectively, with recoveries ranging from 94.3 to 100.2%. Additionally, the g-C3N4/AgM
modified electrode exhibited good selectivity, stability, reproducibility and repeatability.
Further examples on the g-C3N4-based nanomaterials for the electrochemical sensing of
trace metals in water are shown in Table 1.
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pattern of g-C3N4/AgM nanocomposite (f) (reproduced with permission from [89], copyright 2020
Elsevier B.V.).
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Table 1. Electroanalytical performances of selected carbon nanocomposite-based sensors for trace metal detection in environmental water matrices.

Nanomaterial/Electrode Synthesis Method Target
Analyte Technique LOD Linear Range RSD (%) n Sensitivity Ref

g-C3N4/AgM/Nf/GCE Sonochemical Cr6+ Amp 0.002 (µM) 0.1–0.7 (µM) 2.83 30 65.8
(µA µM−1 cm−2) [89]

Pt/g-
C3N4/polythiophene/GCE Chemical reduction Hg2+ DPV 0.009 (nM) 1–500 (nM) 1.80 3 1.08

(µA nM−1 cm−2) [90]

rGO/Ala/PANI/GCE Chemical reduc-
tion/polymerization

Cd2+

Pb2+

Cu2+
SWASV

0.030 (nM)
0.045 (nM)
0.063 (nM)

0.08–100 (nM)
3.30
2.60
3.00

10

0.43
0.71
0.61

(µA nM−1 cm−2)

[91]

Nf/CLS/PGR/GCE Hydrothermal/thermal
reduction

Cd2+

Pb2+ DPASV 0.010 (µM)
0.003 (µM) 0.05–5.00 (µM) 4.54

3.63 8
9.77
32.7

(µA µM−1 cm−2)
[92]

Bi-NCNF/GCE pyrolysis Cd2+

Pb2+ SWASV 0.020 (µM)
0.030 (µM) 1–120 (µM) 7.10

4.30 10
0.207
0.273

(µA µM−1)
[93]

n = reproducibility, GCE = glassy carbon electrode, Nf = nafion, PANI = polyanaline, CLS = calcium lignosulphonate, PGR = porous graphene, NCNF = N-doped carbon nanofibers, Amp = amperometry.
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Table 1 shows different carbon-based sensors modified with various materials of differ-
ent classes, ranging from non-noble metal nanoparticles (NPs) (Bi and AgM) to noble metal
NPs (Pt), organic compounds (calcium lignosulphonate, CLS) and polymers with amino
acids (polyaniline (PANI)/alanine), alongside their corresponding analytical responses.
The modification of g-C3N4 with Pt and PTh in the Pt/g-C3N4/polythiophene/GCE
nanocomposite for the detection of Hg2+ was observed to improve the LOD and sensi-
tivity at a low % relative standard deviation (RSD), as shown in Table 1. In addition to
the increased active sites, the improved performance was attributed to the presence of
PTh and Pt NPs that compensated for the lower electrical conductivity of the g-C3N4
in the nanocomposite. The sensor also showed higher reproducibility. Likewise, the g-
C3N4/AgM nanorods in the g-C3N4/AgM/Nf/GCE nanocomposite exhibited a large
surface area and the electron transfer constant rate was enhanced by the grafted immo-
bilized nafion. This resulted not only in the improved LOD, sensitivity and a low %
RSD shown in Table 1, but also exhibited a good selectivity, stability, sensitivity, and
reproducibility, which certified that the g-C3N4/AgM/Nf/GCE is a promising sensor.
The rGO/Ala/PANI/GCE nanocomposite that exhibited high sensitivity and selectivity
towards Cd2+, Pb2+, and Cu2+ ions detection which were attributed to the strong binding
affinity of rGO/Ala/PANI nanocomposite with these target metal ions was proposed.
Subsequently, the sensor displayed a wide linear range and low LODs (Table 1) which
are accredited to the high surface binding affinity, improved electrical conduction path,
electron tunneling, and ion-trapping properties, together with remarkable electrocatalytic
activity. The Nf/CLS/PGR/GCE nanocomposite developed for the simultaneous detection
of Pb2+ and Cd2+ showed low LODs at a wide linear range (Table 1), coupled with good
sensitivity, repeatability and reproducibility. The improved performance could be ascribed
to the synergistic contribution from porous graphene (PGR), CLS and nafion, which inte-
grated the advantageous features of high active surface area, good cation exchange ability
and strong adsorption capacity. The designed 3D Bi-NCNF/GCE nanocomposite was
found to possess porous network structures, high specific surface area, and high nitrogen
content dopant, and acts as an electrode-modification material for selective and sensitive
electrochemical sensors for the assay of Cd2+ and Pb2+. Due to this, the sensor exhibited
excellent electroanalytical performance with a wide linear response range, low LOD and
low % RSD (Table 1), in addition to the excellent repeatability, reproducibility, and stability.

5.2. Inorganic Metallic Nanoparticles

Owing to their attractive physico-chemical properties such as; mechanical strength,
chemical stability, high electronic conductivity, monodispersed size and high surface area,
metal-based NPs have aroused significant interest in electrochemical sensors [26]. To this
end, metal NPs such as; gold NPs [94], silver NPs [95], bismuth NPs [96], silica NPs [97],
quantum dots [98], amongst others, have found applications in electrode systems as
electrochemical sensors for the detection of trace metals in water. The fast electron trans-
fer between the electrochemical transducer and the analyte material in the presence of
metal NPs of various size, porosity, conductivity, and shape have been extensively stud-
ied. Reports from these studies identified the aggregation of the transition metal-based
nanoparticles as a drawback, leading to the clogging of active sites, resulting in the poor
reproducibility and sensitivity of the sensors [26,89,93,99]. To address this drawback, sup-
port materials including GO [74], graphene [100], graphene carbon nitride (GCN) [89],
porous carbon [101], graphene quantum dots [102], and transition metals [103], amongst
others, have been incorporated to the metal NPs structure. Discussions on the metal-
based nanomaterials for electrochemical sensors are classified into noble and non-noble
metal-based nanomaterials in the section below and are also summarized in Table 2.

5.2.1. Noble Metal Based Nanomaterials

Amongst other noble metal-based nanomaterials, gold and silver NPs have been
widely employed in electrochemical sensors for the detection of metals in water samples.
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These nanomaterials exhibit distinct electronic and electrical characteristics, versatile elec-
trocatalytic activity and high surface area.

Gold Nanoparticle-Based Nanocomposites

Gold nanoparticles (AuNPs) have attracted momentous interest in electrochemical de-
vices, particularly in electrochemical sensors, due to their interesting physical and chemical
properties. Amongst these properties, the conductivity of AuNPs allows for the intensive
electron transfer between the electrode and the analyte of interest [94,102]. Due to their
stable uniform surface capable of further functionalization leading to their increased sensi-
tivity and selectivity, AuNPs of small size are used in electrochemical sensors [104]. It has
been demonstrated that hybridizing AuNPs with conductive materials such as; rGO [105]
and nitrogen-doped graphene [106], amongst others, can enhance the performance for
the electrochemical detection. However, such hybridization often involves immobilizing
the AuNPs with aptamers [107] or capping the NPs with capping agents in order to re-
duce the agglomeration of the nanoparticles [108]. To demonstrate this, Ting et al. [102]
functionalized cysteamine-capped AuNPs with graphene quantum dots (GQDs) for the
electrochemical detection of Hg2+ and Cu2+ with LODs of 0.02 and 0.05 nM, respectively,
using the anodic stripping voltammetry (ASV) method. The sensor showed high sensi-
tivities of 2.47 and 3.69 µA/nM for Hg2+ and Cu2+, respectively. The high performance
of the electrochemical sensor was attributed to the synergistic effect between the highly
electron conductive GQDs and cysteamine-capped AuNPs that enhanced the sensitivity of
the sensor, as shown in Figure 4. It can be clearly perceived that the integration of GQD on
the cysteamine-AuNP dramatically enhanced the signal in Figure 4A. The results for the
detection of Hg2+ (Figure 4B) were also consistent, following the successful integration of
GQD with cysteamine-AuNP.
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Silver Nanoparticle-Based Nanocomposites

Silver nanoparticles (AgNPs) are one of the most vital NPs characterized with unique
optical, electrical, and thermal properties. Additionally, AgNPs provide excellent electron
transfer rate and good chemical stability that is dependent on the size uniformity and
distribution across the surface [109]. Through the integration with conductive carbon
substrates such as; carbon screen-printed electrodes (CSPE) [110], rGO [111], and other
materials such as; AuNPs [112] and SiO [113], AgNPs have shown an increase in sensitivity
when applied as electrochemical sensors. However, just like their counterpart AuNPs,
aptamers [114] or capping agents [115] are often immobilized prior to doping. To illustrate
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this, Eksin et al. [95] reported an electrochemical sensor based on AgNPs capped with
folic acid modified with a pencil graphite electrode for the detection of Hg2+ in tap water
samples. The authors reported that folic acid protects the AgNPs from aggregation via
binding the amine groups with AgNPs, allowing the folic acid to stabilize the surface of
AgNPs by electrostatic repulsion. Under optimized conditions, the linear range and the
LOD were obtained as 10–25 µM and 8.43 µM, respectively. Additionally, the sensor was
found to be rapid, selective, and sensitive towards monitoring of Hg2+ in environmental
tap water samples.

5.2.2. Non-Noble Metal-Based Nanomaterials
Bismuth Based Nanocomposites

Though bismuth NPs exhibit the same crystal structure as bulk bismuth, their unique
physical and chemical properties, such as; a large surface area and surface free energy, play a
significant role in electrochemical applications [116]. The drawback on the application of Bi-
based NPs as electrochemical nanosensors is their tendency to easily aggregate, as a result
of their high surface energy observed leading to low sensor performance [117]. Interest-
ingly, the physicochemical properties of bismuth nanoparticles have been improved using
various strategies involving the integration with carbon nanomaterials such as; graphene,
CNTs, graphite nanofiber, and metal–organic frameworks (MOFs)-derived porous carbons,
leading to an improved sensor performance [96,117]. For this purpose, Shi et al. [100] dis-
persed bismuth NPs on an electrochemically reduced porous 3D graphene framework to
form a 3D graphene framework/Bi nanoparticle (GF/BiNP) film. The film showed a wide
linear range from 1 to 120 µg L−1 and ultralow LOD of 0.02 µg L−1 and 0.05 µg L−1 for Pb2+

and Cd2+, respectively, alongside the linear range from 40 to 300 µg L−1 and a low LOD of
4.0 µg L−1 of Zn2+. In addition to the excellent repeatability, reproducibility and stability,
the sensor displayed 98–101% recovery with a % RSD of below 6% when applied in lake
and tap water. The performance of the sensor was ascribed to the large active surface area,
fast electron transfer ability, high mass transfer efficiency, excellent structure stability and
binding strength on the electrode emancipating from the film’s porous structure, as shown
in the FESEM images in Figure 5. The incorporation of Bi NPs onto the graphene networks
also played a role in the fast electron transfer ability due to an increase in the conductivity.
In another study, Chen et al. [101] fabricated BiSn alloy NPs supported on carbon black
using the co-precipitation process for the sensitive detection of Cd2+ in river water samples.
After the differential pulse anodic stripping voltammetry (DPASV) analysis, the fabricated
BiSn@C-based sensor showed improved performance on the detection of Cd2+, which was
ascribed to the large specific surface area, abundance of active sites and good electrical con-
ductivity. These properties were observed to have increased through the addition of carbon
black as a support for BiSn, thus increasing the amount of surface-active BiSn, leading to
an improved electrochemical performance than BiSn without carbon black. In addition
to the high sensitivity, reproducibility, linearity and low LOD, the sensor displayed good
recoveries of 94.3–100.8% for Cd2+ in river water samples.

5.3. Inorganic Non-Metallic Nanomaterials

Inorganic non-metallic nanomaterials are a class of nanomaterials other than polymers
and metallic nanomaterials. This class encompasses oxides, carbides, nitrides, halogen com-
pounds, silicates, aluminate, phosphates and borates, amongst other substances [118–120].
The identified major types of inorganic non-metallic nanomaterials that include silica- and
quantum dot-based nanocomposites are discussed here.
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5.3.1. Silica-Based Nanocomposites

Considering their interesting surface chemistry, allowing their surface to be easily func-
tionalized, silica NPs, particularly mesoporous silica NPs, have gained interest in electro-
chemical reactions [118]. Interesting properties such as; high surface area, diverse structure
and morphology have invoked their applications in the agricultural field, food industry,
drug delivery, and industrial applications, particularly for the environmental pollution
assessments [118,119]. To improve the conductivity and the reduction in the agglomeration
of silica nanomaterials, Fang et al. [120] developed the three-dimensional nanoporous silica
incorporated with polyfurfural on the GCE by one-step co-electropolymerization for the
simultaneous detection of Cd2+ and Pb2+ in portable water. The sensor displayed a wide
linear range of 1.5 ng/L to 6200 µg/L and 0.05 ng/L to 5200 µg/L, with corresponding low
LODs of 0.9 ng/L and 0.02 ng/L for Cd2+ and Pb2+, respectively. Fabricating polyfurfural
into nanoporous silica enhanced the sensor performance through improving the electrode
surface area, leading to a minimal agglomeration of the nanocomposite and good electrical
conductivity through the supply of more binding sites for coordinating with metal ions.
Due to this, the 3D-PF/SA showed a higher electrochemical performance than the pristine
polyfurfural film modified GCE or pristine nanoporous silica on GCE.

5.3.2. Quantum Dot-Based Nanocomposites

Although semiconductor nanostructures such as; quantum dots are well-known ef-
fective nanomaterials for optical sensors, their use in electrochemical sensors has been
shown to be equally effective [97,103]. Quantum dots exhibit distinctive electronic and
electrochemical properties leading to high sensitivity, efficient electron transfer, fast re-
sponse time and long life time [121]. Due to these properties, SnO2, ZnO and N-doped
carbon quantum dot-based electrochemical sensors, amongst others, were prepared for
the detection of Cd [98], Hg [122], Pb [123] in environmental water samples, respectively.
Interestingly, Bakhsh et al. [124] fabricated an effective core-shell nanocomposite based on
ZnSe–CdSe nanoparticles coated with silica (SiO2) nanomaterials using the sol-gel method
for the electrochemical detection of Cu2+ in water samples. The FESEM images showed
the morphology of ZnSe–CdSe core NPs with SiO2 shell surrounding the NPs, which were
in agreement with the XPS results. The amperometric sensor based on ZnSe–CdSe/SiO2
core–shell nanomaterial modified electrode exhibited the LOD of 50 µg L−1 and a sensi-
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tivity of 0.008847 µA µg−1cm−2. Additionally, the electrochemical sensor displayed good
reproducibility and stability for long term deployment.

Table 2 represents the selected transition metal/non-metal materials modified with
various polymers (chitosan), organic-inorganic hybrid materials (MOFs) and their corre-
sponding analytical performances. The modification of Fe with chitosan leading to the
formation of the Fe-chitosan/SPCE nanocomposite has been studied. Compared to the
bare electrode, the electrode modified with Fe-chitosan showed an increase in electroana-
lytical performance with an increased sensitivity, a low LOD on a wide linear range with
a low % RSD < 5% towards the detection of As3+ (Table 2). The increased performance
was due to the selective interaction between Fe-chitosan and As(III) due to the presence
of –OH and –NH2 groups in the biopolymer which provide adsorption sites for As(III),
the enhanced conductivity as the result of the presence of Fe in Fe-chitosan nanocomposite
and the enhanced electrochemically active surface areas. Additionally, the sensor also
displayed high selectivity, reproducibility, and stability. The modified NPBiE/CE nanocom-
posite displayed better electroanalytical performance than the conventional NPBiE with
higher sensitivities and LODs with a lower % RSD towards the detection of Cd2+ and Pb2+

(Table 2). The improved performance was due to the modified fabrication process (subse-
quent steps of Bi and Sn electroplating and heat treatment for Bi-Sn alloying) providing
a better structure formation of a well-defined and uniformly distributed Bi nanoporous
surface with ellipse, thus improving sensor sensitivity toward heavy metals. The sensor
also showed better reproducibility and stability. Then, the ZIF-67/EG nanocomposite
was constructed and the electrochemical sensor displayed good performance with a large
electrochemically active surface area, high sensitivity and low LOD at low % RSD (Table 2).
The improved sensor performances originate from the synergistic effects originating from
the intercalation of ZIF-67 in between the layers of EG, allowing for the increased elec-
tron conductivity of the nanocomposite. Furthermore, the large BET surface area and
pore structure result in increased electrochemical activity, which is beneficial for metal
adsorption and diffusion. Additionally, good experimental reproducibility and good stabil-
ity of the nanocomposite enable the long-term use for selective detection of trace metals
(Table 2) in aqueous solutions. Interestingly, the modification of CPSPE with AuNSs in the
developed AuNSs/CSPE nanocomposite was observed to improve not only the sensitivity
and LODs at a low % RSD (Table 2), but also the stability of the sensor towards As(III)
and Hg(II) detection. The different responses for As(III) and Hg(II) (at high loadings)
indicate that nanoparticle shape can greatly influence the analytical response. The Cu-
based MOFs/GCE nanocomposite displayed increased sensitivity and LODs at low % RSD
(Table 2), which was attributed to the large surface area and abundant active sites in MOFs
produced a multiplex ratiometric electrochemical sensor with improved characteristics
ranging from the reproducibility to the stability of the sensor.

5.4. Nanostructured Metal Oxides/Hydroxides

Nanostructured metal oxides/hydroxides possess significant electron-transfer kinet-
ics, a larger specific surface area, unique electrochemical activity, stability, and a larger
number of adsorption sites [24]. Due to their excellent electrochemical properties, nanos-
tructured transition metal oxides/hydroxides have been utilized as sensing elements
in numerous electrochemical sensing applications [128,129]. However, nanostructured
metal oxides/hydroxides nanomaterials easily aggregate due to their high surface energy,
resulting in a significant decrease in accessible catalytic sites [130]. Nonetheless, tailor-
ing the morphology of metal oxides/hydroxides to reduce agglomeration improves the
surface area and surface functionality, leading to improved electrochemical performance [1].
Amongst various strategies developed to overcome this problem, one key solution is to sup-
port metal oxides on conductive materials, such as; nanostructured carbon materials [69]
and metal NPs [45], amongst others.
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Table 2. Electroanalytical performances of selected transition metal-based nanocomposites as nanosensors for trace metal detection in water matrices.

Nanomaterial/Electrode Synthesis
Method Target Analyte Electrochem

Method LOD Linear Range RSD (%) n Sensitivity Ref

Fe-Chitosan/CE Electrodeposition As3+ SWASV 1.12 ppb 2–24 ppb 2.90 8 3.66 µA/ppb [125]
Modified nanoporous

bismuth film/CE
co-

electroplating
Cd2+

SWASV
1.30 (ppb) 2–40 (ppb) 3.10

40
0.035 (µA/ppb)

[96]
Pb2+ 1.50 (ppb) 4.30 0.125 (µA/ppb)

ZIF-67/EG
One-pot

hydrothermal
reaction

Cd2+

SWASV

1.13 (nM)

500–3000 (ppt) - - - [126]Pb2+ 1.11 (nM)
Cu2+ 2.23 (nM)
Hg2+ 1.28 (nM)

Gold nanostars
(AuNSs)/CE

Chemical
reduction

As3+

SWASV
0.80 (ppb) 2.5–764.2 (ppb) 2.50

3 - [94]Hg2+ 0.50 (ppb) 1.5–538.9 (ppb) 3.20
Pb2+ 4.30 (ppb) 13.0–323.6 (ppb) 4.60

Cu based MOFs/GCE Co-precipitation Cd2+ Ratiometric
DPV

33.0 (nM) 10 nM to 10 µM
2.21 5 - [127]

Pb2+ 50.0 (nM) 10 nM to 10 mM

n = reproducibility, CE = carbon electrode, GCE = glassy carbon electrode, EG = expanded graphite.
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5.4.1. Fe3O4-Based Nanocomposites

Fe3O4 nanomaterials possess a high adsorption capacity, which renders them suitable
for the electrochemical detection of metals [131]. Although the oxidation of surface Fe2+

ions in Fe3O4 nanomaterials allows for the effortless reduction of metal cations, the con-
ductivity of Fe3O4 nanomaterials still needs to be improved, alongside the de-aggregation
of the metal NPs [132,133]. In response to this, Wu et al. [134] supported Fe3O4 NPs
on the highly conductive fluorinated-MWCNT using a hydrothermal method for the si-
multaneous detection of Cd2+, Pb2+, Cu2+, and Hg2+ in water samples. Astonishingly,
the Fe3O4/F-MWCNT-based electrochemical sensor displayed the best performance, with
a sensitivity of 108.79, 125.91, 160.85, and 312.65 µA mM−1 cm−2, wider linear detection
ranges of 0.5–30.0, 0.5–30.0, 0.5–30.0, and 0.5–20.0 µM, and lower LODs of 0.05, 0.08, 0.02,
and 0.05 nM, towards Cd2+, Pb2+, Cu2+, and Hg2+, respectively. In addition to displaying
higher recoveries of 97–101% in river water samples, the electrochemical sensor exhibited
excellent performances in selectivity, recovery, stability, and reproducibility studies. The ex-
cellent performance could be attributed to the semi-ionic C-F bond on the F-MWCNTs’
surface with a strong negative charge and the synergistic interaction between Fe3O4 and
F-MWCNTs. In another study, Li et al. [135] reported on the electrochemical sensing of
As(III) using hydrothermally prepared dumbbell-like Au/Fe3O4 NPs modified with a
screen-printed carbon electrode. Interestingly, the synergistic effect of the excellent catalytic
properties of Au NPs and the good adsorption ability coupled with an electron hopping
process between the Fe2+ and Fe3+ ions in Fe3O4 NPs significantly improve the detection
of As(III). The mechanism of detection (Scheme 3) involved the adsorption of As(III) on
Fe3O4 NPs, whereby the surface active Fe(II) is oxidized to Fe(III) simultaneously with
the reduction of As(III) to As(0). However, during the SWASV process on the electrode
surface, Fe(III) is reduced back to Fe(II) with the oxidation of As(0) to As(III) to complete
the Fe(II)/Fe(III) cycle. The adsorbed As(III) on Fe3O4 NPs is then directly reduced and
oxidized on the Au surface with an increased sensitivity of 9.43 µA ppb−1 and a low LODs
of 0.0215 ppb in the 0.1−10 ppb linear range. Good recoveries of 90−110% were observed
for the analysis of river water.
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5.4.2. Layered Double Hydroxide-Based Nanocomposites

Layered double hydroxides (LDHs) are a family of two-dimensional (2D) materials
with layered crystal structures consisting of metal cations occupying the center of the
edge sharing octahedral unit, with vertexes containing hydroxide ions that make it pos-
sible to form 2D sheets [136]. The chemical composition of LDH can be shown with a
generic formula of the most studied class of LDH, expressed as [M2+

1−x M3+
x (OH)2]x+

[An−
x/n]x- . zH2O, where M2+ = divalent cation, M3+ = trivalent cation, A = interlayer

anion, n = charge on interlayer anion, x and z are fractional constants. The common
divalent cations used in LDH include Ca2+, Mg2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+ or Zn2+,
whereas the common trivalent cations used in LDH include Fe3+, Al3+, Ga3+, Mn3+ and
Co3+. A variety of anions are used to compensate for the positive charges of the brucite
layers, including CO3

2−, Cl−, SO4
2−, and RCO2− [136–139]. The synthesis of LDH has

been carried out using top down and bottom up methods [138,139]. Top down synthesis
methods include the delamination/exfoliation step in solvents such as; butanol, acrylates,
toluene and tetrachloromethane, formamide, dimethylformamide (DMF)–ethanol mix-
ture and water [138,140,141]. Bottom up methods follow the traditional co-precipitation
method [139]. Due to their many advantages, such as; high adsorption capacity, exchange-
able interlayer anions, ease of preparation, catalytic activity and low cost, LDHs have been
previously synthesized with a wide variety of morphologies, from discrete 2D nanosheets
to nanoflowers [136,138,139]. These LDHs have found applications in catalysis, fire re-
tardation, and sensors, amongst other applications. Asadpour-Zeynali and Amini [142]
developed an electrochemical sensor based on thioglycolic acid (TGA) intercalated Mg–Al
LDH (Mg–Al–TGA LDH) using the anion exchange method for the selective detection of
trace mercury ions using SWASV. Under optimal conditions, the sensor exhibited a wider
linearity range from 2.0 to 800 nM Hg(II) with the LOD of 0.8 nM. The TGA intercalated
between the Mg-Al layers, confirmed by the increase in the interlayer basal space regions on
the XRD, provided strong chelating thiol groups towards Hg (II), thus exhibiting excellent
performance with a percentage recovery ranging from 97 to 104%.

Table 3 represents the modifications of transition metal oxides/hydroxides alongside
their resulting analytical performance. Transition metal oxides/hydroxides have been
modified with various classes of materials ranging from nanostructured carbon, metal NPs,
polymers, amino acids, organic compounds, metal oxides and organic-inorganic hybrids.
To this end, the highly modified Fe3O4/MWCNTs/LSG/CS/GCE nanocomposite dis-
played increased sensitivity and LOD at a low % RSD after modifications, as shown in
Table 3. As expected, the novel nanocomposite possessed a significantly large specific area,
remarkably high conductivity and excellent absorption ability that assumed responsibil-
ity for the increase in the analytical performance of the sensor. Additionally, the sensor
displayed excellent repeatability, reproducibility, stability, and reliable practical applicabil-
ity. The CeO2-CNF nanocomposite was applied for the detection of Pb and Cu, and the
electrochemical analysis indicated the high sensitivity and lower LOD with low % RSD
(Table 3). The increased analytical performance was attributed to the high BET surface
area and the graphitic character due to the presence of the CNF, which was responsible
for the rapid electron transport from the solution to the electrode surface. The repro-
ducibility and linearity of the sensor were found to also be higher. The modification of
MnO2 by MWCNTs/CS resulted in the MnO2/MWCNT/CS nanocomposite that showed
higher sensitivity and low LOD at low % RSDs (Table 3) when applied on the detection of
Cr(III). The improved electrochemical performance was due to the porous microstructure
and the reduced agglomeration of manganese oxide nanostructures, and the high ability
of chitosan for encapsulation of more crystalline MnOx, with MWCNTs/CS as a good
dispersant agent leading to homogenous particles that were highly stable. The synergis-
tic effects of MWCNTs and MnOx nanoflakes played an important role on the stability
and increased performance of the sensor. The Fe-MOF@mFe3O4@mC nanocomposite
demonstrated excellent electrochemical activity with high sensitivity, good linear range,
and low LOD at a low % RSD (Table 3) for the detection of Pb2+ and As3+. The strong
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biobinding of the aptamer with the metal ion played a key role in increasing the sensitivity,
selectivity, stability, and reproducibility of the sensor. The ZnO nanofibers/L-cysteine
nanocomposite/GCE displayed a wide linear range, increased sensitivity, low LOD at a
low % RSD (Table 3) on the detection of Pb2+. The high performance of the sensor was
ascribed to the high porosity of nanofibers combined with the Lewis acid–base interaction
of L-cysteine. The sensor displayed satisfying stability, excellent reproducibility, and good
repeatability. The BiNPs@CoFe2O4/GCE nanocomposite showed impressive analytical
responses with high sensitivity, wide linear range, and low LOD at low % RSD on the
detection of Pb2+ and Cd2+ as shown in Table 3. The high performance of the sensor
was ascertained as being due to the excellent adsorption and electrical conductivity that
contributed to the acceptable reproducibility and good stability exhibited by the sensor.
The Co3O4 nanosheets/ITO nanocomposite formed by fabricating Co3O4 nanosheets on
ITO showed good electrochemical performance with a wide linear range and low LOD at
low % RSD (Table 3). The improved performance was dedicated to the presence of Co3O4
nanosheets on the electrode surface that could enhance the electrochemical activity of the
electrode. The sensor also displayed good selectivity, sensitivity and reproducibility.
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Table 3. Electroanalytical performances of selected transition metal oxide/hydroxide-based nanocomposites as sensors for trace metal detection in water matrices.

Nanomaterial/Electrode Synthesis Method Target
Analyte

Electrochem
Method LOD Linear Range RSD

(%) n Sensitivity Ref

Fe3O4/MWCNTs/LSG/CS/GCE Hydrothermal/laser scribing Cd2+
SWASV

0.10 ppb 1 to 200 ppb 3.77
10 - [143]

Pb2+ 0.07 ppb 0.97

CeO2-CNF chemical vapor deposition Pb2+
DPV

0.60 ppb 0.9–2.1 ppb - - - [144]
Cu2+ 0.30 ppb 0.6–1.8 ppb

MnO2/MWCNT/CS Sonochemical/Electrodeposition Cr3+ HC 0.30 ppb 3 to 200 ppb 3.00 5 18.7 nA µM−1 cm−2 [145]

Fe-MOF@mFe3O4@mC Hydrothermal/temperature
treatment

Pb2+
EIS

2.27 pM
0.01 to 10.0 nM

5.61
5 - [146]

As3+ 6.73 pM 4.66
ZnO nanofibers/L-cysteine

nanocomposite/GCE Electrospinning/annealing Pb2+ SWASV 0.40 ppb 10–140 ppb 4.50 30 - [147]

BiNPs@CoFe2O4/GCE
Hydrothermal reaction/colloidal

dispersion
Cd2+

SWASV
7.30 nM 0.06 to 0.6 mM 3.20

10 - [99]
Pb2+ 8.20 nM 0.08 to 0.8 mM 2.50

Co3O4 nanosheets/ITO Electrodeposition Pb2+ DPASV 0.52 ppb 1–100 ppb 5.20 7 - [148]

LOD = limit of detection, RSD = relative standard deviation, n = reproducibility, CE = carbon electrode, CS = chitosan, GCE = glassy carbon electrode, ITO = indium tin oxide, LSG = laser scribed graphene,
mC = mesoporous carbon, HC = hydrodynamic chronoamperometry.
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6. Smart Electrochemical Nanosensors

The fourth industrial revolution has evoked the development of cognitive system/devices
and their exploitation in various technical fields [149,150]. Although smart devices such as;
smartphones, medical, robotics and automobile devices have revolutionized industrial tech-
nologies, the emerging smart electrochemical environmental nanosensing technology is ex-
pected to have an equally positive impact on the industrial revolution [149,151]. The smart elec-
trochemical environmental nanosensing technology is not only associated with the nanosensor
device (recognition element, transducer and the readout system), but is integrated with add
on components such as; light-emitting diodes (LEDs), display screens, microprocessors, wire-
less communication boards (Bluetooth, infrared or Wi-Fi) and power supply battery/solar
devices, thus enabling the processing/display to be performed remotely far from the sensing
site [149–152]. The most essential part of the smart nanosensor is the recognition element,
allowing for the recognition of the analyte of interest [153]. Engineering the materials in-
volved in the recognition systems is therefore the foundation leading to the smartness of the
sensing devices. To this end, strategies leading to the maximization of the performance of
nanomaterials involved as recognizing elements for trace metal detection in the environment,
particularly in water matrices, are essential to the development of the emerging smart electro-
chemical nanosensor technology. Research based on smart electrochemical nanosensors for
trace metal detection in water is still at a developmental stage and therefore more work still
needs to be done at a laboratory scale prior to upscaling into the industrial scale.

7. Summary and Future Prospects

The recent advancements on the design and development of nanocomposites as
nanosensors for trace metals detection in environmental water matrices were systemati-
cally reviewed. Following a brief introduction on the nanosensors, important parameters
for evaluating their performance including sensitivity, selectivity, limit of detection, lin-
earity, response time, reproducibility, repeatability and stability were outlined. Then,
three major strategies involved in the design of the nanocomposites, including engineering
the active sites, engineering the conductivity and creating a porous structure, were realized.
The studies reviewed here show that these strategies were achieved by integrating nano-
materials of three different classes that included carbon nanostructures, transition metal
and transition metal hydroxides/oxides nanomaterials and applying them for trace metal
detection in water matrices as summarized in Tables 1–3. These integrations could reduce
the aggregations, π−π stacking interactions, agglomerations, low conductivity, and low
stability attained, amongst other challenges. The applications of the nanocomposites on
the detection of various trace metals in various water matrices were also reviewed and dis-
cussed. Notwithstanding all the work done on nanosensors for environmental applications,
there are still some challenges that still need to be solved prior to the widespread application
and deeper understanding of the mechanisms involved. Furthermore, the optimizations of
the post-treatment methods such as; thermal treatment and exfoliation techniques could
improve the performance of the nanosensors and enhance their 3S (stability, sensitivity and
stability). The current developments on smart electrochemical nanosensors integrating
nanosensors with smart systems for environmental applications have also been reviewed.
Although these systems are still at an infant stage, their impact on revolutionizing sensor
systems is expected to be positive. Smart electrochemical nanosensors could revolutionize
the sensor technology as they are aimed at solving previous detected challenges facing
nanosensors. These include(s) their deployment in previously inaccessible areas, inte-
grating many nanosensors devices and monitor their response remotely far from sites of
interest and frequently monitoring large areas of interest, including both upstream and
downstream, enabling the tracking of the sources of any developing trace metal discharges.
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