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Abstract: The Energy-efficiency of demand management technologies and customer’s experience
have emerged as important issues as consumers began to heavily adopt these technologies. In this
context, where the electrical load imposed on the smart grid by residential users needs to be optimized,
it can be better managed when customer’s comfort parameters are used, such as thermal comfort
and preferred appliance usage time interval. In this paper a multi-layer architecture is proposed
that uses a multi-objective optimization model at the energy consumption level to take consumer
comfort and experience into consideration. The paper shows how our proposed Clustered Sequential
Management (CSM) approach could improve consumer comfort via appliance use scheduling.
To quantify thermal comfort, we use thermodynamic solutions for a Heating Ventilation and Air
Conditioner (HVAC) system and then apply our scheduling model to find the best time slot for such
thermal loads, linking consumer experience to power consumption. In addition to thermal loads, we
also include non-thermal loads in the cost minimization and the enhanced consumer experience. In
this hierarchal algorithm, we classified appliances by their load profile including degrees of freedom
for consumer appliance prioritization. Finally, we scheduled consumption within a Time of Use
(ToU) pricing model. In this model, we used Mixed Integer Linear Programming (MILP) and Linear
Programming (LP) optimization for different categories with different constraints for various loads.
We eliminate the customer’s inconvenience on thermal load considering ASHRAE standard, increase
the satisfaction on EV optimal chagrining constrained by minimum cost and achieve the preferred
usage time for the non-interruptible deferrable loads. The results show that our model is typically
able to achieve cost minimization almost equal to 13% and Peak-to-Average Ratios (PAR) reduction
with almost 45%.

Keywords: demand management; sequential optimization; device scheduling; smart grid

1. Introduction

Residential demand management, despite the vast research efforts on the recent years
and the wide literature, persists as an open issue. In particular, studies addressing the
tradeoff between utility gains and user comfort are few [1-3]. Existing approaches aim to
maintain a smooth user demand profile, that is, to prevent peaks [4]. Customer comfort
has been less considered where it could be associated with appliance usage performance,
delays in responding to utility demand response requests, room temperature and so forth.
To address this gap, we present a demand management approach that considers customer
comfort in our multi-objective optimization model.

According to the energy internet paradigm, control technologies will play a central
role in the modern grid [5]. Most of the research on Demand Side Management (DSM), or
in other words residential level load control, aims to reduce either the customer’s cost or
the grid operators” PAR [6]. For instance, in [7] the authors have grouped appliances into
two categories, essential demand and flexible demand, and then defined a consumption
order for the appliances within their cost minimization algorithm. Meanwhile, in another
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article [8], the authors focus on scalability and acceptability where they categorized ap-
pliances, ordered their consumptions and defined boundaries for appliance usage time
slots to bound the consumption and to make the consumption diagram smooth. In [9],
the authors have clustered loads based on their priorities within a Neighborhood-Area
Network (NAN) with the goal to find a tradeoff between Energy Management System
(EMS) processing cost and response time delay to achieve demand-supply balance. Note
that in this paper, comfort is associated with improved fairness in delay and dispatch rates.
The authors in [10] have focused on minimizing the household bill based on different
categories of appliances and dynamic pricing tariff using Genetic Algorithm (GA) method
to find the optimal operating parameters for each individual device. Finally, in [11] they
have minimized the total energy cost of appliance rescheduling, treating rescheduling as
an inconvenience (that is, a discomfort).

With the increasing penetration of renewable energies at the residential level, some
of the previous works on demand side management have proposed appliance scheduling
based on the power available from renewable resources. A hierarchical model has been
proposed in [12] to maximize Distributed Energy Resource (DER) use and to reduce the
load on the grid. In this model, loads are bundled and scheduled to align their consumption
patterns with available renewable resources. This approach not only reduces the load on
the grid but also reduces customer cost. In [13], the authors have aimed to reduce the cost
while keeping the power consumption in a building under a certain threshold. For cost
minimization, they shared the DER power generated between all the residents. In [14], the
authors integrated a sensor network with a home energy management system and showed
that energy consumption can be reduced with a system that employs communication with
the users.

DSM can also utilize the predicted day-ahead load [15]. In [16], the authors have
performed day-ahead scheduling using real-time pricing by predicting next-day customer
demand. Their main goal is to accurately predict the load and minimize the cost of
generation. In this case, the authors have increased customer satisfaction using an incentive-
based model.

One of the important comfort factors at the residential level is the temperature of the
living area, which corresponds to the thermal load. The thermal load can be defined for
different devices, such as a HVAC system. Most of the studies in this area have tried to
minimize the thermal load while maintaining the customer’s comfort. In [17], authors have
scheduled HVAC energy consumption by increasing or decreasing the room’s temperature
under a price consideration. Thus, customer comfort is considered as an energy cost.
In several studies, authors have added other features addition to the thermal load to
improve their calculations [18,19]. In [18], the main goal was to minimize the HVAC’s
cost of energy and also to maintain customer comfort. In their work, the authors looked
for different parameters that affect room temperature, such as the number of occupants,
indoor and outdoor temperature, and customer preference. They used a nonconvex
formulation to solve their problem with tradeoff between cost and thermal comfort. The
work in [19] presented central demand management to control building Air Conditioner
(AC) power consumption and preferred temperature. This scheme evaluated the system
communication delay, outdoor temperature and other features. Meanwhile, the authors
in [20] proposed a MILP based on dynamic pricing to optimize the thermal load in a smart
house and to maintain customer comfort. In [21], the authors addressed HVAC system
energy conservation and wastage using a machine learning approach, using Internet of
Things (IoT) sensor data to establish consumer consumption patterns.

In several articles on thermal load management, the authors have taken a thermal
standard as index and addressed temperature in that context. In [22], authors used the
ISO standard on residence’s comfort temperature and minimized Predicted Percentage
Dissatisfaction (PPD). Then, they applied a direct load control model with Particle Swarm
Optimization (PSO) to reduce thermal load. Other approaches have optimized both thermal
and non-thermal loads to increase systems efficiencies, as noted in [23,24].
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Most of the papers in the DSM area use a mathematical model to minimize or maximize
one or many objective functions with different load constraints. For instance, the authors
in [25] have implemented a forecasting model to predict household renewable generation
and load, then they have applied an optimization model to schedule the appliance usage
profile based on increasing EV charging, reducing the total cost and maximizing the benefit
of selling renewable. The linear programming approach has been used in [26] to minimize
customer cost and constrain the total usage cost to be less than a specific budget. In
addition, a Mixed Integer Non-linear Programming (MINP) approach has been used in [27]
to control cost and appliances usage. The idea of using MILP in DSM is to find optimal time
slots (integer value) for load profiles. The multi-objective MILP in [28] has been presented
to control PAR, cost and schedule inconvenience using ToU tariff. In addition, several
works focus on appliance management. They have categorized such loads in different
categories and then apply a suitable objective function with proper constraints to schedule
them [29]. In [30,31], the authors have presented a prioritized model based on the appliance
categories to minimize their costs. For more clarification, we categorized the reviewed
articles in Table 1.

Table 1. Categorizing the reviewed papers.

Objectives
P . Techniques Real-Dat Load Load
aper Cost Appliance Thermal q cal-Lata Category Prioritization
Usage Comfort
[71 v 4 NLP v v v
ColorPower
18] v v algorithm v v
[9] v v NLP 4 v
[10] v v GA v
[11] v v LP v
[12] v v Minority Game v 4
[13] v NLP
[14] v LP
[15] v LP v
[16] v LP
[17] v (%4 LP v
[18] v v Non-convex
[19] v DLC v v
[20] v (%4 MILP v
[21] v ML v
[22] v PSO
[23] v v LP v
[24] v v NLP
[25] v v LP v
[26] v LP v
[27] v v MINP
[28] v v MILP v v
[29] v v LP v
[30] W v Problem-Solving v v v
approach
[31] (%4 BPSO v

In this paper, we present a multi-objective sequential optimization model to distribute
loads over a time horizon. The loads are categorized into three clusters of load types
essential, deferrable and elastic, and for that reason we name our method as Clustered
Sequential Management (CSM). Our proposed approach considers a house with a Home
Energy Management System (HEMS) which is able to prioritize appliances and communi-
cate with the users. We use ToU pricing rates as the price signal. We propose MILP and
LP based optimization techniques that jointly minimizes the cost and maximize thermal
comfort. Our main contribution is a multi-objective model based on different types of



Sensors 2021, 21, 130

40f16

appliances, different priorities of appliances, utility price signal vector over peak hours and
considering thermal satisfaction regarding to ASHRAE standard to maintain temperature
in a standard range and prevent wasting the energy for heating the house. The main
contribution of this work is employing both MILP and LP optimization models to reduce
customer energy bill and PAR by considering thermal comfort jointly with a prioritized
appliance scheduling. We considered a variety of load categories to assess the proposed
optimization methods including non-flexible (essential loads) as well as flexible loads (elas-
tic and deferrable loads). The proposed model has been validated in helping customers to
save their energy bill using a real appliances energy profiles.

The rest of the paper is organized as follows. Section 2 presents our system model and
the proposed optimization models. In Section 3, we illustrate our results, and in Section 4
we present our conclusions.

2. System Model and Problem Formulation

With the advances in smart appliances, home appliances are now a part of the IoT
ecosystem while the smart grid positions itself as an ideal example of an Industrial IoT
(IIoT) system [32]. Figure 1, illustrates the major elements of this ecosystem. At the top
level, we have generators that could be based on conventional or renewable energy sources.
Then, the produced energy is transported through transmission lines to the distribution
system transformers, which is called as transformer level. At energy distribution level,
each Transformer Agent (TA) will balance the voltage and frequency to be suitable for
residential usage by stepping up/down the voltage. At the residential level, HEMS, as an
IoT device, communicates with TA to send the customer’s usage data to the utility. The
household IoT devices (such as HVAC, EV, washing machine and etc.) communicate with
HEMS through Wi-Fi or Zigbee and create a small network inside the house.

B — Tictrd = 5 N
| Energy Distribution : i ‘ ‘

I

Figure 1. Top-down view of our IoT ecosystem.

In this paper, we assume that the utility sends a Demand Response (DR) signal to
the customers and asks them to collaborate on demand management to manage the grid
supply and demand at peak times. However, customers have appliances that need to be on
during certain times and they also have thermal loads that can be controlled to maintain a
certain level of user satisfaction. To achieve these goals, a smart HEMS device is needed.
The device is able to control and monitor the customer’s power consumption. Our aim is
to minimize the cost, maximize the customer’s comfort and to reduce the PAR based on
utility’s DR signal.
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Let N be the number of customers, where i € N is the customer index. Subscript
a denotes the appliance number and A; is the set of appliances for customer i, where
a € A;. The number of appliances for customer i is given by |A;|. We subdivide the
24-hour period into T equal time slots and t € {1,2,...,T}. An appliance profile may be

defined in terms of its nominal pattern of power consumption L, = [l;, cee, l;r"} , where [}

is the appliance energy consumption in time slot ¢, and the dimensionality is expressed by
the number of time slots T, over which the appliance operates. Its optimized operating
state during the day is given by the binary vector T, = [7}, -, 7} ], where the appliance
condition (ON/OFF) for time slot t is given by 7/ (i.e.,, 1 or 0). This operating state is
determined by a scheduling and optimization process (described below) that transforms
L, into X, = [x},- -+, x]], where x! is the optimized appliance consumption for time slot t.
The customer aggregated load vector x; = [x}, ..., x}] is sequentially constructed, with x!

the total optimized load for time slot ¢.

2.1. Load Categories and Scheduling Approach

We consider three load categories. Essential loads (Ag) are those directly initiated
by the user, lacking any HEMS control of their power consumption or profile (e.g., coffee
maker). Elastic loads (Ag)) are those with load profiles whose consumption may be
adjusted by HEMS control within any time interval (e.g., HVAC). Such loads have a central
impact on customer comfort level. Deferrable loads (Ap) are those whose load profiles are
schedulable (e.g., washing machine) within some customer-defined interval. Such loads
have a central impact on customer lifestyle and convenience. For each appliance a, we
define a binary vector I, = [I},-- -, IT], where

1 t,.<t<t
It = s="="f vyrt et 1
? {O otherwise ! ‘ @

denotes the permissible scheduling interval in terms of starting and finishing time slots t,
and t¢, respectively. This permits time constraints to be set. One fundamental constraint is
that the permissible interval be greater than the usage time T,, where

> T, ()

‘tf — g
A; is composed of distinct subsets and may be represented as:
A; = {Ag, Ap, Ap}. ®)

Appliances may also be categorized by their usage priority, with essential loads being
mandatory. For all other loads, priority levels are customer-assigned via the HEMS, but
elastic loads are assumed to have a higher priority than deferrable ones. The appliances
priority is denoted by I'; = [p1, ..., pm| with length of M = |Ag| 4+ |Ap|, whose element
0q is appliance a priority coefficient. To allocate the priority coefficients to these appliances,
we use the Analytic Hierarchy Process (AHP) [33] in our optimization model.

We implement load optimization, described in the following subsection, within a se-
quential approach. This is illustrated in the flowchart provided in Figure 2. This sequential
scheduling considers the appliance load profiles entered into the load vector by order of
priority. Note that the summation of x; across the time horizon should be almost equal to
the summation of all the appliances’ load profiles:

T ‘Ai‘ Ta
fo=<2212>iA- @
t=1

a=1t=1
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Figure 2. The flowchart of our proposed model.

2.2. Optimization

The ultimate goal of the proposed optimization scheme is to minimize the total
residential energy consumption which is given by min f(x;) + (x4, 7). Each appliance is
contributing to this optimization model by minimizing their own consumption as explained
below. Constraints specific to appliances type, essential, elastic or deferrable, are applied.
We optimize X,; and T, by sequentially minimizing the cost of the incremented daily
load, x; +— X, +X;, using a general time-of-use price signal P = [p!,-- -, p!].

2.2.1. Elastic Load Model

Elastic devices have a defined operating state 1, (i.e., are not schedulable) but their
power consumption X, is adjustable. By considering the general form of optimization, we
can define an LP optimization model for this category as

by
minf(x,) = min Y p'(x} + x})
t=ts
i
Subj.to B ¥ log(xi +1) > S, (5)
=t
(l—ﬁﬂTDcﬁ)g[%,te[gjﬂ

Xi S %o+ x s ubt

where p' is ToU pricing signal; x}, € X, is appliance a consumption for time slot ; x! € x;
is the aggregated load vector of customer i at time slot ; and ¢ and ¢ are the appliance’s
preferred starting and finishing work time intervals, respectively. If the appliance is a
non-thermal elastic load, B = 1(such as EV), otherwise f = 0 (such as HVAC). The first
constraint is specifically used for non-thermal loads, where S, is the minimum level of
power consumption extracted as in [34]. A logarithmic function is used to ensure minimum
device performance in the limit as such a function saturates [35]. The second constraint is
used for the thermal system and depends on environment and appliance energy dissipation.
D, is the threshold for Predicted Percentage Dissatisfaction (PPD) to ensure customer’s
dissatisfaction remains less than a certain value. We use PPD function to measure the
customer’s dissatisfaction regarding room temperature [36]. PPD is defined in the ASHRAE
standard and it is governed by the parameters that establish room conditions. There is
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an indirect relation between PPD and power consumption using Predicted Mean Vote
(PMV) [17,37]. Finally, the third constraint is used for both thermal and non-thermal loads
to bound each time slot between the aggregated load x! and the maximum threshold of
household usage Ub’ € Ub at time slot t. The goal of defining a limitation for each time
slot is to prevent peak events and distribute the customer load evenly throughout the day.

2.2.2. Deferrable Load Model

In the case of deferrable load scheduling, the optimization model will manage the
load profile through the permissible interval and find the minimum cost. This approach is
completely different than the previous model for elastic devices. In this model, instead of
LP, we are using MILP. This model helps us to first find the proper time for appliance usage
and then find the optimized load profile vector for appliance a. For this optimization, as a
general model we have

2
ming(x,,7,) = min ¥ p'th(xh + xt),
t=ts

g
: trt
Subj.to tgs T, =T, ©)
k+T,
) ka’;SCu, tsgtgtf_Ta
Th=1=k=t

X< th(xh+xh) < upt

where p' is ToU pricing signal; x; € X, is the appliance a consumption at time slot t;
X! € x; is the aggregated load of customer i at time slot £; 7} € T, is the operating state
of appliance a (the ON/OFF condition) at time slot £; and t; and tf are the appliance’s
starting and finishing work time intervals, respectively. The first constraint is used to find
T,, which is the number of time slots the appliance needs to complete its operation within
the permissible interval I,(I} € I,). The second constraint is used to require uninterrupted
device operation, with C; the minimum operation cost for appliance a in its permissible
interval; 7/ =1 = k = t ensures that if and only if the optimized operating state is equal
to one, then the time slot and the summation of cost for the T, time slots after that (from
k = tto k + T,) should be lower than or equal to the minimum cost C,. The third constraint
is used to bound each time slot between the aggregated load vector and the maximum
threshold of household usage at time slot ¢.

2.3. Thermal Model

As mentioned in Section 2.2.1, we choose a PPD rate and with PPD and PMV functions
we calculate the necessary thermal load [17]. To make a map between PPD, PMYV, thermal
energy and temperature, we consider the fundamentals of thermal conduction. Room
size, wall quality and inside and outside temperatures have direct impact on thermal loss.

From [38],

A6r00m
dt @

is used to calculate the thermal power needed to change the room temperature 61,44, to the

onwer = Croom X

preferred temperature 6, ferreq at a specific rate (%) , where Cyoor; is the room thermal
capacity [38]. The power leakage is determined via

Qleak = M/ (8)
where 0p,si4. 15 the outdoor temperature and R is the room’s thermal resistance. In our
model we are using both formulations with regard to ASHRAE standard room temperature.

Figure 3 shows that when PPD is equal to 11.68%, we need to consume almost 1.8 kWh
to increase the room’s temperature from 20 °C to 22.5 °C when the outside temperature
is —10 °C. According to the ASHRAE standard [36], the optimal temperature range for a
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room in winter with the optimal PPD (<10%) is between 23 °C and 27 °C which is also
observable from Figure 3. Therefore, our algorithm tries to keep the temperature in this
range regarding to room heating leakage, outside temperature and inside temperature.

15 15
104 10
Z z
- -
= .
& 54 e 54
1 1
200 2|5 250 275 300 -2 2l o 1 2
Tfmpcralurc( ) ! PMV
50 4 I 50 I
40 | 40 |
2 30 4 I o 30 |
£ | & I
20 A | 20 A |
. G LR —
200 25 250 275 300 -2 - 0 1 2
Temperature(° C) PMV

Figure 3. Relation between PPD, PMV, temperature and energy [Assumption:0¢,size = —10 °C].
2.4. Analytic Hierarchy Process (AHP)

AHP is a decision-making model that is used for ranking the alternatives when we
have multi-criteria problems [33]. A pairwise comparison is made between the specified
criteria and alternatives with the grades ranging from 1 to 9. The value r € {1,...,9}
shows how much more priority an alternative have over the other. Intensity » = 1 means
they are equal, r = 2, 3 shows the moderate condition, » = 4,5 means one is stronger than
the other, r = 6,7 one is very strong and r = 8,9 presents the extreme importance of one to
the other. Let’s assume we have m criteria and n alternatives then, the relative matrix Ay
for criteria k (k € {1,...,m}) represents the relative rates between alternatives i and j (a;;)
where i, j € {1,...,n} and it is calculated by a;; = % where r;,7; € {1,...,9}.

1 n n
X11 X12 cee Kp I T I
rn 2
15X} %) o Koy " 1 e T
Ay = ) ) . = . . o )
Q1 02 cee B = o o1

After filling the matrix, we normalize each relative rate a;; using a;; = le and to
ij

T
D
k= ==L Then, we extend

calculate the alternative i’s weight in criteria k, we have w -
matrix Ay for other criteria and calculates wf‘ , Vie{l,...,n}, ke {1,...,m}. After that,
we rate the criteria relatively in the same way and multiply the criteria weight w* with
each alternative weight wf and finally the alternative i’s priority will be calculated using
m

pi= £ (ot x b

In our model, we have implemented a two-level AHP to fairly prioritize the appliances
in our sequential optimization model. We have two criteria (m = 2), customer preferences
on appliance usage and appliance total consumption, and 6 deferrable and elastic loads
as alternatives (n = 6). There might be other criteria and alternatives, but in our case we
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found that these are the most important ones that affect appliances scheduling. In our
model, the AHP algorithm is implemented in HEMS. Then, each customer can interact with
HESM and rate each two appliances relatively. Note that HEMS has the total consumption
information of connected appliances. Finally, HEMS does the AHP computation and find
the appliances weight or priority values.

3. Simulation Results

In this section, we present our simulation results and compare our model, Clus-
tered Sequential Management (CSM), with four other demand management approaches;
Multi-class Appliances Scheduling (MAS) [34], Autonomous Demand-side Management
(ADM) [39], Household Energy Management (HEM) [10], and Multi-objective Household
appliance Optimization (MHO) [28]. To make our implementation close to real world
conditions, we use the dataset of household appliances load profile from [40]. Table 2
presents the appliances’ type and their total power consumption in a day.

Table 2. Types of appliances.

Appliance Load Type Energy (kW/day)

Heater Elastic 25.43
EV Elastic 26

Freezer Deferrable 2.07
Washing Machine Deferrable 1.96
Cloth Dryer Deferrable 2.47
Dish Washer Deferrable 1.44
Refrigerator Essential 3.65
Coffee Maker Essential 0.19
TV Essential 2.57
Light Essential 0.41
Stove Essential 0.61
PC Essential 3.93

The simulation environment is Python and we use SciPy library to solve MILP and
LP optimization models. This simulation is conducted on Intel i5 CPU with 3.55 GHz
clock speed and 16 GB RAM. Also, our algorithm processing time was 10 seconds. Four
different scenarios with different mixes of appliances are used for performance evaluation.
These are indicated in Table 3 and are comprised of (i) 6 essential, 2 elastic (EV and Heater)
and 1 deferrable loads, (ii) 5 essential, 2 elastic (EV and Heater) and 2 deferrable loads,
(iii) 4 essential, 1 elastic (EV) and 3 deferrable loads, and (iv) 3 essential, 1 elastic (Heater)
and 4 deferrable loads. These are defined to compare the sensitivity and effectiveness of
five different approaches (CSM, MAS, ADM, HEM and MHO) with respect to load types.
Note that other combination of loads do not impact the workings of the proposed scheme.
Therefore we choose these four different scenarios to evaluate the performance of our
model. In MAS and ADM, all the power consumption is accumulated and distributed
through the permissible intervals without considering the appliances’ priority on power
consumption and customer’s preferences. However in MAS, the authors categorize the
appliances into different load clusters and optimize each using their specific optimization
function. Moreover, in MAS deferrable loads are non-interruptible. Also, we compare our
model with other recent articles HEM and MHO. They have some similarities with our
model in comfort, cost minimization and appliance scheduling. Besides these similarities,
there are some differences. In HEM [10], the authors have implemented an iterating GA
and assumed different load categories with different settings to adjust appliance time usage
and comfort level. However the loads are optimized simultaneously without considering
the essential load effects on peak and cost. On the other hand, in MHO [2§], their multi-
objective model focused on minimizing cost, peak, and scheduling inconvenient. The
authors determined different orders of these three factors and again optimize all the
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appliances simultaneously with many constraints. In [28] the effect of the essential loads
on the peak consumption and cost has not been considered.

Table 3. Load profile scenarios.

Load Type
Scenarios Essential Elastic Deferrable Total Energy
(kW/day)
Oty. Pct. Qty. Pct. Qty. Pct.

Scenario A 6 17.7% 2 80.1% 1 2.2% 64.23
Scenario B 5 16.9% 2 77 .8% 2 5.3% 66.11
Scenario C 4 18.5% 1 66.5% 3 15% 39.11
Scenario D 3 16.6% 1 63.6% 4 19.8% 40

To put the appliances in order for our sequential optimization, or in another words, to
prioritize them, we used the AHP method which is explained in Section 2.4. This yielded
the priority vector I'; = [p1,...,pm] for M deferrable and elastic devices. Note that in
this model, elastic loads have higher priority than deferrable ones because their total
consumption is higher than deferrable loads.

In this simulation, scheduling is performed across a 24-h day subdivided into 96
equal time slots beginning at 5 AM. We use a ToU pricing signal based on the Ontario
Energy Board (OEB) [41], with household energy consumption based on an average winter
consumption in Ontario, Canada. We assume the customer wants to keep the room
temperature within the maximum permissible ASHRAE standard range and we include
provisioning for fully charging an EV. We consider a room size of 118.4 square feet, with
B0outsidze = —10 °C (the average outside temperature in December 2018 in Ontario), and an
inside temperature of 0y,,5;4. = 22 °C. We assume a PPD of less than 16%.

Figure 4 presents the optimized power consumption of scenario A in six different
models: our CSM, versus MAS, ADM, HEM, MHO and the non-optimized case. Note that
for MHO implementation, we choose the order of inconvenient, cost and peak optimization
(scenario 3 in [28]) which is closer to our proposed architecture. This figure shows the
average result of 10 runs. The price signal presents different tiers of ToU pricing (off-peak,
mid-peak and on-peak). As observed from the figure, the proposed model reduces the
peak consumption almost 30% more than the MAS, ADM and HEM, and 15% more than
MHO in scenario A.

3.0 0.14
—— Non-Optimized
——- M 0.13
251 === MAS o
ADM
— == HEM 0.12
201 === MHO
_i == == Price FO.11
El ! 2
g 1.5 I T
g I 0 IO'E
o =%}
E :
3 1.0 i [ 0.09
_
::f_'l +0.08
0.5 1 ::\"I‘I—\
I::'_-_'.=_=§_= === L 0.07
0.0

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

5AM. 7AM. 9AM. 11AM. IPM. 3PM. 5PM. 7PM. 9PM. 11PM. IAM. 3AM.
Time of day

Figure 4. ToU rate and average energy consumption scheduling in a day of scenario A.
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Figure 5 gives the cost profiles for the load demands of Figure 4. Due to the flattening
impact of our CSM scheme, its overall cost is lower than the other schemes. Figure 6
illustrates how the temperature is fluctuating over different time slots in the compared
approaches. The five models are consuming the same amount of power in a day to keep
the room warm but their temperature is different on different time slots. Our approach is
keeping the temperature in ASHRAE standard range and increasing the temperature close
to 25 °C which is the best room temperature in winter. The approaches MAS, ADM and
MHO schedule the total energy regardless of thermal comfort formulation but consuming
the same minimum range of electricity for thermal load during a day.
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e
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]
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Figure 5. Cost changes in different time slots for five models.
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Figure 6. Temperature fluctuation in different models.

But HEM model has a thermal constraint for setting the minimum and maximum room
temperature. Here we set it between 22 °C and 25 °C same as our model assumption. CSM
and HEM keeps the temperature more than 22 °C but our model increases the temperature
more (close to 24.35 °C) to reduce the PPD. Table 4 is a summary of the minimum and
maximum temperatures and the averaged PPD in a day for the different approaches. Our
CSM approach has the lowest PPD and though it does have a slightly greater temperature
excursion than the other approaches, while still remaining within the limits, the rate of
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temperature variation is much less. HEM has higher PPD than MHO despite of having
temperature constraint. The HEM guarantees to keep the temperature in the comfort
range (more than 22 °C) and minimize the bill. Therefore, at peak times it consumes the
minimum electricity which is needed to satisfy the temperature constraint. But MHO
is fluctuating through the times and cooling and warming the house based on the ToU
pricing signal.

Table 4. Results comparison.

Approach PPD (%) Tynin (°C) Tomax (°C)
CSM 11.68 22 24.35
MAS 13.83 21.88 23.99
ADM 13.37 21.89 24.11
HEM 14.27 22 23.46
MHO 13.99 21.83 23.66

As a consequence, the best way for simulating a household thermal comfort is to use
a standard satisfaction formulation such as PPD in optimization constraint instead of only
considering the temperature range.

To ensure that our approach is robust with regard to parameter choice, we repeat
scenario A for 10 days and calculate the cumulative cost for different approaches; the results
are presented in Figure 7. Our approach is seen to always have less cost than the others.
The reason that MAS has higher cost than ADM is that, in the former, the deferrable loads
are non-interruptible which constrains usage time but in the latter they are interruptible
and unconstrained. Also, HEM and MHO have almost more accumulated cost than CSM
which is due to the lack of essential load consideration on their scheduling. Moreover, we
can assert that within 10 days of consumption, customer saves almost $5 and if we extend it
to a month the saving would be $15. Note that the average cost of electricity bill in Ontario,
Canada is $125 per month [41]. Therefore, the customer’s savings would be considerable.

60
Hl CSM
I MAS
50 1 ADM
N HEM
s MHO
401 Non-optimized
e
7 301
=}
@)
20 A
10 1
0 d

Figure 7. Cumulative cost in 10 days.

To present the effect of load clustering and prioritization on our model, Figures 8 and 9
present the results of different scenarios on the total cost and PAR, respectively. Note that,
in each scenario, the total power demand is equal between the six approaches.
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Figure 8. Total cost in a winter day on different scenarios with confidential interval.
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Figure 9. PAR on different scenarios with confidential interval.

Based on Figure 8, our model has the lowest cost in all the scenarios considered.
The appliances’ usage priority cause that elastic loads, with the high consumptions, are
optimized first and then the prioritized deferrable loads optimized in next level. Moreover,
considering essential loads usage as a lower bound in optimization model helps to reduce
the total cost either.

Regarding to Figure 9, the PAR in our model is the minimum one and the reason why
ADM has less PAR than MAS in scenarios C and D is due to the interruptible deferrable
load assumption in ADM model (in scenario C and D number of deferrable loads are
increased). Moreover, HEM and MHO has less PAR than ADM and MAS, because of their
optimization models, GA and MILP. Also, it shows that the appliance usage priority and
clustering have positive effects on finding proper time slots for the appliances consumption
especially for the elastic load with high demand. Finally, we can assert that we reduced the
cost almost 8%, 6%, 5% and 3%, and reduced PAR almost 34%, 33%, 24% and 17% more
than MAS, ADM, HEM and MHO respectively.

4. Conclusions

In this paper we have presented a multi-objective demand management approach
using appliance clustering and prioritization, and keeping the customer’s thermal comfort
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in ASHRAE standard range. Customer’s comfort is considered in many aspects, prioritizing
appliances for the sequential optimization (the one optimized first will completely satisfy all
its constraints), customer’s comfort on thermal load, EV’s state of charging, and deferrable
loads’ non-interruptible usage on selected permissible time interval.

Our main goals are to flat the household demand and effectively reduce the customer’s
cost while increasing customer comfort via their elastic and deferrable loads. In this work,
we compared our light-weight model with other demand management methods, which
have similarities in prioritization, clustering, PAR and cost management. Our results
represent that we smoothed the load profile and reduced PAR almost 45% more than the
non-optimized case, decreased the electricity bill almost 13%, keep the room’s temperature
in ASHRAE standard range and charge EV more than the customer’s desired amount.
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Abbreviations

Acronym  Description

AC Air Conditioner

AHP Analytic Hierarchy Process

ADM Autonomous Demand-side Management
BPSO Binary Particle Swarm Optimization
CSM Clustered Sequential Management

DER Distributed Energy Resource

DR Demand Response

DSM Demand Side Management

EMS Energy Management System

GA Genetic Algorithm

GHG Greenhouse Gas

HEM Household Energy Management

HEMS Home Energy Management System
HVAC Heating Ventilation and Air Conditioner
IIoT Industrial IoT

IoT Internet of Things

LP Linear Programming

MAS Multi-class Appliances Scheduling
MHO Multi-objective Household appliance Optimization
MILP Mixed Integer Linear Programming
MINP Mixed Integer Non-linear Programming
ML Machine Learning

NAN Neighborhood-Area Network

NLP Non-linear Programming

OEB Ontario Energy Board

PAR Peak-to-Average Ratio

PMV Predicted Mean Vote

PPD Predicted Percentage Dissatisfaction
PSO Particle Swarm Optimization

TA Transformer Agent

ToU Time of Use
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