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Abstract: The dynamic time warping (DTW) algorithm is widely used in pattern matching and
sequence alignment tasks, including speech recognition and time series clustering. However,
DTW algorithms perform poorly when aligning sequences of uneven sampling frequencies. This
makes it difficult to apply DTW to practical problems, such as aligning signals that are recorded
simultaneously by sensors with different, uneven, and dynamic sampling frequencies. As multi-modal
sensing technologies become increasingly popular, it is necessary to develop methods for high
quality alignment of such signals. Here we propose a DTW algorithm called EventDTW which
uses information propagated from defined events as basis for path matching and hence sequence
alignment. We have developed two metrics, the error rate (ER) and the singularity score (SS), to define
and evaluate alignment quality and to enable comparison of performance across DTW algorithms.
We demonstrate the utility of these metrics on 84 publicly-available signals in addition to our own
multi-modal biomedical signals. EventDTW outperformed existing DTW algorithms for optimal
alignment of signals with different sampling frequencies in 37% of artificial signal alignment tasks
and 76% of real-world signal alignment tasks.

Keywords: dynamic time warping; signal alignment; nonuniform sampling

1. Introduction

Dynamic time warping (DTW) is a class of pattern matching algorithms for aligning temporal
sequences. DTW aims to provide an optimal similarity-based match between two sequences regardless
of dynamic spatiotemporal differences, searching for the optimal path by minimizing cumulative
point-to-point distances. DTW allows for a flexible definition of cumulative point-to-point distances to
optimize alignment performance for different datasets. Because of this flexibility, DTW is widely used
in speech recognition under varying speaking speeds [1], gesture recognition [2,3], and time series
clustering [4].

1.1. DTW for Different Sampling Frequencies

Measurement modalities utilizing multiple simultaneous sensors with different sampling
frequencies and/or uneven sampling rates are common in many applications, particularly in
biomedicine [5,6]. In practice, we have observed that DTW performs poorly when applied to signals
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that were simultaneously measured at different frequencies and/or when each individual signal has
a dynamic, uneven sampling frequency. This is due to the singularity problem [7,8], which results
from inaccurate matching of a single observation in one time sequence with a large number of
consecutive observations in another, resulting in an uneven distribution of point-to-point alignments.
The singularity problem is undesirable but common in the alignment of biomedical signals of different
and dynamic sampling frequencies.

A real-world example of a singularity problem using two biomedical devices to measure the same
biological phenomenon (heart rate) with two different modalities with different sampling frequencies
(ECG, black (~1.26) and photoplethysmogram (PPG), blue (~0.2 Hz)) is shown in Figure 1a. Here,
we explored whether accounting for local structural information when performing DTW-based signal
alignment could both reduce singularity occurrences and improve alignment accuracy [8].
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Figure 1. Real multi-modal biomedical signals underlie the need for both an improved alignment 
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with ECG (black, ~1.26 Hz) and photoplethysmogram (PPG) (blue, ~0.2 Hz); (b) an example of 
warping and distortion observed when comparing the heart rates measured by ECG (black, ~1.26 Hz) 
and PPG (blue, ~0.2 Hz). 

1.2. Existing DTW Improvement Methods 

Various improved DTW algorithms have been developed and applied to different non-temporal 
datasets [9,10]. Keogh et al. developed derivative DTW (dDTW), which produces intuitively correct 
“feature-to-feature” alignment between two sequences by using the first derivative of time series 
sequences as the basis for DTW alignment. Zhao et al. developed shape DTW (sDTW), which 
computes similarities between observations based on their local neighborhoods instead of based only 
on their single-point amplitudes [11]. However, we have observed that widely used or current state-
of-the-art DTW algorithms, including dDTW and sDTW, do not produce optimal alignment results 
with respect to the singularity problem when the signal frequencies differ. When the frequency of the 
companion sequence is different than that of the reference sequence, dDTW and sDTW can result in 

Figure 1. Real multi-modal biomedical signals underlie the need for both an improved alignment
methodology and an improved metric to evaluate the resulting alignment: (a) Heart rate measured
with ECG (black, ~1.26 Hz) and photoplethysmogram (PPG) (blue, ~0.2 Hz); (b) an example of warping
and distortion observed when comparing the heart rates measured by ECG (black, ~1.26 Hz) and PPG
(blue, ~0.2 Hz).

1.2. Existing DTW Improvement Methods

Various improved DTW algorithms have been developed and applied to different non-temporal
datasets [9,10]. Keogh et al. developed derivative DTW (dDTW), which produces intuitively correct
“feature-to-feature” alignment between two sequences by using the first derivative of time series
sequences as the basis for DTW alignment. Zhao et al. developed shape DTW (sDTW), which computes
similarities between observations based on their local neighborhoods instead of based only on their
single-point amplitudes [11]. However, we have observed that widely used or current state-of-the-art
DTW algorithms, including dDTW and sDTW, do not produce optimal alignment results with respect
to the singularity problem when the signal frequencies differ. When the frequency of the companion
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sequence is different than that of the reference sequence, dDTW and sDTW can result in suboptimal
alignments because they use information from proximal observations within the companion sequence
which may not have corresponding observations in the reference signal. In this paper, we are aiming
to improve the performance of the DTW algorithm in aligning unevenly down-sampled signals.

A common method employed to reduce instances of singularities involves adding penalties to the
cumulative distance minimization function in the DTW algorithm [8]. Early approaches that constrain
the warping path can be categorized into three types: Windowing [12], slope weighting [13], and step
patterning [14]. However, these common methods are not robust because they apply a hard-coded
limit to the warping path which can result in improper alignment. The parameters of these algorithms
also have to be tuned empirically for each application through optimization experiments, making these
methods less generalizable to new applications and different types of signals.

1.3. Existing DTW Evaluation Metrics

Despite extensive research on DTW algorithm development to solve the singularity problem,
methods to evaluate signal alignment are currently limited. Since DTW is a matching result
calculated from distance measurements but not a metric [15], we need a new metric to evaluate
signal alignment quality. Often, signal alignment evaluation is performed qualitatively by visually
examining spatiotemporal feature-to-feature matching. A common quantitative evaluation method
is the mean deviation metric [16], but this requires evenly sampled signals with same sampling rate,
which is uncommon when recording real-world biomedical signals using different types of sensors.
Other quantitative metrics that have been used to evaluate signal alignment include the length of the
warping path [8] and the dataset classification accuracy [17]. All previous evaluation metrics describe
the quality of alignment by calculating and visualizing the warping path, without quantitatively
describing the severity of the singularity problem.

Further, the singularity problem in DTW continues to be a challenge when aligning multi-modal
signals. Here we propose an improved DTW algorithm, EventDTW (eDTW). eDTW takes local
structural information into account when aligning signals. Although there have been different attempts
to align signals with dynamic time warping [18,19], they do not propose a metric to evaluate the
alignment quality. Here, we develop two criteria to evaluate DTW algorithm performance: The error
rate (ER) and the singularity score (SS). We describe here our methods and results of applying eDTW to
84 publicly available time series datasets and 53 multi-modal biomedical datasets collected by our team.

2. Materials and Methods

In this paper, we propose an improved DTW algorithm and evaluate its performance against
existing DTW algorithms in terms of the severity of the singularity problem and the accuracy of
the resulting alignment between signals. (The code is available at https://github.com/Big-Ideas-Lab/

DBDP/tree/master/DigitalBiomarkers-Preprocessing.) To enable comparison between algorithms,
we designed two metrics, the singularity score and the error rate, to evaluate these two aspects,
respectively. Using a gold-standard open-access public dataset [20] that contains 84 different signals
collected in various scenarios, we designed a warped companion in silico signal for each of the signals
to simulate simultaneous measurements of the same phenomenon using different sensors. To generate
these companion signals, we synthetically warped and then down sampled the reference signal R
which generated the warped companion signal Q. Because R were one-dimensional signals containing
only measurements of amplitude, we assumed a constant sampling frequency. However, for future
applications of this work, signals with non-constant sampling frequencies may be used for wider
applicability because randomness in timestamps can be easily incorporated into the eDTW formulation.
We applied various DTW algorithms to align R and Q and evaluated their performance based on the
error rate and singularity score. We demonstrated an improved performance of eDTW in terms of
accuracy of alignment and reducing the severity and occurrences of singularities. The remainder of the
methods section is explained in the following order: Companion signal generation, calculation of the

https://github.com/Big-Ideas-Lab/DBDP/tree/master/DigitalBiomarkers-Preprocessing
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optimal alignment, design of the error rate metric, design of the singularity score metric, design of the
event DTW algorithm, and experiments to compare the performance of different DTW algorithms.

2.1. Companion Signal Generation

In order to evaluate and compare DTW algorithm performance, we required two signals with a
single optimal alignment against which newly calculated alignments could be compared. To achieve this,
we generated a companion signal Q based on a reference signal R, where R contained L evenly spaced
observations. This signal pair generation mimicked the warping and distortion often observed between
real signals from multiple sensors measuring the same phenomenon at different sampling frequencies,
as shown in Figure 1b. The higher-frequency ECG (black; ~1.22 Hz) and the lower-frequency PPG
(blue, 0.5 Hz) were measured simultaneously, and warping can be seen in a portion of the PPG signal
that is highlighted by the red rectangle. We denoted the reference signal sequence as R, the warped
signal as R′, and the warped and down-sampled companion signal as Q.

We described a single observation in a signal in terms of the temporal variable t (which is
typically the x-axis timestamp) and the amplitude v (which is typically the value of the measurement).
For example, the ith observation in R is given as Ri

(
tRi , vRi

)
. Given the constant sampling frequency of

R, the time interval between each adjacent observation in R is one time unit. Therefore, the timestamp
of R is given by:

tRi = i, i ∈ {0, 1, . . . , L− 1} (1)

In order to generate the warped and down-sampled companion signal Q, we first generated an
intermediate signal R′ and then obtained Q following the two steps.

2.1.1. Generating R′

We chose an anchor point at the center of R to act as the center of the synthetic warping process.
This helped to prevent the warping from occurring outside of the signal bounds. The anchor point was
denoted by RA

(
tRA , vRA

)
where tRA = L/2.

To generate the temporal variable tR′i
for R′, we introduced a time distortion to R by warping

the temporal variable t. We denoted the magnitude of the horizontal shift for the ith observation’s
timestamp as si. Therefore, the timestamp of each observation in R′ is given by:

tR′i
= i− si, i ∈ {0, 1, . . . , L− 1} (2)

In order to fully contain the entire warping process within the signal bounds, we designed the
value for the shift si to be dynamic over the length of the signal, with the strongest shift closest to
the anchor point, RA, and nearly zero at the ends of the signal, as shown in Figure 2a, top. To realize
this feature, we defined si to be inversely proportional to the distance between Ri and RA using the
derivative of the sigmoid function:

si =
e−|tRi−tRA |/w

(1 + e−|tRi−tRA |/w)
2 (3)

In comparison with the inverse squared distance 1/
(
tRi − tRA

)2
employed by (Keogh 2001) for

the same purpose, si descended from the anchor point in smoother flanks (Supplementary Figure S1).
The parameter w was a constant value proportional to LR and it defined the warping window width.
For w < 0.5, the warping process was contained within the signal bounds. The smaller the value of w,
the narrower the warping process. By defining w as 10% of the length of R, we localized the extreme
warping around the anchor point RA while keeping other parts of the signal relatively unchanged
(Figure 2a, middle).
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To generate the amplitude variable vR′i
for R′, we introduced an amplitude distortion to R by

warping the amplitude variable v. We used a Gaussian bump (Figure 2a, bottom) as the magnitude of
the vertical shift for the ith observation’s timestamp as below:

vR′i =

vRi + 1/e[(tQi−tRA )/w]2−1,
∣∣∣tQi − tRA

∣∣∣ < w

vRi , otherwise
(4)Sensors 2020, 20, x FOR PEER REVIEW 39 of 105 
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Figure 2. Generating the warped and down-sampled companion signal Q from the reference signal R:
(a) The temporal variable shift and amplitude distortion of the exemplary signal; (b) a diagram of the
companion signal generation process; (c) an example of the original signal R, the intermediate signal
R′, and the warped and down-sampled companion signal Q.

2.1.2. Generating Q

To generate the down-sampled companion signal Q from the warped signal R′, we calculated the
timestamps and amplitudes and defined each observation in Q as Q j(tQ j , vQi j ).
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By our definition, the timestamp of Q was down-sampled from that of R such that their timestamps,
tQ j and tRi, were stably related through the down-sampling parameter, d:

tQ j = tR[i∗d] , i ∈
{
1, . . . ,

L
d

}
(5)

The result was that the timestamp of the jth observation in Q was to equal the (i∗d)th observation in
R. Using this relationship between the timestamp of Q and the timestamp of R, we linearly interpolated
the missing amplitude values of the warped signal R′ that would have occurred at timestamp tR′i

= tQ j .
These interpolated amplitude values were used to define vQ j . As seen in Figure 2b, the orange dotted
line shows the time shift between Ri and R′i, and the black dotted line shows that the timestamps of Q j
are the same as that of R[i∗d]. An example of the original signal R, the intermediate signal R′, and the
warped and down-sampled companion signal Q is shown in Figure 2c.

2.2. Calculation of the Optimal Alignment

In DTW, point-to-point links were made between every observation in Q and at least one
observation in R. Given that observations in R and Q were evenly distributed and that the
down-sampling ratio was d, each observation in Q was optimally aligned with d observations in R.
We first calculated an intermediate alignment between a single observation in Q and d observations in
R′ by calculating the minimum Euclidean distance. Since each observation in R′ has a corresponding
observation with the same index in R, we could subsequently find the optimal alignment and we

denoted this as: Q j
opt
↔ G j, where G j =

{
Q j, Ri, Ri+1, . . . , Ri+d−1

}
, meaning that G j contains Q j and

a subgroup of d observations in R, beginning with Ri, as shown in Figure 3a, top. We denoted the

observed alignment calculated by DTW algorithms as: Q j
obs
↔ Gk.

2.3. Design of Error Rate Metric

As described above, we proposed the error rate (ER) as a metric to quantify the quality of an
alignment between two signals, i.e., how different any given alignment is from the optimal alignment.
We defined ER ∈ [0, 1], where ER = 0 indicates the optimal alignment and ER = 1 indicates the worst
possible alignment:

ER =

∑LR
i=1

∣∣∣k− j
∣∣∣

1
2 LQ

(
LQ − 1

)
× (1 + d) −

(
LQ − 1

) (6)

We quantified misalignment of each observation in R as the index difference between the observed
group k and the optimal group j (see Figure 3a, middle plot, where R3 and R6 are misaligned).
The numerator of the formula represented the sum of misalignments of observations in R. It equaled 0
when k = j, meaning that there was no difference between the optimal alignment and the observed
alignment. The denominator quantified the total misalignment for all observations in R under the
most severe singularity, when all observations in Q were mapped with the first observation in R
and all observations in R were mapped with the last observation in Q, as shown in Figure 3b, top.
We generalized this situation to down-sampled signals as shown in Figure 3b, bottom, and we calculated
this possible maximum misalignment as denominator. We defined this alignment as the “worst-case
scenario” since no useful relationship was found between the two signals. In this case, the numerator
equaled the denominator, and thus ER = 1.
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2.4. Design of the Singularity Score

In order to measure the severity of the singularity problem, we proposed the singularity score (SS)
by introducing a ratio inspired by the variance calculation for a dataset:

SS =

∑LQ
j=1

(
m j − d

)2

LQ
(7)

where m j is the number of observations in the observed group Gk. The down-sampling rate d represents
the ideal number of links from each observation in Q, assuming the signals are evenly sampled.

In comparison with the warping path metric W used by Keogh et al. to count the length of
warping path [8], the squared term in Equation (7) provided higher sensitivity to uneven dispersion of
alignment pairing, i.e., when there was higher variation in the number of observations in R that were
matched to a single observation in Q. For example, in Figure 3a, the middle and bottom cases had the
same W but the bottom case had a higher SS because it had larger variance of m j.
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However, the singularity problem was directional when the frequencies of signals differed.
This meant that the situation where M (M > 1) observations from the lower frequency signal Q were
matched to one observation in the high-frequency signal, R was much worse than vice versa. Therefore,
when the frequencies of the signals differed, we set m j =

1
M to increase the penalty for these types of

misalignments. Since d was always ≥ 1, the squared term was larger when m j < 1. Figure 3b also
depicts this situation, where the first two observations in Q are penalized more by setting m j =

1
3 in

the SS.

2.5. EventDTW

EventDTW was designed to improve the alignment of two signals when they measure the same
phenomenon with different frequencies. Considering that global signal shape- and derivative- based
algorithms like sDTW and dDTW ignore key local information, we propose a DTW algorithm that
takes advantage of local information to produce better overall alignments with respect to the whole
signal. Inspired by the design of the Hawkes process [21], we introduce our novel alignment algorithm,
EventDTW, which is based on information propagation of events in a signal. We define the events in
this algorithm as any upslope or downslope. This is because the end of an upslope or the start of a
downslope result in a peak, which is the prominent event that we deem to be important for alignment
between signals. An important aspect to note in our current implementation of eDTW is that we have
defined an “event frequency” parameter that is user-defined. In the remainder of this paper, we set this
parameter to 20%. We limit the slopes to be considered as events in order to align signals according
to general shape characteristics because in this way we can avoid designating noise or artifacts as
significant events to align.

2.5.1. Event Detection and Selection

Since the trends of a signal segment can be classified as either an upslope, a downslope, or a
plateau, by our definition we denoted the types of events as up or down. There were four steps for
processing event alignment, and the following is an example of selecting an upslope as an event:

1. Select an entire upslope with monotonically increasing observations in the signal. An upslope
is defined such that it is a contiguous subset of observations starting with the lowest point and
continuously increasing until there is a decrease or stagnation from one point to another.

2. Select the key slopes. We selected the slopes with the highest 20% elevation in R based on
empirical trials. Elevation is defined as the product of the number of observations in a slope and
the amplitude difference between the maximum point and the minimum point of the slope.

3. Every upslope in Q should match an upslope in R based on proximity in timestamps. If a slope in
Q is not matched, it is excluded.

4. Set the peak of the upslope as an event and propagate the information along the slope as per below.

2.5.2. Event Information Propagation

We denoted the nth event as En and the timestamps and values of each En as (tsEn , teEn , vsEn , veEn),
where the starting point of a slope was the observation with maximum amplitude, and the end
point was the observation with minimum amplitude, as shown in Figure 4a. The event information
propagation depended on the difference between the timestamp of an observation on a slope and tsEn .
The event information of an observation decayed as this difference increased. Instead of just using
vRi as the point-to-point distance in original DTW, we denoted that VRi was the vector describing
the information of Ri, including three dimensions: vRi was the amplitude value, and Iup, Ri and
Idown, Ri represented the event information of Ri belonging to an upslope or a downslope, respectively.
The vector representation of R was as follows:

VRi =
(
vRi , Iup, Ri , Idown, Ri

)
i ∈ {1, 2, . . . , LR} (8)
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The decay process of the event information was exponential. We set IRi = 0.1 at the end point of
an event (tRi = teEn ) and IRi = 1 at the start point (tRi = tsEn ). The information value at the event end
point, 0.1, was chosen arbitrarily between 0 and 1 as this information value could not be close to 1
because then there would not be a sufficient difference in information between the maximum and the
minimum point of an event; it also could not be too close to 0 because then we could not distinguish an
observation in a significant event from an observation that was not in an event.

I Ri =


e

ln (0.1)
|tRi
−tsEn |

|teEn−tsEn |
up(ts≤tRi≤te) OR down(te≤tRi≤ts)

0 otherwise

(9)
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The event information propagation of Q was the same as that of R. Our eDTW found the optimal
alignment between Q and R by calculating minimum Euclidean distance of each VRi and VQi.

Both slope detection and key slope selection required looping over values of R and Q. Event
matching and event information propagation had a constant computational cost regardless of the
spatiotemporal complexity. The spatiotemporal complexity of the event information calculation
process described in Sections 2.5.1 and 2.5.2 were O

(
LR + LQ

)
. After we defined the event information,

the process of finding the optimal alignment was the same as typical DTW, and its spatiotemporal
complexity was O

(
LR·LQ

)
. The total spatiotemporal complexity of eDTW was O

(
LR·LQ

)
, which was

the same as DTW.
For scaling EventDTW, several components for the methodology could be optimized. For the

slope calculation, event matching, and event information propagation, parallelization could be applied
for scaling since the individual computations were not dependent. However, for the key slope selection
step, synchronization was needed because the key slopes were selected based on the comparison of all
detected slopes, and this did not enable parallelization. The standard DTW method could be optimized
to mine massive datasets, and since EventDTW is calculated using standard DTW with the inclusion of
event information, EventDTW is similarly scalable [22].

3. Results

3.1. Results of Alignments on the University of California, Riverside (UCR) Time Series Classification Archive

In order to compare the performance of eDTW against existing state-of-the-art DTW algorithms,
we synthetically warped a set of 84 publicly available time series datasets (https://www.cs.ucr.edu/

~eamonn/time_series_data/) by introducing a localized time shift and an amplitude distortion to the
signal amplitudes. Perfect alignment of this warped time sequence to the original, optimal sequence
would give an exact one-to-one index correspondence, i.e., a 0% error rate. The error rate compares the
alignment resulting from using a DTW algorithm against a perfect alignment that we calculated in II.B,
and outputs a proportion score of error.

We tested the performance of DTW, dDTW, sDTW, and eDTW using SS and ER on a gold-
standard open-access public dataset, including 84 different signals collected from various scenarios.
We preprocessed each dataset using Gaussian smoothing kernels and standardized the signal amplitude.
We then generated synthetically warped and down-sampled companion signal Q and then calculated
the SS and ER for each alignment with the reference signal R generated by each of the four algorithms.
For 25% of all 84 cases, eDTW outperformed DTW, sDTW, and dDTW in terms of both SS and ER.
Compared with DTW, dDTW, and sDTW, the spatiotemporal complexity of eDTW was the same as
that of DTW and dDTW [8], and slightly better than that of sDTW [11].

Table 1 (based on Supplementary Table S1) shows the percentage of cases in which a particular
DTW performs best in terms of SS and ER. When the peaks of both signals are clearly defined and
correctly detected, eDTW significantly mitigates the singularity problem and provides a higher accuracy
(Figure 4b). By observing the alignment results of the 84 datasets, we discovered a trend in which
eDTW performed worse than DTW when the sequences were too sparse and when the sequences were
not smooth, (i.e., when tiny fluctuations existed throughout the sequences) (Supplementary Figure S2).
On the other hand, both eDTW and DTW outperformed both sDTW and dDTW based on the error rate
and singularity score for all 84 datasets.

https://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.cs.ucr.edu/~eamonn/time_series_data/
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Table 1. Algorithm performances in the UCR Time Series Classification Archive.

Algorithm Percent
of Best Algorithm by Singularity Score

Percent
of Best Algorithm by Error Rate

eDTW 42% 37%
DTW 32% 49%
sDTW 7% 4%
dDTW 19% 11%

3.2. Results of Alignments on ECG/PPG Heart Rate Datasets

We also applied our methods in aligning two real-world biomedical signals that we collected from
simultaneous electrocardiogram (ECG) and photoplethysmogram (PPG) sensing using wrist and chest
measurement modalities. ECG is a test that measures the electrical activity of the heart. PPG is an
optically obtained plethysmogram that can be used to detect blood volume changes in the microvascular
bed of tissue. In this study, we experimented with a dataset that we collected [22] consisting of heart
rates derived from ECG signals measured at a frequency of 1000 Hz by a 3-lead ECG (Bittium Faros
180, Bittium, Inc., Oulu, Finland) and PPG-based heart rates sampled at a dynamic sampling rate of
approximately 0.2 Hz, gathered with the Apple Watch 4 (Apple Inc., Cupertino, CA, USA).

We calculated heart rate (HR) from the ECG using the standard RR intervals, which is the time
elapsed between two successive R-waves of the electrocardiogram, using Kubios HRV Premium
(version 3.3). Heart rate values in units of beats per minute at each timestamp were calculated by taking
the inverse of the RR interval and multiplying by 60. We compared methods to align the processed
heart rate signals from the ECG and the Apple Watch 4. We preprocessed both the ECG and PPG
heart rate data using Gaussian smoothing kernels and standardized the signal amplitude. We then
aligned the PPG and ECG signals using four different algorithms, DTW, dDTW, sDTW, and eDTW,
and calculated the SS for each.

In the experiments applying DTW algorithms on the biomedical dataset STEP [23], we observed
that eDTW outperformed DTW, sDTW, and dDTW in 76% of the 38 pairs of signals in terms of
singularity score (Table 2 calculated based on Supplementary Table S2). We were not able to calculate
ER because there was no way to obtain the optimal alignment for these real-world signals.

Table 2. Algorithm performances in biomedical dataset [22].

Algorithm Percent
of Best Algorithm by Singularity Score

eDTW 76%
DTW 0%
sDTW 0%
dDTW 24%

4. Discussion

The evaluation of DTW algorithms has proven to be a significant challenge. With the two
evaluation metrics proposed here, we have enabled for the first time a quantitative method to evaluate
and compare DTW algorithm performance. Further, our results demonstrate improved signal alignment
using our novel algorithm, EventDTW, as compared to the original DTW algorithm for a significant
number (36.9%) of cases in the 84 gold-standard signal processing datasets. EventDTW is also strictly
superior to the dDTW and sDTW algorithms in addressing the singularity problem when the signals
to be aligned are of different frequencies.

However, as can be seen in Figure 1a, the alignment of the signals in a ’plateau’ area still tend to
result in a singularity problem for four DTW methods investigated in this paper. We expect this to be
mitigated by including plateau information as a weight in a modified version of the eDTW algorithm.
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Furthermore, our event detection method has significant room for improvement, since it is currently
not guaranteed to perfectly find and match events from two different signals.

We believe that eDTW has the potential to significantly outperform other DTW algorithms in
specific circumstances, one of which is when the two signals we attempt to align are measured at
different frequencies and have distinguishable events. However, signals of different characteristics
may require different DTW algorithms for optimal alignment. The more pronounced the events
in the signals are, the likelier eDTW is to find the global optimum alignment. We believe that
eDTW is flexible and can be adjusted to different situations and may produce the optimal alignment
under nearly all circumstances if the choice of the events is carefully delineated prior to performing
alignment with eDTW. Future work will involve designing and testing a signal characteristic metric to
determine the optimal DTW algorithm, or algorithm parameters will optimize alignment for signals of
different characteristics.

5. Conclusions

In this article, we compared existing DTW algorithms and illustrate their limitations with regard to
the singularity problem and accuracy in aligning signals of different sampling frequencies. We detailed
the construction of the error rate and the singularity score metrics for evaluating and comparing DTW
algorithm performance. We then demonstrated the significant potential of EventDTW in addressing
singularity problems and producing accurate alignments by applying eDTW to both synthetic time
sequences as well as real-world biomedical signals. While several limitations still exist and future steps
of research and analysis are needed, the eDTW algorithm outperforms existing DTW algorithms for
aligning real-world biomedical signals and addresses a wide need in this application area.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/9/2700/s1,
Figure S1: Comparison between temporal variable shift functions, Figure S2: Examples in which eDTW perform
worse than DTW Table S1: The Error Rate and Singularity Score for 84 datasets from the UCR Time Series
Classification Archive, Table S2: The Singularity Score for 38 pairs of signals from the biomedical dataset STEP [23].
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