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Abstract: Human following is one of the fundamental functions in human–robot interaction for
mobile robots. This paper shows a novel framework with state-machine control in which the robot
tracks the target person in occlusion and illumination changes, as well as navigates with obstacle
avoidance while following the target to the destination. People are detected and tracked using a
deep learning algorithm, called Single Shot MultiBox Detector, and the target person is identified
by extracting the color feature using the hue-saturation-value histogram. The robot follows the
target safely to the destination using a simultaneous localization and mapping algorithm with
the LIDAR sensor for obstacle avoidance. We performed intensive experiments on our human
following approach in an indoor environment with multiple people and moderate illumination
changes. Experimental results indicated that the robot followed the target well to the destination,
showing the effectiveness and practicability of our proposed system in the given environment.

Keywords: human following; deep learning; mobile robot; person identification; color feature

1. Introduction

In the last few years, human-following robots have become a highly active research area in various
mobile robotics and computer vision applications. Computer vision technology is crucial in various
practical applications such as personal guides for passengers in airports [1], elderly assistance [2],
autonomous vehicles [3], surveillance systems [4], and video and sports TV [5], among others.

To follow a specific person effectively, the robot must be able to reliably track the target person
within the surrounding world. However, several challenges may occur in various scenarios such as
when the target person gets occluded by other people or objects due to a sudden change in his/her
pose. The disappearance of the target person from the view of the robot’s camera may eventually cause
the robot to stop and lose its goal. Maintaining a safe distance between the robot and the obstacles
or the target in a surrounding environment without having the Freezing Robot Problem (FRP) [6] is
an additional challenge for robotic follower systems. Hence, the reliable estimation of the persons’
location is quite important. Furthermore, the system must overcome all these challenges within the
possibility of the available sensors (i.e., limited sensing range) mounted on the robot.

Robotic followers have been broadly studied in numerous published works and different
techniques have been proposed to solve some of these challenges. One of the earliest techniques in this
field used a camera to detect and track the human [7], where the authors combined a contour-based
approach with a color-based approach. The human-following robot was developed using vision-based
tracking for identifying an individual using the edges, color, and the texture of their clothes [8].
Bellotto and Hu [9] adopted a fusion technique using laser range data to detect the legs in order to
estimate the distance to the target person and vision information to detect the faces of the people
to follow the human. However, this method has a big limitation when there is occlusion by other
people. Choi et al. [10] calculated the distance and angle in the screening process of children with
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Attention-Deficit Hyperactivity Disorder (ADHD) using simple mathematical algorithms. Li et al. [11]
used a mobile robot with a red, green, blue (RGB) image segmentation process based on shape and
color recognition. In [12], depth images and an H-S Histogram in a Hue, Saturation, and Value (HSV)
space were obtained using a red, green, blue, depth (RGB-D) camera for service robots. Vision-based
tracking for mobile robots has been proposed using template matching to follow the person [13,14].
These methods suffer from a high average computation time for video processing, thereby being
sometimes insufficient for fast-tracking a human. Range-finders mounted on the mobile robot have
been used for human detection and tracking due to their wide field of view (FOV) [15,16]. However,
these methods have poor information about humans compared to vision-tracking methods. Previous
approaches detect people using a camera or laser range-finder sensor and follow them according to
their clothes’ color and positions. Although these methods try to improve the performance of human
following and tracking, if the desired target is completely or partially occluded by another person
or object, the mobile robot may lose track of the target person or erroneously follow another person.
Therefore, the identification technique must be reliable and robust in various settings. In addition to
the perceptual approach, the planning and control system should be integrated with perfect harmony
to enhance the ability of the robot to deal with unexpected circumstances.

Unlike previous methods, Koide and Miura [17] integrated features of the gait, height, and
appearance based on an online boosting method used as a specific human classifier. They used
multiple sensors: two range finders to ensure detection of the torso and leg and a web camera to
extract the clothes’ color.

Brunetti et al. [18] and Zhao et al. [19] provided a survey of the state-of-the-art human detection
and tracking work by computer vision with deep learning techniques. Currently, the availability of
low-cost cameras in the market allows them to be easily mounted on a robot. In modern applications,
researchers use various RGB-D cameras such as Kinect, ASUS xTion and Orbbec Astra. These sensors
are highly suitable for indoor environments and provide synchronized color and depth images.

In this paper, we introduce a novel framework that proposes a deep-learning-based approach
for an indoor human-following robot addressing the following challenges: First, the proposed system
can identify and follow the target person among other people even when there is partial occlusion of
the target in the context of human-following robots. Second, the proposed system is able to perform
the human-following under moderate illumination changes. Third, the proposed system attempts
to recover the target in the event of the human disappearing from the robot’s FoV. This is done by
selection of appropriate control for robots to maintain the robust following behavior of the person and
tracking the target’s path history.

To the best of our knowledge, this is the first work that aims to continuously maintain the robot
in an active state using a robust algorithm, which integrates a color feature, point cloud, and Single
Shot Detector (SSD) algorithm with the Simultaneous Localization and Mapping (SLAM) algorithm
for detecting multiple people and estimating all their locations using only two sensors in the context of
the person identification and indoor human-following robots.

The remainder of this paper is organized as follows. First, we describe the proposed approach in
Section 2. Section 3 explains the system controller of the proposed approach. In Section 4, we describe
the used hardware and the experimental results that were achieved. Finally, Section 5 concludes this
work and discusses some ideas for possible future improvements.

2. Human Following of Mobile Robot

The proposed human following system is depicted in the state-machine diagram, as shown in
Figure 1. This diagram describes the robotic behavior, which expresses all the different states of a
robot to achieve efficient tracking and autonomous navigation in dynamic environments. The tracking
state may sometimes fail to track the desired person. However, the robot must be able to recover from
the failure to keep track of the target during the course. Therefore, we defined three major states,
i.e., tracking, last observed position (LOP), and searching, among which the robot can switch during
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its operation, in addition to the initialization and stop states. If a given time is spent in a failure
situation during the searching state, the robot will stop its activity by a timer or allow the users to stop
it. We designed three methods in order to control the robotic behavior in each of its various states (see
Section 3 for more details). In general, humans usually follow other humans in a similar manner to
these methods. The first method occurs when the target person is inside the camera’s FoV, in which
the robot must move directly towards the location of the person based on visual tracking. The second
method takes place when the robot loses the target because the person exits the camera’s FoV, in which
case the robot must navigate to the person’s LOP. The final method arises when the robot does not find
the target in the LOP thus switching to the next state of searching for the target and continuing the
human-following behavior around the last observed spot of the target. While these methods may not
be exactly to those of people, we hypothesized that they may be close to those expected by humans for
robotic behavior.
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Figure 1. State machine diagram for the proposed human following system.

Furthermore, this work combines the SLAM algorithm [20] with a visual tracking algorithm using
Robot Operating System (ROS) (http://wiki.ros.org/ROS/Tutorials) tools. All these major states are
described in detail in the following sections.

2.1. Initialization State

In this state, the initial position of a robot [0, 0, 0] and its quaternion [1, 0, 0, 0] are referenced to
the base coordinate frame, where the initial vector [0, 0, 0] represent [x0, y0, z0] and the quaternion
represents [orientation, roll, pitch, yaw]. In wild navigation, only 2D plane information is needed,
namely the orientation (θr) and coordinates (xr, yr) of the mobile robot. The initialization state starts
from the run moment of the code to the first frame in the tracking state, which is presented below.

2.2. Tracking State

Humans have several specific behavioral and physical features, such as fingerprints, iris, face
and voice [21]. These features help brain processes to readily distinguish a certain person from others.
Most of these features have already been studied in other fields like security. However, employing
some of these features like iris and fingerprint in the robot field poses are some difficulties such as
requiring direct human action from very close distances with expensive and advanced devices for
identifying a certain person. However, the identification of a specific person by height, width, and
clothing color is possible with affordable devices.

The most important sensor of humans is arguably the eye, which detects objects by their shapes,
colors, widths, and heights, among other features. Similarly, robots can use visual sensors to identify
objects in the real world. The framework of the proposed method of human tracking using an SSD
model and a point cloud [22] are shown in Figure 2. We implemented a novel framework that
involves the outlined steps: First, the SSD was used to create bounding boxes for human detection
via Convolutional Neural Networks (CNNs) in a 2D image sequence. Second, 2D coordinates are
converted to 3D coordinates in world space by reducing the point cloud to the volume of the human
body based on the output of the SSD detector for estimating distances. Meanwhile, the color feature

http://wiki.ros.org/ROS/Tutorials


Sensors 2020, 20, 2699 4 of 19

is extracted from the region of interest-based also on the output of the SSD detector. Third, the
distance and labeled color are obtained to identify and track the target person. Finally, this information
is then sent from a workstation (node 1), which publishes the people information as a talker to a
robot computer (node 2), which subscribes to this information as a listener. The robot computer is
responsible for the control of the robot, path planning, and obstacle avoidance based on the publisher’s
information and the surrounding environment. The ROS Master manages registration information
between the ROS nodes, which is the key element in the ROS system [23]. The communication between
the workstation and the robot computer is made via a WiFi connection, we used 5 GHz 802.11ac and a
bandwidth of 80 MHz for consistent communication. The human tracking state is a highly complex
task, especially in dynamic environments. Thus keeping high video frame rate for the human tracking
is very important for the performance. Below, we briefly explain the key elements that were used in
this context as follows:

point cloud
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RGB image

Training data

region of interest
in 2D

people's positions
in 3D

target 
identification

height estimation

color extraction

camera

labeled height

Workstation

obstacle
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RPLiDAR

Robot
computer
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Figure 2. Framework of identification system.

2.2.1. Human Detection

To enable the robot to detect humans around it, CNNs were used by the SSD model as a detector.
This technique showed excellent performance in the detection of people in real-time, thus overcoming
its counterparts in detection speed. The SSD uses an end-to-end training method to improve both
the speed and accuracy; it is more accurate than You Only Look Once (YOLO) [24] and faster than
Faster R-CNN (regions with CNN) [25] with some data sets [26]. However, these techniques require
pre-training data. Figure 3 shows the MobileNet-SSD structure. The details of MobileNets and SSD are
extensive and beyond the scope of this work. Therefore, we briefly describe them here. In short, SSD
achieves a balance between accuracy and speed. To detect objects using 2D RGB image sequences, in
which the input size of the image is 300× 300, only a single feed-forward process is required, followed
by a non-maximum suppression step to produce the final detection. There are several different layers
producing multi-scale feature maps and many aspect ratios with multiple scales that predict object
detection. Each bounding box predicts the shape of the object with confidence, as shown in Figure 4a,
where every shape is either a rectangle or a square depending on the shape of the predicted object.
Therefore, every bounding box has four values in the pixel unit. They are given in the format (umin,
umax, vmin, vmax) with MobileNets [27], (see [26,27] for more details).
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Figure 3. MobileNet-SSD network architecture.

(a) (b)
Figure 4. Human detection showing boundary boxes around the human’s body and region of interest.
(a) Human detection. (b) Region of interest for color extraction.

2.2.2. Color Feature

Color-based detection using the clothes’ color of a full-body or the upper part of a human was
adopted as a key to personal identification. The color feature can be extracted easily from a sequence
of images in real time. It is robust for classifying people depending on their clothes’ colors [28]. There
are many methods used for object detection, depending on shape, texture or both, such as Scale
Invariant Feature Transformation (SIFT) [29,30] and Histograms of Oriented Gradient (HOG) [31,32].
We used a hue-saturation histogram for its simplicity, which is one of the most popular methods for
representations of color distribution. An HS-histogram is created from set pixels in a bounding box
area with different sizes and positions in consecutive scenes.

In order to reduce computation time and errors, especially in the case of a colorful environment,
the whole camera volume is cropped to a volume of interest, where the body is positioned. This
volume in the images, which is meaningful and important, is called a region of interest (ROI). The
blue box indicates the ROI, as shown in Figure 4b. The ROI is a region that concerns humans in
videos or images, according to basic concepts of neuropsychological studies [33]. It is used for ease of
optimization in image processing.

2.2.3. Depth Image and Estimating the Distance

To avoid the FRP while switching between states presented in [34], the robot must be aware of its
location and the relative positions of the people surrounding it. In human-following robot applications,
estimating the accurate pose of people in 2D image data is not enough. Therefore, 3D pose estimation
is indispensable. Although the CNN was originally prepared for image processing, it also became a
significant component in the 3D object recognition process. The distance is not measured directly by
the RGB-D images. However, if the center points of the object and camera are known in a 3D space
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position, the distance can be easily obtained via directly generating the coordinates of people using
a point cloud. Once the SSD model detects the human’s body using a 2D RGB image sequence and
creates a bounding box around the person’s body, the center of a bounding box (cu, cv) can be obtained
using its vertices. The coordinate of this point can be set as the pose and the volume of interest can be
extracted from the full image volume and converted from 2D-to-3D coordinates. The purpose of the
2D-to-3D conversion process is to generate a coordinate for every person based on the point cloud in
meter units (see Figure 5).
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Figure 5. Coordinate transformation of a mobile robot. (a) A mobile robot mounted with a fixed camera
on a 2 D plane. (b) A view of the standard transform library (tf) tree in the tf rviz plugin.

Consider a group of people standing in front of the robot camera Pi, i = 1, 2, 3, ..., N, and the
RGB-D camera tracking them in real-time over all frames. Let the bounding box of a person be
denoted by personi corresponding to the first frame. This means that we simultaneously obtain
N people, N centers of boxes, N coordinates, N distances, and N bounding boxes in a video
stream. This is one powerful advantage of SSD detector and ROS for object detection. Let
personi = {person1, person2, person2, ..., personN}, then, the centers of the boxes are as follows:
(cui , cvi ) = ((cu1 , cv1), (cu2 , cv2), (cu3 , cv3), ..., (cuN , cvN )), etc. The centers of boxes on the x-axis and
y-axis are given by

cui = (umaxi − umini )/2 (1)

cvi = (vmaxi − vmini )/2 (2)

where umax, umin, vmax, and vmin are the values of the vertices of the bounding box relative to the
resolution of images in each frame in terms of pixel units.

Our system adopts [35–37] to estimate the distance in real-world dimensions and [38] for
transferring the resulting dimensions and combining them with the SLAM algorithm. In the pinhole
camera model, the relationship between the camera’s image plane coordinates (ui, vi) and the 3D
coordinates of people (Xi, Yi, Zi) are relative to the camera frame, as expressed by the following equation,ui

vi
1

 =

 fx s u0

0 fy v0

0 0 1


Xi

Yi
Zi

 (3)

where fx and fy are the focal lengths of the camera per axis in pixels. u0 and v0 are the principal point
offsets of the camera per axis in pixels, (u, v) are the image coordinate axes in pixel units and s is axis
the skew, which only appears if the u axis is not perpendicular to the v axis.

The aim of the depth information is to directly obtain the values of (Xi, Yi, Zi) of the people
relative to the frame of the camera fixed on-board the robot. Once these parameters are known, the
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relative distance from a person to the camera frame can be calculated in meter units. Distances di from
the camera to the personi are defined as follows:

di =
√

X2
i + Y2

i + Z2
i . (4)

2.3. Last Observed Position State

The robot may lose the desired target due to, for example, sudden moves at high speeds around a
corner. Prior information of the target person was recorded in the past state (i.e., tracking state) using
the RGB-D camera, as mentioned above. When a target loss occurs, the robot navigates autonomously
to the LOP of the desired target to re-find him/her and continue its following behavior. In order to
achieve this task, the system uses the recorded last frame information about the target as input to
the SLAM algorithm and a 2D pre-built map. Laser-based SLAM is adopted to create a depth map
using a gmapping package as a ROS node called slam_gmapping (https://wiki.ros.org/gmapping),
which has been proposed by Grisetti et al. [39].

If it can re-find the desired target, the robot switches to the tracking state in which the target
person is within the camera’s FoV. If it fails to find the target person, the system switches to the
searching state, which is presented below.

2.4. Searching State

The previous state assumes that a robot could re-find a person within the FoV of the camera when
the mobile robot arrives at the LOP of a person. Intuitively, a person moves in several trajectories as
time passes; hence, the robot may sometimes struggle to re-find and follow a person. However, the
robot randomly rotates and scans the place to detect the desired target. If it re-finds the desired target,
it switches to the tracking state. If the robot fails to find the desired human, such as in the event of the
person moving away after a turn (i.e., corner) and disappearing, the robot will stop after a given time
or allow the users to stop it. In some of these cases, it is logical to suppose that it would not be capable
of detecting the desired human.

3. Robot Controller

To design a robust controller, we should study all the aspects of the robot navigation during
all expected states. There are three major states as mentioned above: (i) the tracking state, (ii) the
LOP state and (iii) the searching state. In the first two states, a proportional integral derivative (PID)
controller is used [40] to reduce the error distance between the robot position and target position.
In the tracking state, the target position is provided by the visual tracking. In the LOP state, the desired
position is the last known position of the target before the loss of the target. The control system is a
closed-loop (also known as a feedback control system). When the robot reaches the last known position
of the target in the LOP, the robot moves to the searching state. While in the searching state, the robot
will move randomly in an open-loop manner around the last known position to recover the target. For
the safety of the robot during the random movement, we defined the maximum values of angular and
linear velocities and the safe distance from the environment.

For the tracking state, the relationship between the linear velocity of the robot (V) and the error
rate in the current distance, (d−D) is directly proportional, where D, d are the safe and actual distances
between the robot and the target, respectively. Our system assumes D = 0.9 m, and d is the actual
distance of the desired target person, which is obtained from Equation (4). The robot can navigate at
speeds of up to 2 m/s and Vmax= 1.08 m/s in our experiments due to safety concerns.

The relationship between the angular velocity (ω) and the error rate in the u coordinate direction
(cu − ucenter) is also directly proportional, where ucenter is the image center in the horizontal direction.
The proposed system adopts (ucenter = 320 pixel) in our experiments, and cu is the current center of

https://wiki.ros.org/gmapping
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the target in the image in pixel units, which is obtained from Equation (1). The equations of the robot
velocity in the tracking state can be written as follows:

V = kp ∗ (d− D) + Ki ∗
∫

T
(d− D)dt (5)

ω = k′p ∗ (cu − ucenter) + K′i ∗
∫

T
(cu − ucenter)dt (6)

where (cu − ucenter) and (d − D) are error rates for the angular and linear velocity, respectively.
Kp, Ki, K′p, K′i are the PI constants and dt is the time rate between consecutive camera frames during
tracking. The most difficult aspect of the PI controller is adjusting the Kp, Ki, and kd values to obtain
the desired behavior. In our work, we got a Kp value of 0.415 when the distance (d) was less than
3.5 m and 0.168 when d was greater than 3.5 m due to safety concerns; we also got a Ki value of 0.001.
Furthermore, we got K′p and K′i values of 0.0023 and 0.0001, respectively.

For the LOP, proportional robot control was used to navigate to the last observed point of the
target (xt, yt) in the 2D plane. The pose of the robot was set as (xr, yr, θr), where the angle (θr) represents
the robot’s heading (in radians). The angle of the target (θt), from the positions of the target and the
robot is determined as

θt = tan−1 yt − yr

xt − xr
(7)

The equations of robot velocity in the LOP state can be written as follows:

ω = kpω ∗ (θt − θr) (8)

V = kpv ∗ ep; ep =
√
(yt − yr)2 + (xt − xr)2 (9)

where kpω , kpv are the proportional controller constants and (θt − θr) , ep are the error rates for
the angular (ω) and linear (V) velocity, respectively. In all experiments, the constants were set
as kpω = kpv = 1.

4. Results and Discussion

We conducted extensive experiments for human following to demonstrate the performance of the
proposed approach and tracking recovery from a failure situation when the target is lost. We divided
our experiments into two categories, the first type of experiments included multi-person detection
along with a target person, while the second included only one person. The visual tracking state may
sometimes fail to track the target person, and the robot must be able to recover from such a failure
situation. Therefore, we implemented the three major states described above, i.e., tracking, LOP, and
searching. The units of coordinates, velocities, and time in all the experiments were meters, meters
per second, and seconds, respectively. This section introduces a detailed explanation of the robotic
behavior while testing.

4.1. Infrastructure Setting

The experiments reported in this paper were carried out using a robot, called Rabbot (http:
//edu.gaitech.hk/ria_e100/index.html), to evaluate the performance of the proposed approach, shown
in Figure 6. The robot was fitted with an SLAMTEC RPLIDAR A2M8, Orbbec Astra and a computer
(2.8 GHz with 4 GHz turbo frequency, i5 processor, hexa core, 8 GB RAM, and 120 GB SSD) called the
robot computer, under ROS Kinetic+Ubuntu 16.04 64-bit. An Orbbec Astra camera was an RGB-D
sensor that provides synchronized color and depth images. Rabbot was equipped by the camera with
a resolution of 640× 480 and a height modified to 1.47 m from the floor for better visual tracking of the
environment. As mentioned above in Section 2.3, to create a map and obtain precise information about
surrounding object positions, an RPLIDAR A2M8 was used. The code was run on two computers, one

http://edu.gaitech.hk/ria_e100/index.html
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of them was the workstation for the deep learning module (Intel Core i7-6700 CPU @ 3.40 GHz) and
the second one was an on-board computer in the robot. The communication between the workstation
and the robot computer was made via a 5 GHz WiFi connection. Rabbot has a weight of approximately
20 kg and can carry a payload of approximately 50 kg.

camera monopod 

Walking Counter 

RPLiDAR

Orbbec Astra camera

computer

WiFi

Figure 6. Mobile robot equipped with an RGB-D camera and range finding sensor.

4.2. Human Following Experiments

The testing environment is depicted in Figure 7. The target person walks along a realistic scenario
path and the robot follows him/her. The path begins from the laboratory (small black circle with the
letter ‘S’, which is the robot departure point) to the end of the corridor (the small black circle with
the letter ‘E’, which is the target person destination point). We chose this path for testing because it is
the longest and most optimal for the WiFi signal range. Its length is approximately 27 m, measured
using wheel odometry, then validated with the walking counter (WC). The blue and green dashed
lines represent the paths of the robot and the target, respectively. The target person walks in front of
the robot and the Orbbec Astra camera tracks the target person using RGB and depth data. The red
circles indicate other people, the blue numbers indicate glass walls, doors, and windows that allow
sunlight to pass into the testing environment.

robot target
other
1 other

2

Common Room

Helper Lab

Corridor

Elev.

S

E

Sunlight 
Bathroom

+X

+Y

Figure 7. Realistic scenario of paths of the robot and the target in human following.

In the first category, the experiments included multi-person detection along with the target
person in the testing environment. The performance of the proposed system was analyzed in the 18
experiments, as shown in Table 1. The system recorded data while the target walked at a normal speed.
The total number of frames, the traveled distance of the robot and the time for these experiments
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were (18,563 frames, 450.80 m and 797.12 s), and the averages of frames, distance, and time for every
experiment were (1031.3 frames, 25.04 m and 44.28 s), respectively.

Table 1. Experimental results of human following.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7

Mission success rate (%) O O O O O O x
Target’s travel distance (m) 28.06 27.93 28.08 28.42 27.97 27.74 0.00
Robot’s travel distance (m) 25.77 26.95 26.86 27.65 26.88 26.46 18.58
Robot’s travel time (s) 44.28 42.16 43.44 45.68 42.18 42.39 68.96
Robot’s average velocity (m/s) 0.58 0.64 0.62 0.61 0.64 0.62 0.27
# of frames 1042 1024 1022 1120 932 992 1507
Successfully tracked (frames) 1030 997 1010 1108 928 982 679
Lost track of the target (frames) 12 27 12 12 4 10 828
Successfully tracked (s) 43.77 41.04 42.93 45.19 42.00 41.96 31.07
Lost track of the target (s) 0.51 1.11 0.51 0.49 0.18 0.43 37.89
Lost track of the target rate (%) 1.2 2.6 1.2 1.1 0.4 1.0 54.9
Successful tracking rate (%) 98.8 97.4 98.8 98.9 99.6 99.0 45.1
Computation time (fps) 23.53 24.29 23.53 24.52 22.10 23.40 21.85

Parameters Exp. 8 Exp. 9 Exp. 10 Exp. 11 Exp. 12 Exp. 13 Exp. 14

Mission success rate (%) x O O O O O O
Target’s travel distance (m) 0.00 27.93 27.37 27.40 28.79 27.85 28.05
Robot’s travel distance (m) 10.94 27.08 26.43 25.89 27.21 26.45 25.82
Robot’s travel time (s) 39.93 44.53 44.27 41.22 42.82 44.58 42.90
Robot’s average velocity (m/s) 0.27 0.61 0.60 0.63 0.64 0.59 0.60
# of frames 961 1042 987 999 1026 1017 991
Successfully tracked (frames) 479 969 983 994 994 941 973
Lost track of the target (frames) 482 73 4 5 32 76 18
Successfully tracked (s) 19.90 41.41 44.09 41.01 41.48 41.25 42.12
Lost track of the target (s) 20.03 3.12 0.18 0.21 1.34 3.33 0.78
Lost track of the target 50.2 7.0 0.4 0.5 3.1 7.5 1.8
Successful tracking rate (%) 49.8 93.0 99.6 99.5 96.9 92.5 98.2
Computation time (fps) 24.07 23.40 22.29 24.24 23.96 22.81 23.10

Parameters Exp. 15 Exp. 16 Exp. 17 Exp. 18 Total Average Std

Mission success rate (%) O O O O 88.9% - -
Target’s travel distance (m) 26.68 28.17 28.08 26.37 444.89 24.72 9.01
Robot’s travel distance (m) 25.80 26.83 25.35 23.86 450.80 25.04 4.06
Robot’s travel time (s) 44.06 42.15 41.72 39.87 797.12 44.28 6.36
Robot’s average velocity (m/s) 0.59 0.64 0.61 0.60 - 0.57 0.11
# of frames 984 1029 940 948 18,563.0 1031.3 126.78
Successfully tracked (frames) 956 1003 923 908 16,857.0 936.5 141.83
Lost track of the target (frames) 28 26 17 40 1706.0 94.8 213.28
Successfully tracked (s) 42.81 41.09 40.96 38.18 722.27 40.13 5.86
Lost track of the target (s) 1.25 1.07 0.75 1.68 74.85 4.16 9.57
Lost track of the target 2.8 2.5 1.8 4.2 - 8.02 0.16
Successful tracking rate (%) 97.2 97.5 98.2 95.8 - 91.98 0.16
Computation time (fps) 22.33 24.41 22.53 23.78 - 23.34 0.85

std: standard deviation, fps: Frame per Second.

The robot failed to recover the target person in two experiments for two main reasons; the first
was due to the disappearance of the target person around a corner or other objects and the continuous
walk toward the destination point; the second was because the robot tracked another person due to
severe illumination changes, which is one limitation of the used cameras. This failure occurred after
the robot traveled 18.58, 10.94 m in two failed experiments for tracking, LOP, and searching, as defined
in Figure 1. However, the target person was correctly followed to the destination point during 16 of
the experiments. The symbols, O, X shown in the second row from Table 1 indicate the experiment
status. O indicates that the robot arrived at the predefined destination point and X indicates otherwise.
Our judgment was based on success or failure, i.e., if the robot arrived at the destination point or not,
regardless of the percentage of traveled distance in the failed experiment. The system was manually
stopped by the observer.
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In the successful experiments, the average travel distance of the robot was 26.33 m, which is
comparable to the average travel distance of the target, 26.47 m. The traveled distance of the target
was measured eight times using a WC. In addition, it was estimated for all experiments via the robot’s
camera using a tf tree, as shown in Figure 5b. The average computation time for the video in real-time
was 23.34 f rame/s, i.e., 42.84 ms, which corresponds to the frame rate of the Orbbec Astra camera and
is suitable for a smooth robust human-following robot. The average and maximum robot velocities
were (0.57 and 1.08 m/s), respectively.

Figure 8 shows snapshots of the experiments. The green bounding box around a person in the
images indicates the target person and the red bounding boxes indicate the other people. The yellow
rectangle on the target person indicates the ROI and the blue rectangle indicates the detection of the
clothes’ colors. The test began at the laboratory and finished the end of the corridor in an indoor
colorful environment. The mobile robot followed the target person based on his/her clothes’ colors.

(a) (b) (c)

(d) (e) (f)
Figure 8. Snapshots of the robot’s field of view while performing the human following experiments:
(a) It begins to follow the target wearing the white hooded t-shirt. (b) The target is walking out of the
laboratory, and another person is standing in the corridor outside the door. (c) The robot loses the
target momentarily at the laboratory’s door. (d) The robot re-tracks the target immediately. (e) The
robot follows well while another person is walking in the opposite direction. (f) The robot follows well
despite illumination changes while the other person is standing in the middle of the corridor.

At the beginning of the test, the mobile robot extracted the color feature of the target person
and estimated his position, then started following him. A second person moved from the laboratory
(Figure 8a) to the corridor (Figure 8b). During the testing, the target person disappeared behind the wall
that separates the laboratory and corridor. As a result, the robot lost the target, and it simultaneously
detected another person as a non-target (Figure 8c). However, the robot re-tracked the target based on
the LOP and it correctly re-identified him based on the color feature. Two other people appeared in
the scene, one of them stood in front of the common room while another was walking in front of the
target (Figure 8d). The robot kept following the target while one person was walking forward and
backward freely along the left side of the target in the corridor (Figure 8d,e), and another was standing
on the right side (Figure 8f). Although there was an illumination change due to the sunlight in the
testing environment, especially at the end of the corridor (see the difference in Figure 8d,e), the robot
successfully followed the target person.

Figure 9 shows the robot and the target person movement trajectories in a realistic scenario during
the tracking state. Figure 9a,b show the positions of the robot and person along the x coordinate and y
coordinate, respectively. The green curve indicates the target person trajectory while the blue dotted
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curve indicates the robot trajectory. The red, yellow areas between the curves of the robot and the
person along the x, y coordinates indicate the distance difference (d− D) between them with +,−
directions relative to a departure point (0, 0) of the robot, respectively. The high frequency in the
position component while rotating both the robot and person from 11 to 13.5 s at a corner between
the laboratory and corridor is due to sensor noise. If we compare their trajectories with the testing
environment, the target person walked in the laboratory in the +x direction, with a slight slope toward
the +y direction. Then, they turned to the right at the door and kept walking in the corridor in the −y
direction (see Figure 7.)
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Figure 9. Robot and person movement trajectories in a realistic scenario for tracking state. (a) Relative
position between the target and the robot in the x-coordinate. (b) Relative position between the target
and the robot in the y-coordinate. (c) Linear velocity. (d) Rotational velocity.

Figure 9c,d show the linear and rotational velocities, respectively. The velocity components of
the robot are smooth that are well within the limits of the robot. In this experiment, the maximum
and minimum linear velocities of the robot were 1.039 and 0.0 m/s at the first and last frame for the
successful frames, respectively, and the average linear velocity was 0.85 m/s, while the rotational
velocity was high during a rotation of the robot in the −y direction from 9.5 to 15 s at the corner
between the laboratory and the corridor. When the target person walked in an approximately straight
line, the rotational velocity was approximately equal to 0.0 m/s because the position of the person
center was kept in the heading direction. Due to camera noise, the robot lost the target. The loss of 2, 4,
and 4 frames occurred at 1.5, 11.2, and 12 s, respectively. As a result, the robot started rotating toward
the LOP with a rotational velocity of ± 0.45 m/s and the linear velocity dropped to zero. The black
circles indicate the lost frames, as shown in Figure 9d. This means that the robot is in a persistent state
of activity even when the target is lost for a millisecond. When the person arrived at the destination
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point, he stopped, therefore, the distance between the robot and the person began decreasing to 0.9 m.
Consequently, the velocity of the robot started decreasing until it stopped (see Figure 9b,c).

4.3. Target Recovery Experiments

To show the capability of target recovery, we performed different experiments. The testing
environment without other people is depicted in Figure 10. It is identical to the testing environment
shown in Figure 7. The path starts from the laboratory (small black circle with the letter ‘S’, which is
the robot departure point) to the end of the corridor (the small black circle with the letter ‘E’, which is
the target person destination point). The blue and green dashed lines represent the paths of the robot
and the target, respectively.

robot target

Common Room

Helper Lab

Corridor

Elev.

S

E

Sunlight 
Bathroom

+X

+Y

Figure 10. Realistic scenario of paths of the robot and the target for recovery tests.

Table 2 shows the result of the 11 experiments, which constitute the second type of experiments.
These experiments include only one person in the testing environment. The total number of frames,
the traveled distance of the robot, and the time for all experiments were approximately 15,562 frames,
287.9 m and 673.6 s, and the averages of frames, distance, and time for every experiment were 1414.73
frames, 26.18 m and 61.24 s, respectively. The robot failed to recover the target person in one experiment;
after the robot moved to the LOP, it looked for the person in the opposite direction, as the person
moved to the right and the robot moved to the left in the corridor. However, the robot recovered
human tracking and continued to follow the person to the destination point in 10 experiments. The
symbols, O, X shown in the second row of Table 2 indicate the experiment status. O indicates that
the robot arrived at the predefined destination point while X indicates otherwise. Although these
experiments were conducted with one person, the rate of successfully tracked frames decreased from
91.98 to 0.58% due to the intentional disappearance; this indicate that the robot spent a long time in the
LOP and searching states. Meanwhile, the overall success rate increased from 88.9 to 90.91% due to the
behavior of waiting near the LOP after the target was lost.

The graphs in Figure 11 show the robot and person movement trajectories in a realistic scenario
under the tracking and LOP states. Figure 11a,b show the positions of the robot and the person along
the x− y coordinates. The green curve indicates the target person trajectory while the blue dotted
curve indicates the robot trajectory. Black and red vertical dotted lines indicate the ends of the tracking
and re-tracking, respectively. The green slanted dotted line indicates the disappearance of the target
person from the robot’s FoV, as shown in Figure 11a,b. Similar to Figure 9a,b, the difference between
these two figures is the disappearance of the target twice intentionally from the robot’s FoV, and the
person waiting near the LOP behind the wall. However, the robot was able to re-track the target after
arriving at the LOP in the first disappearance (from 15.1 to 30.7 s) while it was able to re-track the target
in a short time during the second disappearance (from 34.42 to 37.1 s). When the person arrived at the
destination point, he stopped, thereby, the distance between the robot and person began decreasing to
0.9 m (see Figure 11b).
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Table 2. Overall experimental results without other people.

Parameters Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7

Mission success rate (%) O O O O O O x
Target’s travel distance (m) 32.931 27.401 28.906 28.005 30.94 28.819 0.00
Robot’s travel distance (m) 30.152 26.649 27.455 27.162 27.931 27.522 14.641
Robot’s travel time (s) 77.567 52.433 64.566 61.687 71.067 62.706 44.984
Robot’s average velocity (m/s) 0.39 0.51 0.43 0.44 0.39 0.44 0.33
# of frames 1699 1341 1537 1537 1913 1502 1153
Successfully tracked (frames) 1280 805 624 727 663 840 214
Lost track of the target (frames) 419 536 913 810 1250 662 939
Successfully tracked (s) 58.438 31.475 26.213 29.178 24.630 35.069 8.349
Lost track of the target (s) 19.129 20.958 38.353 32.509 46.437 27.637 36.635
Lost track of the target rate (%) 0.25 0.40 0.59 0.53 0.65 0.44 0.81
Successful tracking rate (%) 0.75 0.60 0.41 0.47 0.35 0.56 0.19
Computation time (fps) 21.90 25.58 23.81 24.92 26.92 23.95 25.63

Parameters Exp. 8 Exp. 9 Exp. 10 Exp. 11 Total Average Std

Mission success rate (%) O O O O 90.91% - -
Target’s travel distance (m) 28.562 27.287 27.164 26.977 286.992 26.09 8.84
Robot’s travel distance (m) 27.435 26.492 26.345 26.214 287.998 26.18 3.98
Robot’s travel time (s) 71.974 59.975 51.331 55.327 673.617 61.24 9.84
Robot’s average velocity (m/s) 0.38 0.44 0.51 0.47 - 0.43 0.06
# of frames 1309 1333 1142 1096 15562 1414.73 251.87
Successfully tracked (frames) 1043 833 924 863 8816 801.45 266.45
Lost track of the target (frames) 266 500 218 233 6746 613.27 334.73
Successfully tracked (s) 57.348 37.479 41.532 43.565 393.276 35.75 14.51
Lost track of the target (s) 14.626 22.496 9.799 11.762 280.341 25.49 11.85
Lost track of the target rate (%) 0.20 0.38 0.19 0.21 - 0.42 0.21
Successful tracking rate (%) 0.80 0.62 0.81 0.79 - 0.58 0.21
Computation time (fps) 18.19 22.23 22.25 19.81 - 23.20 2.63

std: standard deviation, fps: Frame per Second.

The robot and person trajectories were created in the x − y coordinates by a path planner, as
visualized in Figure 11c. The trajectories of both the robot and the person are almost identical. The filled
black and empty red circles indicate the positions of the robot and person at the last tracked frame,
respectively. The movement of the robot between them was carried out under the LOP state.

Figure 12 shows the trajectories of the robot and person in the 2D plan for three states. The green
slanted dotted line indicates the disappearance of the target person from the robot’s FoV. Similar to
Figure 11c, the difference is that this experiment was conducted in the laboratory only and the robot
could not find the target at the LOP; therefore, it switched to the searching state. The robot departed
from the origin point (0, 0) toward the target person based on visual tracking, then lost the target at
(3.7, −0.084 m) where the LOP was at (4.8, −0.34 m). The robot moved to the LOP and did not find the
target there due to a change in his position; it switched to the searching state to find the target, and
found him where the robot was, at (4.419, −2.06 m). The filled black and empty red circles indicate the
positions of the robot and person at the last tracked frame, respectively. The trajectory of the robot
between them was carried out under the LOP state. The filled blue circle indicates the end of the
position of the robot in the searching state and the start of the re-tracking of the target. The movement
of the robot between the empty red and the filled blue circle was carried out under the searching state.
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Figure 11. Robot and person movement trajectories in a realistic scenario for two states. (a) Robot and
person trajectories along the x coordinate. (b) Robot and person trajectories along the y coordinate.
(c) Robot and person trajectories in the world coordinate (2D) for two states.
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Figure 12. Robot and person trajectories in the world coordinate (2D) for three states.

4.4. Comparison with Previous Approaches

As mentioned in Section 1, there have been significant researches on the subject of the human
following of mobile robots. It is generally difficult to directly compare the performances of
different robotic systems due to several factors such as different functional scopes, non-uniformity of
sensors/hardware used, unavailability of a common dataset and non-identical operating conditions.
However, in order to clarify our technical contributions, we try our best to compare our system with
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previous significant approaches, such as by Koide and Miura [17] and Lee et al. [41] at the function or
module levels rather than the full system level.

Developed when deep learning was not common, Koide and Miura showed the full-scale human
following that worked in both indoor and outdoor situations. They utilized various features such
as appearance, color, height and gait, jointing features with online boosting to have a robust human
following in severe illumination environments. On the other hand, Lee et al. used deep learning for
indoor human following like us, adapting a sophisticated Bayesian-based target trajectory prediction.
They did not show the experiments with occlusions by other people and illumination changes
exclusively as much as we do.

The successful tracking rate, defined as the ratio of the number of successful frames (where
the target was correctly tracked) to the total number of frames [13] is critical for successful human
following. As shown in Table 1, the successful tracking rate of our indoor human following was about
92%, while Koide’s approach showed 81.0% for their outdoor following. Unfortunately, Koide and
Miura did not provide the tracking rate of the indoor following in their paper. Despite the mission
environments are different, our approach showed better performance for the tracking of the target
during the following. Although Lee et al. had similar indoor following like us, we cannot compare
because they did not provide their tracking rate.

The computation time for the overall human following that we proposed took approximately
0.042 s, as shown in Table 1. According to our findings in the paper, Koide’s method took 0.5 s,
which was much longer than ours probably because they adapted multiple feature joints for both indoor
and outdoor use and did not use the latest technologies like deep learning. According to our findings
in the paper, Lee’s method took 0.3 s, which was also much longer than ours probably because they
used Bayesian-based target trajectory prediction (a sophisticated function that we do not have yet.)

The mission success rate, showing how successfully the robot followed the target to the destination,
was 88.9% in our case, as shown in Table 1. Other papers did not provide any information about the
rate. The high mission success rate is important for robot developments because it shows how well the
robot system is integrated for repeatability. Although we need to work harder to improve our human
following, our system is fast, robust and repeatable in the event of occlusions and illumination changes.

5. Conclusions

This paper presents a novel framework that integrates the deep learning technique and
state-machine control to develop a reliable and repeatable human-following robot. People are detected
and tracked using an SSD detector, robust to occlusion. The target person is identified by extracting the
color feature using an HS-histogram from a video sequence, robust to illumination changes. The robot
follows the target safely to the destination using SLAM with the LIDAR sensor for obstacle avoidance.
The contributions made in this work are given as follows. First, we designed an efficient and repeatable
robotic state-machine control so that the robot stays in an active state of the human following without
freezing. Second, we adopted a robust vision algorithm from occlusions and illumination changes
integrating a color feature with the deep learning algorithm. Third, we developed a robust human
following and verified it in realistic indoor situations.

Despite the high success rate in the performance of the proposed approach, it has some limitations.
For instance, person identification is fully dependent on the color feature, which becomes meaningless
when there are people wearing clothes that have the same or similar color. In addition, our proposed
system is weak in the case of severe illumination changes. The proposed method has numerous
applications for mobile robots, such as carrying luggage or belongings for the elderly or disabled or
delivering goods in grocery stores or airports. For possible future improvements, we are currently
working on predicting the target’s trajectories with sophisticated algorithms such as the Markov and
Bayesian model instead of random search. In addition, we plan to use more human features in addition
to the color, such as texture and shape, to make it robust to occlusions and illumination changes in
various situations.
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Abbreviations

The following abbreviations are used in this paper:

FRP Freezing Robot Problem
RGB-D Red, Green, Blue-Depth
HSV Hue, Saturation, and Value
FoV Field of View
SSD Single Shot Detector
GPU Graphics Processing Unit
CPU Central Processing Unit
LOP Last Observed Position
SLAM Simultaneous Localization and Mapping
ROS Robot Operating System
CNNs Convolutional Neural Networks
YOLO You Only Look Once
R-CNN Regions with Convolutional Neural Network
SIFT Scale Invariant Feature Transformation
HOG Histograms of Oriented Gradient
ROI Region of Interest
PID Proportional Integral Derivative
WC Walking Counter
Exp. Experiment
Elev. Elevator
lab Laboratory
ADHD Attention-Deficit Hyperactivity Disorder
fps Frame per Second
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