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Abstract: The real-time vehicle detection and counting plays a crucial role in traffic control. To collect
traffic information continuously, the access to information from traffic video shows great importance
and huge advantages compared with traditional technologies. However, most current algorithms
are not adapted to the effects of undesirable environments, such as sudden changes in illumination,
vehicle shadows, and complex urban traffic conditions, etc. To address these problems, a new vehicle
detection and counting method was proposed in this paper. Based on a real-time background model,
the problem of sudden illumination changes could be solved, while the vehicle shadows could be
removed using a detection method based on motion. The vehicle counting was built on two types of
ROIs—called Normative-Lane and Non-Normative-Lane—which could adapt to the complex urban
traffic conditions, especially for non-normative driving. Results have shown that the methodology
we proposed is able to count vehicles with 99.93% accuracy under the undesirable environments
mentioned above. At the same time, the setting of the Normative-Lane and the Non-Normative-Lane
can realize the detection of non-normative driving, and it is of great significance to improve the
counting accuracy.

Keywords: real-time background; vehicle detection; vehicle counting; Normative-Lane and
Non-Normative-Lane

1. Introduction

With the development of Intelligent Transport Systems (ITS), real-time traffic monitoring has
become one of the most important technologies. There are various sensors used to collect traffic
information, which could be categorized into two types: hardware-based sensors and software-based
sensors [1]. The former one is a kind of traditional sensor for information collection, which is based on
a dedicated equipment, such as infrared sensor, electromagnetic induction loop coil, ultrasonic sensor,
radar detector, piezoelectric sensor and so on, while the latter is based on the complex image-processing
techniques over surveillance video cameras most. For the hardware-based sensors, the loop coil and
the piezoelectric sensor need to be located within the pavement, which will cause huge damage to
the road, and the installation and irregular maintenance require an interruption in traffic; the infrared
sensor, the ultrasonic sensor and the radar detector will lose their functionalities when affected by
environmental factors [2], such as signal interference. Comparing with traditional sensors, a video
camera shows a huge advantage with its flexibility and low cost. More importantly, with a high video
frame rate (more than 24 frames per second), the traffic information collected through video is more
real-time and the sampling rate is much higher than traditional sensors. Therefore, there has been a
trend to capture vehicle information through surveillance video cameras in recent years.

For most algorithms, vehicle detection is the first step before vehicle counting. The techniques
for vehicle detection can be categorized into feature-based methods and motion-based methods.
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The former is based on the visual features [3], such as color [4], texture [5], edge [6], contour [7],
symmetry [8], or the characteristic parts of the vehicle, such as vehicle lights [9], license plates [10],
windshield [11], etc. Multi-feature methods are most commonly used in practice. In [12], a hierarchical
generative model was built to recognize compositional object categories by large intra-category
variance. The extraction of low-level features is fast and convenient, but it cannot represent all of the
useful information efficiently. To solve this problem, a machine-learning method [13] was brought into
vehicle detection. For example, a deep neural network based on visual features was trained in [14], but
its drawback of time-consuming makes it unable to meet the real-time requirements.

Unlike the feature-based method, the motion-based method is faster, for it does not involve any
prior knowledge and parameters. The interframe differencing method and the background subtraction
method are two of the most characteristic examples. Interframe differencing was widely used in the
early days [15], but it cannot be adapted to the detection of slow-moving targets and suffers from
the holes seriously [16]. Background subtraction is performed based on a binary image generated
by the difference between moving targets and static background [1], and it is also effective against
slow-moving targets. However, this method is susceptible to environment changes in complicated
circumstances, such as sudden illumination changes on a cloudy day. Moreover, the shadow of the
vehicle may induce shape distortions and object fusions [17], which will affect the results of vehicle
detection and make the problems more complicated [18], and there is not a robust enough solution to
deal with the shadow of vehicles so far.

For counting steps, vehicle tracking and extracting information using the Regions of Interests
(ROIs) are two of the most mature methods. The former one achieves the goal of vehicle counting
by tracking the same vehicle in a series of frames, and the use of the Kalman filter [19] or exploiting
feature tracking [20] were the most common approaches. However, it does not suit online operation
with its computational complexity. In this case, a faster method based on the ROIs was proposed,
which has little computational cost. In [21], a lineal ROI—a kind of virtual detection line—set on each
lane of the road was used to count vehicles, while double virtual lines [22] and small virtual loops [23]
could also be applied. However, the existing algorithms can only obtain a relatively accurate result
under ideal conditions. When faced with undesirable environments, such as sudden illumination
changes and vehicle shadow, or on a complex urban road rather than a simple highway, the mistakes
of misidentifying or missing a vehicle will be extremely serious.

In this paper, a new vehicle detection and counting method will be proposed. Combining with
a real-time background model, a motion-based algorithm for removing vehicle shadows and an
optimization of image by filling holes and denoising, the adverse effects of sudden illumination
changes and vehicle shadows can be well overcome. For vehicle counting, two types of ROIs—called
Normative-Lane and Non-Normative-Lane—will be innovatively introduced into our system,
which can detect non-normative driving efficiently. At the same time, the driving state of a vehicle can
also be recorded, which greatly improves the precision of vehicle counting. Table 1 summarizes the
characteristics and advantages of our work compared with existing state-of-the-art methods.

Table 1. Comparison of existing state-of-the-art methods.

Function Applicable Scenes Experimental Environments

Bouvié [24] Detection, counting Less ideal Sudden illumination changes
and general urban traffic

Quesada [25] Counting Less ideal Sudden illumination changes
and general urban traffic

Yang [26] Detection, counting Challenging Sudden illumination change
Abdelwahab [27] Detection, counting Ideal Sudden illumination changes

Proposed Method Detection, counting and
non-normative driving

Challenging
and complex

Sudden illumination changes,
complex urban traffic and
vehicle shadows
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2. Methodology

Our methodology is based on the surveillance traffic video, and it contains two main parts: vehicle
detection and vehicle counting, which will be described in the following sections. The block diagram
of the proposed framework is shown in Figure 1 (the sequences in Figure 1 are from Video Mofan
Rd [28], which will be introduced in detail in Section 2.1).

Figure 1. Block diagram of the proposed framework.

2.1. Description of Datasets

To validate the performance of our proposed system under the undesirable environments
mentioned above, four traffic videos were selected for experiments. The first two are benchmark
datasets on the highway, while the other two were recorded by ourselves in Nanjing, Jiangsu, China,
which are on an expressway and an urban road, respectively. The first video is called Highway,
which can be obtained from the Change Detection Benchmark [29]; the second one is called M-30-HD,
which can be obtained from the Road-Traffic Monitoring (GRAM-RTM) dataset [30]; the third and
fourth ones are called Mofan Rd and Zhongshan Rd, which can be obtained from [28]. The pixel ratio
of all these videos was adjusted to a uniform pixel ratio (4:3) by cutting and compressing, which could
reduce the running time of the computer and unify the video processing, and the frame rate of all
these videos is 30 fps. The attributes of the datasets are shown in Table 2.

Table 2. The attributes of the datasets.

Dataset
Road and Environment Properties Video Properties

Location Lane No. Weather Frame No. Original Size Adjusted Size

Highway Highway 2 Sunny 1700 320 × 240 320 × 240
M-30-HD Highway 4 Cloudy 9390 1200 × 720 640 × 480
Zhongshan Rd Expressway 3 Cloudy 54000 800 × 600 600 × 450
Mofan Rd Urban road 4 Sunny 54000 800 × 600 600 × 450

As described in Section 1, there are two main challenges in the detection part. The first is the effect
of sudden illumination changes on the establishment of background, such as the cloud occlusion and
dissipation on cloudy days. The second one is how to remove the shadow of moving vehicles on sunny
days, especially when the sun is tilting. Moreover, the traffic conditions also matter a lot. There are
three kinds of adverse effects, mainly: high proportion of large vehicles, high traffic density or traffic
flow, and serious non-normative driving. These adverse effects may be less common on highways but
have a greater impact on urban roads. Also, the poor camera shooting angle can have a big impact on
the accuracy of counting, especially for tall and large vehicles. Therefore, we selected these four videos
containing the above challenges to verify that our proposed method offers a robust vehicle detection
and counting system.
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Video Highway contains a poor camera shooting angle and a few vehicle shadows, and the
waving trees in this scene may have some bad effects; Video M-30-HD mainly contains sudden
illumination changes. However, the detection environments of these two benchmark datasets on the
highway are relatively ideal. For example, there are no large amounts of vehicle shadow and complex
traffic conditions, which are often faced on urban roads, such as high proportion of large vehicles
(especially buses), high traffic density or flow and serious non-normative driving.

In order to further verify the effectiveness and robustness of our method, two more challenging
videos recorded by ourselves were chosen for testing, where sudden illumination changes and poor
camera shooting angle are included in Zhongshan Rd, while a large amount of vehicle shadow and
high proportion of large vehicles are included in Mofan Rd. Moreover, the challenges of high traffic
density and serious non-normative driving happened in both of these two videos.

The weather of Zhongshan Rd is cloudy, which will bring the challenge of sudden illumination
changes. Figure 2a,b shows that the shooting angle is relatively tilted, which will make the tall and
large vehicles be easily detected repeatedly in two lanes, while the non-normative driving is also
serious, just like Figure 2b shows. For Mofan Rd, Figure 2c,d shows the serious vehicle shadows clearly
and the proportion of large vehicles (especially buses) is really high, and the non-normative driving is
more serious in this urban road. Coupled with high traffic density, all of these adverse factors increase
the difficulty of detection and counting.

(a) (b) (c) (d)
Figure 2. The instruction of Zhongshan Rd and Mofan Rd.

It is also worth noting that we have chosen enough video frames (54,000) for more cases to validate
our methods. The characteristics and challenges of these roads are shown in Table 3.

Table 3. The characteristics and challenges of each road.

Dataset

Scene Weather Traffic Conditions

Camera
Shooting
Angle

Waving
Trees

Sudden
Illumination
Changes

Vehicle
Shadows

Large
Vehicle
Proportion

Traffic
Density

Non-
Normative
Driving

Overall
Evaluation

Highway Poor Median Median A few None (0%) Median None Less ideal
M-30-HD Not bad None A Lot None Low (0.85%) Low A little Not too bad
Zhongshan Rd Poor None A Lot None Low (0.91%) High Median A bit poor
Mofan Rd Good A Lot Median A Lot High (8.06%) High Much Very poor

2.2. Detection Based on Motion

Getting an accurate detection result is an essential process before the counting part. For ideal
scenes, this goal is easy to achieve. However, when the detection environment is poor, many algorithms
become ineffective. For example, the sudden change of illumination will bring great challenges to the
establishment of real-time background, which may affect the extraction of real foreground directly;
the shadow moving with vehicle caused by the sunlight could be easily mistaken for the foreground,
which greatly increases the chances of unwanted counting; at the same time, incomplete foreground
extraction may cause an error of missing the target vehicles.

In this section, a vehicle detection algorithm based on motion was proposed. Our algorithm
could be divided into four steps. A real-time background model should be set at first, which can
resist sudden illumination changes in cloudy weather or other situations. Second, an algorithm for
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removing vehicle shadows based on motion was proposed, which can greatly improve the accuracy of
foreground extraction. Then, a vehicle filling method based on vehicle edge was studied in this paper,
which could be used as a supplementary means for extracting a more complete foreground. At last,
denoising methods were brought into our system to obtain an optimized foreground extraction.

2.2.1. Real-Time Background Model

(i) Initial Background

A background of a scene only consists of static pixels, and it is the basis for foreground extraction.
However, for a highway or an urban road, it is extremely rare that there is no moving object in a frame,
and even if this particular frame exists, it is hard to be found. Therefore, to establish a background
model, the general method is analyzing the distribution characteristics of pixel value at each pixel
position in a series of original frames, and selecting or calculating the static pixel values. Among the
existing mature methods, there are three main approaches: the Gaussian mixture model (GMM) [31],
the statistical median model (SMM) [32], and the multi-frame average model (MAM) [33].

In terms of extraction accuracy, the GMM is better than the SMM and the MAM, while the SMM is
better than the MAM. However, the GMM cost 40–50 times longer than the other two, which makes it
unsuitable for online video. In addition, the GMM contains two parameters: α (the learning constant)
and N (the number of video frame should be analyzed in the model), while the other two only contain
N [34]. Considering the accuracy and the running speed comprehensively, the SMM is the most
suitable for online background extraction among these three methods.

Let height and width represent the height and the width of an image, and each pixel position
could be expressed as (i, j), where i = 1, 2, . . . , height, j = 1, 2, . . . , width. The total number of frames
is represented by duration, and the sequence number of each frame could be expressed as k, where
k = 1, 2, . . . , duration. The first step is changing RGB images into gray images. We call it Igray

k here,
which represents the gray value vector of pixels for Frame k.

For SMM, there is only one parameter (N) that needs to be tuned. We set N = 30 here, and these
N frames were selected per second. For a video with a frame update rate of 30 fps, this algorithm
only needs to be operated every 30 s, which greatly reduces the computer running time. The initial
background extraction at each position could be expressed as:

BG_initialgray
n = median

k
Igray
k (1)

k = N ∗ rate ∗ (n− 1) + 1, rate ∗ 1 + [N ∗ rate ∗ (n− 1) + 1], . . . , rate ∗ (N − 1) + [N ∗ rate ∗ (n− 1) + 1] (2)

where rate is the frame rate of video, n represents the sequence number of the initial background, and
BG_initialgray

n is the gray value vector of the nth initial background.

(ii) Real-Time Background

A good background must adapt to the gradual or sudden illumination changes [35], such as the
changing time of a day or clouds, etc. However, the initial background has poor resistance to such
situations, especially for sudden changes. To illustrate this phenomenon better, we chose the Video
M-30-HD [30] with lots of sudden illumination changes, which was shot on a cloudy day. Two frames
were selected for display here, which were badly affected by the cloudy weather. The selected frame
numbers (k) are 4711 and 5724 and the result of foreground extraction using the initial background is
shown in Figure 3c.
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Frame 4711

Frame 5724

(a) (b) (c) (d) (e)
Figure 3. Comparison results of initial background and real-time background. (a) The initial background.
(b) The real-time background. (c) The current frame. (d) The extraction of the foreground using initial
background. (e) The extraction of the foreground using real-time background.

It is clear that not only were the actual foreground pixels extracted, but a large part of the
background was also mistaken for the foreground. This is because the establishment of initial
background must be based on a series of images, which results that the difference between the
initial background and the real-time background is always present. Worse, it will not be effective
even if the running frequency of the algorithm is greatly increased at the cost of high computational
complexity. In this case, the solution is modifying the background of each frame in real time based on
the initial or previous background. Toyama [36] proposed an adaptive filter based on the previous
background in 1999:

BGgray
k = (1− α)BGgray

k−1 + αIgray
k (3)

where BGgray
k is the gray value vector of the current background (Frame k), and BGgray

k−1 is the previous
background (Frame k − 1); α is the parameter that decides the rate of adaptation in the range 0–1.
However, α is an experienced parameter, which is hard to be tuned appropriately for different cases.
Moreover, there will be a cumulative error if the previous background is extracted inaccurately. In this
case, we proposed an adaptive algorithm to obtain a real-time background, which only contains one
parameter that is easily determined.

First of all, the difference of gray value between the initial background and the current frame
should be studied, which could be expressed as:

δ
gray
k = |Igray

k − BG_initialgray| (4)

where δ
gray
k is the difference vector of gray values between the initial background and current frame,

and the δgray of two frames are shown in Figure 4a,b. It is easy to see that δgray could be divided into
three classes at each position, that is:

Classk(i, j) =


1, δ

gray
k (i, j) = 0

2, δ
gray
k (i, j) ∈ (0, Tdelta]

3, δ
gray
k (i, j) ∈ (Tdelta, 255]

(5)

where Tdelta is the threshold of the classification that needs to be tuned.

Class 1 means the position (i, j) for Frame k belongs to the background, Class 3 means (i, j)
belongs to the foreground, while Class 2 also means (i, j) belongs to the background but the initial
background needs to be adjusted with Igray.

In order to determine the value of Tdelta, the distribution of δgray should be studied more clearly.
It is easy to find that δgray fluctuates directly between 0–80, so we divided 100 into 20 grades with
an interval of five to calculate the percentage of position numbers, and the cumulative distribution
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of each grade is shown in Figure 4c,d. It is obvious that more than 90% of δgray are distributed in
[0,5], more than 99% are distributed in [0,10], and more than 99.5% are distributed in [0,15]. Therefore,
for the sake of careful estimation, we could conclude that Tdelta should be set in [5,15].
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(d)
Figure 4. Square distribution of the difference between initial background and current frame and
relevant cumulative distribution. (a,b) The difference distribution of gray values for each selected
frames. (c,d) The cumulative distribution for each grade.

Based on the study above, we proposed an adaptive algorithm to obtain the real-time background,
which could be expressed as:

BGgray
k =

 BG_initialgray, δ
gray
k ∈ 0∪ (Tdelta, 255]

wI ∗ Igray
k + wBG ∗ BG_initialgray, δ

gray
k ∈ (0, Tdelta]

(6)

wI =
δ

gray
k

Tdelta , wBG = 1−
δ

gray
k

Tdelta (7)

where wI is the weight of the current frame and wBG is the weight of the initial background.
According to Formula (6), the higher the Tdelta, the lower the wI . In this case, wI and wBG can

make up for the errors of setting Tdelta adaptively together. Therefore, the parameter Tdelta has no
vital effect on the generation of real-time background, which greatly improves the adaptability and
accuracy of the algorithm. As mentioned before, we set Tdelta in [5,15] here, and the extraction of
foreground using our real-time background is shown in Figure 3e. As can be seen, the real-time
backgrounds overcome the adverse effects of sudden illumination changes well.

2.2.2. Initial Foreground with No Shadow

(i) Light and Dark Foreground

Subtracting the current frame from the background directly and converting it into a binary image
is the most used method to extract the foreground, however, it will remain the shadow unwanted.
As we all know, shadows have three features [37] different from moving vehicles, which are intensity
values, geometrical properties, and light directions. Based on the features, the shadow will be darker
than the background, and it has nothing to do with the pixel value of the vehicle that produces it.
In this case, the foreground image could be divided into two parts for analysis:

FG_darkgray =

{
BGgray − Igray, i f BGgray ≥ Igray

0, otherwise
(8)

FG_lightgray =

{
Igray − BGgray, i f BGgray < Igray

0, otherwise
(9)

where FG_darkgray is the difference vector of gray value between current frame and background,
which only contains the darker pixels, and FG_lightgray only contains the lighter pixels. Moreover,
the Otsu’s method [38] was used here to get FG_darkbinary and FG_lightbinary.
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The Video Mofan Rd [28] on an urban road was chosen as an example, which was recorded by
ourselves on a sunny day and contains lots of vehicle shadows. We selected a frame (k = 29, 825)
which contains a large bus and some small vehicles for display. The FG_dark and FG_light are shown
in Figure 5b,c. As we can see, the FG_light contains no shadow. Although the vehicles obtained
in this way were incomplete, to get ‘clean’ vehicles, we only choose the FG_light as a part of initial
foreground and abandon the FG_dark for the time being.

(ii) Removing Shadows

Most algorithms for removing shadows are based on color features and run in a color model.
The Hue-Saturation-Intensity (HSI) model could be used to detect the shadows, which is based on
the fact that the chromaticity information will not be affected by the change of lighting. By selecting
a region which is darker than its neighboring regions but has similar chromaticity information, the
shadow could be detected. Cucchiara et al. [39] proposed an algorithm to achieve this goal:

shadow =

{
true, i f (T I

1 ≤
I I

BGI ≤ T I
2 ) ∧ (|IS − BGS| ≤ TS) ∧ (|IH − BGH | ≤ TH)

f alse, otherwise
(10)

where shadow is the judgement of shadow; I I , IS, IH are the color vectors of the current frame in the
HSI model, while BGI , BGS, BGH are the color vectors of background; T I

1 , T I
2 , TS and TH are the four

parameters to be determined.
There are four parameters to be determined in this algorithm, which greatly increases the

instability of the judgement results. Even in a similar scene, the results will vary greatly under
different lighting levels (such as different times of one day), which means the parameters need to be
adjusted constantly. More importantly, this algorithm will also eliminate parts of the vehicle when
the color of the vehicle itself is similar to the shadow color, which leads to the absence of vehicle
information. Moreover, an algorithm based on a color model needs longer running time than the
gray model.

Since such parameters are difficult to determine, we proposed a shadow removal method without
parameters. As mentioned above, the chromaticity of shadow is not affected by the change of
illumination for some cases. Based on it, we could suppose that the shadow of a vehicle will remain
the same in a very short interval, such as an interval between two frames. Therefore, a pixel position
can be judged as shadow if its value remains the same among the current frame and two adjacent
frames. In this case, a frame with the shadow removed can be expressed as:

FG_cleanbinary =

{
0, i f (Igray

k = Igray
k−1 ) ∧ (Igray

k = Igray
k+1 )

1, otherwise
(11)

where FG_cleanbinary is the image with shadow removed. As we can see in Figure 5d, this algorithm
works well in removing shadow, but it may cause some holes in the vehicles.

(iii) Initial Foreground

Combining the result of the previous two steps, the initial foreground can be expressed as:

FG_initialbinary = FG_lightbinary ∪ FG_cleanbinary (12)

As shown in Figure 5e, the shadow has been removed successfully but the vehicles are somewhat
incomplete, and more noise was brought. Therefore, some methods for fulfilling the vehicles and
denoising are necessary and they will be described in the next sections.
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(a) Igray (b) FG_dark (c) FG_light (d) FG_clean (e) FG_initial
Figure 5. The extraction of the initial foreground on a sunny day.

For a scene without shadow, it is not necessary to operate the algorithm for removing shadow.
After all, this algorithm may make the vehicle incomplete and bring some noise. As mentioned above,
the reason for abandoning FG_dark is that the darker foreground contains vehicle shadows. Therefore,
the FG_light and FG_dark should be both included as initial foreground for scenes with no shadow.
In this case, the initial foreground for a scene with no shadow could be expressed as:

FG_initialbinary = FG_lightbinary ∪ FG_darkbinary (13)

A frame (k = 1169) from Video M-30-HD [30] was selected for display, shown in Figure 6.

(a) IRGB (b) Igray (c) FG_dark (d) FG_light (e) FG_initial
Figure 6. The extraction of the initial foreground on a cloudy day.

2.2.3. Image Optimization

After the foreground extraction based on motion is completed, it is necessary to fill vehicle holes
and denoise to obtain a better foreground.

(i) Filling Image with Edge

Let’s review the shadow removal algorithm in Section 2.2.2. According to Formula (11),
the binary image FG_clean is obtained by taking the relative complementary sets of adjacent frames
(Igray

k−1 and Igray
k+1 ) in the current frame (Igray

k ), and this is also the reason why there are more holes in
FG_clean. In this case, it is necessary to analyze the relationships between the current frame and two
adjacent frames again separately from the perspective of the gray value. Let’s analyze the difference in
the gray model, which could be expressed as:

I_di f gray
k =

{
0, i f Igray

k = Igray
k−1

Igray
k , otherwise

, I′_di f gray
k =

{
0, i f Igray

k = Igray
k+1

Igray
k , otherwise

(14)

where I_di f gray
k is the difference gray image between current frame and previous frame,

while I′_di f gray
k is the difference between the current frame and next frame.

Through a further analysis, we found that the difference gray image may contain noise, but the
edge of them contains almost nothing more than the actual vehicle profiles. At this point, the edges of
I_di f gray

k and I′_di f gray
k play an important role in filling the holes. The edge was extracted with canny

method [40] in this paper, which could be expressed as:

FG_edgebinary = edge{I_di f gray
k } ∪ edge{I′_di f gray

k } (15)
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where edge{∗} is the edge extraction algorithm. edge{I_di f gray
k } and edge{I′_di f gray

k } is the edge of
I_di f gray

k and I′_di f gray
k , while FG_edgebinary is the extracted edge of current frame.

For a scene with no shadow, we found that the edge obtained from FG_light was cleaner, while
the edge of FG_dark may contain more noise. Therefore, the extraction of the edge should based on
FG_light only, which could be expressed as:

FG_edgebinary = edge{FG_lightbinary} (16)

After the edge has been extracted, the holes in vehicle could be filled with edge. The filling
method proposed by Pierre Soille [41] works well, which could be expressed as:

FG_ f illbinary = f ill{FG_initialbinary ∪ FG_edgebinary} (17)

where f ill{∗} is the filling algorithm, and FG_ f illbinary is the filled image. It is worth noting that a
simple median filtering operation [42] on the FG_ f ill is very effective in removing redundant noise
caused by the edge. The filling and filtering results are shown in Figure 7c.

The Sunny Scene

The Cloudy Scene

(a) IRGB (b) FG_edge (c) FG_ f ill (d) FG_close (e) FG_ f inal

Figure 7. The extraction of the optimized foreground.

(ii) Morphological Closing

As shown in Figure 7c, the FG_ f ill still contains some big holes and some extra noise. At this
point, it becomes necessary to perform a closing operation [43] on FG_ f ill:

FG_closebinary = close{FG_ f illbinary} (18)

A median filtering operation could be done again and the final foreground is shown in Figure 7e.
According to Figure 7, the algorithm works well on a cloudy day. As for a shadow scene, there

are almost no vehicle shadows left in FG_ f inal and the algorithm works better for small vehicles.
Although there are still some holes in large buses, it does not affect the vehicle counting discussed in
Section 2.3.

2.3. Vehicle Counting

At present, the method of setting ROIs is often adopted to realize the counting of vehicles.
However, the problems of missing vehicles or detecting vehicles redundantly often occur by setting a
detection line or a detection area simply. Worse, this simple setting will miss vehicles that do not drive
following the normative lane, which means that the vehicles drive on the traffic index line, and such
non-normative driving is very common on complex urban roads.
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Different from the previous algorithms, we will propose a vehicle counting method based on lane
division to avoid the errors of redundant or missed vehicle detecting. Moreover, the algorithm can
realize the detection of vehicles driving on the traffic index line.

2.3.1. Setting of Normative-Lane and Non-Normative-Lane

The lane was divided into two categories in this paper: Normative-Lane and Non-Normative-Lane.
The Normative-Lane is a kind of lane that vehicles should drive on following the traffic rules, while
the Non-Normative-Lane is a kind of non-normative lane and not in accordance with the traffic laws,
that is, it contains traffic index line. The corresponding ROIs of these lanes would be set up respectively,
as shown in Figure 8a,b. Unlike previous algorithms, the ROI settings combine both detection line
and detection area. More importantly, not only the horizontal detection line was brought, the vertical
detection line was also brought into our system to increase the accuracy of vehicle counting.

The ROI should be positioned directly below the camera as far as possible to avoid additional
errors due to the tilt of vision field. For the Normative-Lane ROI, we set up the width according to
the width of lanes; for the Non-Normative-Lane ROI, we set it in the middle of two Normative-Lanes
and with the same width. In this way, there exits an overlap between the Normative-Lane ROI and
the Non-Normative-Lane ROI. Moreover, what needs to be explained is that the ‘adjacent lane’ in this
paper refers to the Normative-Lane and the Non-Normative-Lane, instead of the regular sense of an
adjacent lane.

As for the length of ROI, we set it less than the safe vehicle spacing. The spacing is generally
divided into two parts: the reaction distance and the braking distance. According to [44], the reaction
distance can be expressed as:

dr = St (19)

where dr is the reaction distance, S is the initial speed of vehicle and t is the reaction time. Involving
braking reactions, the American Association of State Highway and Transportation Officials (AASHTO)
mandated the use of 2.5 s as t for most computations [45]. In this case, a driver driving at a very low
speed, such as 10 km/h, will need at least 7 m for safety. Therefore, we set the length to be less than
7 m, which can ensure that there is at most one vehicle in a ROI and avoid missing vehicles on the
same lane. Both the Normative-Lane ROI and the Non-Normative-Lane ROI are set to the same length.
Moreover, the ROIs should be fine-tuned according to the tilt angle of the video, as shown in Figure 8a.

In this case, there will be seven origins for a four-lane road. For a Normative-Lane ROI or a
Non-Normative-Lane ROI, a detection area and five kinds of detection lines are included, which are
front and back detection line, middle detection line, and left and right detection line, shown in
Figure 8c,d. Therefore, what we need to record is the proportion of moving vehicles occupied in the
detection area and the five kinds of detection lines in each foreground binary image.

It is worth noting that the left or right detection line of two adjacent lanes—as explained above,
the adjacent lanes refer to the Normative-Lane and the Non-Normative-Lane—coincides with the
middle detection line, and the front and back detection lines of them overlap. For the convenience
of research, we normalized these two ROIs. Shown in Figure 8b, we took the middle detection line
of seven lanes as the boundary and divided the whole detection region into eight small regions first.
Then we combined the adjacent small regions in pairs to form a normalized ROI, called ROIn&n+1,
where n and n + 1 represent the nth and n + 1th small region. For a normalized ROI, the detection
area, the front and back detection line can be called Area, Front, Back, while the middle, left and right
detection line can be represented by three Vertical lines, respectively, as shown in Figure 8e and Table 4.
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(a)
(b)

(c) (d) (e)
Figure 8. The instruction of Regions of Interests (ROI). (a) The setting of the ROIs. (b) The ROIs for a
four-lane road. (c) The Normative-Lane ROI. (d) The Non-Normative-Lane ROI. (e) The normalized ROI.

Table 4. The instruction of ROI.

Lane No. ROI Detection Area Front Line Back Line Left Line Middle Line Right Line

Normative-Lane 1 ROI1&2 Area1&2 Front1&2 Back1&2 Vertical1 Vertical2 Vertical3

Non-Normative-Lane 1-2 ROI2&3 Area2&3 Front2&3 Back2&3 Vertical2 Vertical3 Vertical4

Normative-Lane 2 ROI3&4 Area3&4 Front3&4 Back3&4 Vertical3 Vertical4 Vertical5

Non-Normative-Lane 2-3 ROI4&5 Area4&5 Front4&5 Back4&5 Vertical4 Vertical5 Vertical6

Normative-Lane 3 ROI5&6 Area5&6 Front5&6 Back5&6 Vertical5 Vertical6 Vertical7

Non-Normative-Lane 3-4 ROI6&7 Area6&7 Front6&7 Back6&7 Vertical6 Vertical7 Vertical8

Normative-Lane 4 ROI7&8 Area7&8 Front7&8 Back7&8 Vertical7 Vertical8 Vertical9

2.3.2. Identification of Vehicle States

(i) Nodes and States of Vehicles

Before counting vehicles, we need to identify and record the state of vehicle in each ROI. For a
detected vehicle, a complete detection process can be divided into seven stages with four states and
three nodes. These four states are:

1. State 0: Out of the ROI (the vehicle has not entered the ROI);
2. State 1: In the ROI (the vehicle has entered the ROI and occupied in the front detection line,

but out of the back detection line);
3. State 2: Still in the ROI (the vehicle has left the front detection line and occupied in the back

detection line);
4. State 0’: Out of the ROI (the vehicle has left the ROI).

Correspondingly, the three nodes are: Node 0–1, Node 1–2 and Node 2–0’. A complete detection
process with seven stages is shown in Figure 9.

(ii) Identification of States

(a) Restrictions of Parameter
The identification of these three important states for Frame k is realized through six parameters of

the proportion that vehicles occupied in the detection area lines. As shown in Figure 8 and Table 4,
the study of these six parameters can be turned into the study of four parameters, that is, Areak, Frontk,
Backk, and Verticalk.



Sensors 2020, 20, 2686 13 of 21

The occupied proportion of detection area and middle detection line are two of the most obvious
criterions, which should be at a low value in State 0 and at a high value in State 1 or State 2, while the
front and back detection line are the keys to distinguishing between State 1 and State 2. The left and
right detection line is a guarantee for vehicles driving in this ROI. Detailed restrictions are shown in
Table 5. There are six thresholds corresponding to the six parameters, which are TArea, TMid, TFront,
TBack, TLe f t and TRight. In general, the TFront and TBack can be set to the same value, and so can the
TLe f t and TRight. With the strict restrictions of parameter, some dynamic objects that are not vehicles
can be removed, such as electric bicycles and the noise caused by environmental mutations.

(b) Restrictions of State
It is not accurate to judge the state of a vehicle only by the six occupied proportions, but the

judgements of the states of its front and adjacent vehicles are also necessary.
As mentioned above, the length of the ROI is less than the vehicle spacing. Therefore, only when

the front vehicle has completely left, that is, when the ROI state is in State 0, can a new-coming
vehicle be detected. For adjacent lanes, it is easy to know that it is impossible for two adjacent
vehicles to be in State 1 at the same time because there is an overlap between Normative-Lane and
Non-Normative-Lane (Figure 8b). In this case, only when the ROI states of adjacent lanes are in State 0
or State 2 can a vehicle be detected. The detailed restrictions are shown in Table 5. Through the
restrictions of state, multiple detection of its front and adjacent vehicles can be effectively avoided.
Meanwhile, non-normative driving behaviors can be detected effectively.

(a) State 0 (b) Node 0–1 (c) State 1 (d) Node 1–2 (e) State 2 (f) Node 2–0 ’ (g) State 0 ’
Figure 9. The instruction of nodes and states. (The sequences are from Video Zhongshan Rd [28]).

Table 5. Judgement of Staten&n+1
k .

Staten&n+1
k

Parameter Restrictions of Occupied Proportion State Restrictions

Arean&n+1
k Frontn&n+1

k Backn&n+1
k Verticaln Verticaln+1 Verticaln+2 Staten&n+1

k−1 Staten−1&n
k Staten+1&n+2

k

0 < TArea < TFront < TBack < TLe f t < TMid < TRight 2 or 0 - -
1 > TArea > TFront < TBack < TLe f t > TMid < TRight 0 or 1 2 or 0 2 or 0
2 > TArea < TFront > TBack < TLe f t > TMid < TRight 1 or 2 - -

Note: Staten&n+1
k represents the state of ROIn&n+1 in Frame k.

2.3.3. Counting Vehicles

Through the detection in the previous section, a moving object could be detected successfully.
Whether it belongs to a vehicle, however, requires a further identification. In this section, we will
introduce how to filter and classify the detected objects with State 1 and State 2.

The duration of State 1 represents the frames taken to pass through the front detection line for a
vehicle, while the duration of State 1&2 represents the frames taken to pass through the ROI. In this
case, the frames occupied by the detected vehicle in State 1 and State 1&2 could be used to further filter
the detection results. Meanwhile, the duration of State 1 and State 2 can also be used to qualitatively
determine the size of a vehicle on a road with a relatively uniform speed, such as on a highway or on
an urban expressway.

We selected State 1 and State 2 of Normative-Lane 1 in Video M-30-HD [30] for analysis.
As shown in Figure 10, the State 1 duration of the first detection is one frame, while the duration of
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State 1&2 is two, which clearly indicates that the first detection belongs to noise rather than a vehicle.
The same is true for the second detection. Therefore, these two detected objects should be identified as
noise. Moreover, the State 1 and State 1&2 duration of the 46th detection are much longer than the
other detected objects, which clearly indicates that the 46th detection is in a larger size. The detected
object can be expressed as:

Detectedn =


noise, i f (0 < State 1n < TState 1

1 ) ∧ (0 < State 1&2n < TState 1&2
1 )

Small, i f (TState 1
1 < State 1n < TState 1

2 ) ∧ (TState 1&2
1 < State 1&2n < TState 1&2

2 )

Large, i f (TState 1
2 < State 1n) ∧ (TState 1&2

2 < State 1&2n)
(20)

where Detectedn is the nth detection, State 1n and State 1&2n are the frames occupied by the nth

detected object, TState 1
1 , TState 1

2 , TState 1&2
1 and TState 1&2

2 are the thresholds to be selected by different
road conditions. Therefore, a counted vehicle can be expressed as:

Countedn =

{
0, i f Detectedn = noise
1, otherwise

(21)

Figure 10. The interpretation for the meaning of State 1 and State 1&2.

2.4. Evaluation Index

To evaluate the average performance of one method, there are four main metrics that can be
used, which are Accuracy [25], Recall, Precision and F-measure [46]. Accuracy is used to evaluate the
difference between the counted value and the true value, which can be defined as:

Accuracy = 1− |Counted No.− True No.|
True No.

(22)

where True No. is the true number of vehicles and Counted No. is the counted number.
Recall is a measure of the success of a method in detecting relevant objects from a set, that is,

the percentage of relevant detected objects in all relevant objects, while Precision is the percentage
of relevant detected objects in all detected objects. F-measure is the weighted harmonic average of
Recall and Precision, which combines the results of Recall and Precision. The three metrics can be
expressed as:

Recall =
TP

TP + FN
, Precision =

TP
TP + FP

(23)

F-measure = 2× Recall × Precision
Recall + Precision

(24)
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where TP is the number of true positives (the vehicles which were successfully counted), FN is the
number of false negatives (the vehicles that should have been counted but were not), and FP is the
number of false positives (the false objects which were counted as the vehicles). Using TP, FN and FP,
the True No., Counted No., and Accuracy could also be expressed as:

True No. = TP + FN, Counted No. = TP + FP (25)

Accuracy = 1− |FN − FP|
TP + FN

(26)

By analyzing the above formulas, it can be found that Accuracy can only evaluate the overall
difference between counted values and true values, and cannot reflect the mistakes of treating noise as
vehicle or the mistakes of missing detection. Worse, the outcome of Accuracy may approach 1.0 when
the numbers of these two mistakes are close to or even equal. Therefore, a comprehensive analysis of
Accuracy and F-measure can be more scientific to evaluate the effectiveness of a method.

3. Experimental Results

The results are shown in Figure 11 and Tables 6–9.

Highway

M-30-HD

Zhongshan Rd

Mofan Rd

(a) Input (b) Background (c) ROI (d) Result
Figure 11. The experimental results.

Table 6. The counting results of highway.

Lane No. True Counted TP FN FP Recall Precision F-measure Accuracy

Normative-Lane 1 17 17 17 0 0 1.0 1.0 1.0 1.0
Non-Normative-Lane 1-2 0 0 0 0 0 1.0 1.0 1.0 1.0

Normative-Lane 2 10 10 10 0 0 1.0 1.0 1.0 1.0
Total 27 27 27 0 0 1.0 1.0 1.0 1.0
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Table 7. The counting results of M-30-HD.

Lane No. True Counted TP FN FP Recall Precision F-measure Accuracy

Normative-Lane 1 66 66 66 0 0 1.0 1.0 1.0 1.0
Non-Normative-Lane 1-2 5 5 5 0 0 1.0 1.0 1.0 1.0

Normative-Lane 2 71 72 71 0 1 1.0 0.9861 0.9930 0.9859
Non-Normative-Lane 2-3 7 7 7 0 0 1.0 1.0 1.0 1.0

Normative-Lane 3 54 54 54 0 0 1.0 1.0 1.0 1.0
Non-Normative-Lane 3-4 0 0 0 0 0 1.0 1.0 1.0 1.0

Normative-Lane 4 31 31 31 0 0 1.0 1.0 1.0 1.0
Total 234 235 234 0 1 1.0 0.9957 0.9979 0.9957

Table 8. The counting results of Zhongshan Rd.

Lane No. True Counted TP FN FP Recall Precision F-measure Accuracy

Normative-Lane 1 108 107 107 1 0 0.9907 1.0 0.9953 0.9907
Non-Normative-Lane 1-2 45 44 44 1 0 0.9778 1.0 0.9888 0.9778

Normative-Lane 2 214 216 214 0 2 1.0 0.9907 0.9953 0.9907
Non-Normative-Lane 2-3 26 25 25 1 0 0.9615 1.0 0.9804 0.9615

Normative-Lane 3 158 160 158 0 2 1.0 0.9875 0.9937 0.9873
Total 551 552 548 3 4 0.9964 0.9928 0.9937 0.9982

Table 9. The counting results of Mofan Rd.

Lane No. True Counted TP FN FP Recall Precision F-measure Accuracy

Normative-Lane 1 34 37 33 1 4 0.9706 0.8919 0.9296 0.9118
Non-Normative-Lane 1-2 29 29 29 0 0 1.0 1.0 1.0 1.0

Normative-Lane 2 173 171 171 2 0 0.9884 1.0 0.9942 0.9884
Non-Normative-Lane 2-3 53 50 50 3 0 0.9434 1.0 0.9709 0.9434

Normative-Lane 3 171 170 170 1 0 0.9942 1.0 0.9971 0.9942
Non-Normative-Lane 3-4 28 28 28 0 0 1.0 1.0 1.0 1.0

Normative-Lane 4 94 96 94 0 2 1.0 0.9792 0.9895 0.9787
Total 582 581 575 7 6 0.9880 0.9897 0.9888 0.9983

The four metrics for the Highway sequence are both 1.0, which means all the vehicles were
successfully counted with our method. For the GRAM-RTM dataset, there was only one redundant
error, which was mainly due to the poor shooting angle. Shown in Figure 12a, the large vehicle
has been detected in Non-Normative-Lane 1-2 already but was detected again in Normative-Lane 2.
However, thanks to the strict restrictions of parameter and state, such situations are not common and
only happen on tall and large vehicles.

For the counting results of Zhongshan Rd, the F-measure is 0.9937 and the Accuracy is 0.9982.
Among the 551 correct targets, there were four redundant errors and three missed errors in the results.
Similar to the redundant error in M-30-HD, two redundant errors were due to the poor shooting angle,
while the other two were due to the sudden illumination changes, which makes a fault detection,
just like Figure 12b shows. For the three missed errors, one of them was due to an incomplete
foreground extraction, shown in Figure 12c. For the other two missed vehicles, it was because that they
were just driving at the overlap of two adjacent lanes. Just like Figure 12d shows, the missed vehicle
was just driving at the overlap of Non-Normative-Lane 1-2 and Normative-Lane 2, which makes the
middle proportion values of Non-Normative-Lane 2-3 and Normative-Lane 3 close to zero. In this
case, the vehicle was missed.

For the counting results of Mofan Rd, the F-measure is 0.9880 and the Accuracy is 0.9983. Among
the 578 correct targets, there were six redundant errors and seven missed errors. Similar to the
redundant error in M-30-HD, all of them happened on tall and large vehicles. Although this video
was shot at a better angle, there is still some tilt distortion when vehicles driving on Normative-Lane 1
(four redundant errors occurred) and Normative-Lane 4 (two redundant errors occurred), especially
for the buses. As for the seven missed errors, one of them was due to an incomplete foreground
extraction and four missed vehicles were just driving on the overlap of two adjacent lanes. The last
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two were due to the little space between front and rear vehicles, which happen most often on the
relatively congested and slow urban roads, just like Figure 12e shows.

(a) M-30-HD (b) Zhongshan Rd (c) Zhongshan Rd (d) Zhongshan Rd (e) Mofan Rd
Figure 12. The explanation for errors.

4. Discussion

4.1. Comparison of Method Accuracy

The comparisons of two benchmark datasets with recent state-of-the-art methods are shown in
Table 10. For the CDnet2014 dataset (Highway), the accuracy of the proposed method is 100% with no
error in Highway sequence. For the GRAM dataset (M-HD-30), the accuracy of the proposed method
is a little lower than [27]. However, according to True (the first column in Table 10), our test sample
size is larger, which increases the probability of error.

Table 10. The comparison of experimental results with existing state-of-the-art methods.

Method
Highway M-30-HD

True FN FP F-measure Accuracy True FN FP F-measure Accuracy

Bouvié [24] N/A N/A N/A N/A N/A 42 9 0 0.8800 0.7857
Quesada [25] N/A N/A N/A N/A N/A 42 3 0 0.9630 0.9286

Yang [26] 16 2 0 0.9412 0.8750 42 5 0 0.9438 0.8810
Abdelwahab [27] 27 0 2 0.9643 0.9259 42 0 0 1.0 1.0
Proposed Method 27 0 0 1.0 1.0 234 0 1 0.9979 0.9957

Moreover, the total F-measure of [24–27] and the proposed method are 0.9348, 0.9807, 0.9171,
0.9898 and 0.9925, respectively, while the total Accuracy are 0.8776, 0.9825, 0.9068, 0.9932 and 0.9993.

4.2. Summary of Error Types in Experiments

In Section 3, we provided a detailed analysis of the errors in the experiments. For redundant
error, a total of 11 errors could be divided into two categories. The first type is due to the effect of
sudden illumination changes in cloudy weather and only two errors occurred, which proves that
the proposed real-time background model works well. The second type is due to the large and tall
vehicles combining with an oblique shooting angle and nine errors occurred. However, it is due to the
inherent defect of the video detection approach. For a traffic surveillance video, the camera will tilt
and distort the image more or less, even in vertical aerial shots. In this case, a large and tall vehicle has
a high probability of being repeatedly detected. Moreover, when a small vehicle is completely hidden
behind a large and tall vehicle, the small vehicle can only be detected and counted when it is partially
visible, which may lead to delayed detection and counting, or even missing the vehicle. Although this
situation did not appear in the experimental results, it does exist.

For missed error, a total of 10 errors could be divided into three categories. The first type is due
to the incomplete foreground extraction and only two errors occurred. The second type is due to the
little space between front and rear vehicles and only two errors occurred, which may happen on the
relatively congested and slow urban roads. The last one is because of the missed vehicles just driving
at the overlap of two adjacent lanes and six errors occurred. However, for a total correct number of
1394, the percentage of the six missed errors was only 0.43%, which indicates that the advantages of
this setup far outweigh the disadvantages.
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Overall, there are 1394 vehicles that needed to be counted in the experiment. Under the proposed
system, 1384 were correctly detected, 11 were incorrectly detected and 10 were missed, achieving an
F-measure of 0.9925 and an Accuracy of 0.9993.

4.3. Detection of Non-Normative Driving

The setting of Normative-Lane and Non-Normative-Lane not only increases the accuracy of
vehicle counting but also can detect the non-normative driving, just like Figure 2 shows.

According to Table 11, the percentages of non-normative driving accounted for the total vehicles
are relatively lower for the two benchmark datasets on the highway. However, the percentages are
high on the expressway and urban road, and even reached 18.90%. In this kind of complex traffic
environment, it is necessary to divide the lane into Normative-Lane and Non-Normative-Lane for
study, which plays a key role in improving the accuracy of detection and counting.

Table 11. Non-normative driving in each scene.

Total No. Driving on the
Normative-Lane

Driving on the
Non-Normative-Lane

Driving on the
Non-Normative-Lane (%)

Highway 27 27 0 0%
M-30-HD 234 222 12 5.13%

Zhongshan Rd 551 480 71 12.89%
Mofan Rd 582 472 110 18.90%

4.4. Robustness to Challenging Detection Environments

We introduced many challenging undesirable factors into our experimental scenes. The adverse
weather factors include sudden illumination changes and vehicle shadows, while the complex traffic
conditions include a high proportion of large vehicles, high traffic density and serious non-normative
driving. Also, poor camera shooting angle was included in our study.

Under the challenge of such adverse influences, the proposed algorithm still achieved a high
performance with an F-measure of 0.9925 and an Accuracy of 0.9993, which benefits from both the
vehicle detection part and the counting part. In the vehicle detection part, the establishment of
real-time background and the removal of vehicle shadows have effectively and accurately extracted the
foreground. As for the counting, the setting of Normative-Lane and Non-Normative-Lane contributes
the most, effectively avoiding multiple and missed counting. Moreover, the strict restrictions of the
corresponding parameter and state also improve the accuracy of the algorithm.

5. Conclusions

In this paper, we presented a vehicle detection and counting method that can adapt to several
challenging detection environments well. The real-time background model was set to resist sudden
illumination changes, while the proposed detection algorithm based on motion could remove vehicle
shadows successfully. As for counting, the setting of Normative-Lane and Non-Normative-Lane
improved the counting accuracy and has realized the function of non-normative driving detection.

Experimental results have shown that the proposed system performs well in challenging detection
environments, such as sudden illumination changes and vehicle shadows. Moreover, this system
is applicable to both highways and complex urban roads. The proposed algorithm has successfully
counted the vehicles with a high performance, for example, the average F-measure and Accuracy
achieved 0.9928 and 0.9993.

In future works, we intend to optimize the detection algorithms by giving proposed regions of
objects to improve the robustness and integrity. Also, deep learning models may be applied in the
counting part to reduce the chance of misidentification.
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