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Abstract: Wheezing reveals important cues that can be useful in alerting about respiratory disorders,
such as Chronic Obstructive Pulmonary Disease. Early detection of wheezing through auscultation
will allow the physician to be aware of the existence of the respiratory disorder in its early stage,
thus minimizing the damage the disorder can cause to the subject, especially in low-income and
middle-income countries. The proposed method presents an extended version of Non-negative
Matrix Partial Co-Factorization (NMPCF) that eliminates most of the acoustic interference caused by
normal respiratory sounds while preserving the wheezing content needed by the physician to make
a reliable diagnosis of the subject’s airway status. This extension, called Informed Inter-Segment
NMPCF (IIS-NMPCF), attempts to overcome the drawback of the conventional NMPCF that treats all
segments of the spectrogram equally, adding greater importance for signal reconstruction of repetitive
sound events to those segments where wheezing sounds have not been detected. Specifically,
IIS-NMPCF is based on a bases sharing process in which inter-segment information, informed by
a wheezing detection system, is incorporated into the factorization to reconstruct a more accurate
modelling of normal respiratory sounds. Results demonstrate the significant improvement obtained
in the wheezing sound quality by IIS-NMPCF compared to the conventional NMPCF for all the
Signal-to-Noise Ratio (SNR) scenarios evaluated, specifically, an SDR, SIR and SAR improvement
equals 5.8 dB, 4.9 dB and 7.5 dB evaluating a noisy scenario with SNR = −5 dB.

Keywords: sound separation; non-negative matrix partial co-factorization; bases; repetitive; sharing;
wheezing; normal respiratory sounds; informed; inter-segment

1. Introduction

Chronic Respiratory Diseases (CRDs) can be defined as disorders of the airways and other
physiological structures of the respiratory system. One of the most common CRDs is Chronic
Obstructive Pulmonary Disease (COPD) that is responsible for more than 3 million deaths of people
each year which is equivalent to 6% of all deaths worldwide [1]. COPD is often characterized by
the presence of wheeze sounds since wheezes provide relevant clues that alert about a respiratory
disorder [2,3]. Although CRDs currently have no medical cure, early detection of wheezing from
auscultation can lead to treatment when the disease is in its early stage, thus improving people’s
quality of life. Although there are other clinical alternatives, such as chest radiography and laboratory
analysis, auscultation remains the main technique used in most of the health centers in low-income
and middle-income countries to provide the first medical diagnosis of the status of the lung due to its
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low cost, safety and non-invasive nature. Nevertheless, this early detection by the physician depends
largely on the subjective diagnosis based on both the training and expertise in interpreting what hears
with the stethoscope and the vulnerability to normal respiratory sounds that can mask the presence of
sounds of interest, such as wheezing [4]. Today, many researchers continue to investigate in biomedical
signal processing to enhance the clarity of the wheezing sounds with the aim that all useful medical
information contained in the wheezing sound signal is heard in the process of auscultation.

In general terms, the respiratory sounds can be classified into two main categories: normal and
abnormal (adventitious, such as wheezes), according to the Computerized Respiratory Sound Analysis
(CORSA) guidelines [5]. Although wheeze and normal respiratory sounds appear simultaneously
since both of them are generated by the same air flow through the lungs, normal respiratory sounds are
always present in each respiratory cycle since they are automatically generated by the breathing process.
However, the occurrence of wheezing sounds is random because of the respiratory disorder so they
do not have to be present in all breathing cycles. So, normal respiratory sounds (RS) are generated
by healthy lungs and they are represented by broadband spectrum where most of the energy is
concentrated in the spectral band 60 Hz–1000 Hz [6]. Wheeze sounds (WS) are abnormal sounds,
generated by unhealthy lungs that suffer narrowing of airways, superimposed onto the RS. Therefore,
WS can be described as pitched and continuous sounds which usually have a fundamental frequency
(pitch) located between 100 Hz–1000 Hz with duration longer than 100 ms, displaying spectral
trajectories of narrowband spectral peaks [7] as shown in Figure 1. In this work, any single-channel
signal composed of both RS and WS will be referred as mixture.
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Figure 1. Time-frequency representation of a breathing recording from an unhealthy subject in which
four wheezes (red rectangles), mixed with normal respiratory sounds, can be observed. Higher energies
are indicated by darker colour.

It is common that the cognitive capacity of the physician is reduced throughout the day as the
number of hours spent analyzing respiratory sounds increases, a fact that is exacerbated by the stress to
which the physician is subjected to certain medical cases [8,9]. The presence of WS is often associated
with obstructions of the airways. However, the interference caused by RS causes the loss of relevant
wheezing content in WS which makes it difficult to provide a reliable diagnosis of the status of the
lung according to what is being heard through the stethoscope. Sound source separation approaches
have been widely applied to overcome this problem by isolating the sounds of interest (target) from
those that act as acoustic interference (non-target) [10].

Many biomedical signal processing challenges, such as ambient denoising [11], wheezing detection
and classification are still open to the machine learning research community. In [11], a denoising
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approach is proposed to remove ambient noise from lung sound recordings by means of an adaptive
subtraction method that operates in the spectral domain. Focusing on both wheezing detection and
classification tasks, the initial works are based on spectral peaks analysis applying thresholding [2,12–15]
that obtain sensitivity/specificity results from 71% to 98%. Like this, Taplidou and Hadjileontiadis [14]
proposed a spectro-temporal wheeze detector that automatically locates and identifies wheeze sounds
based on spectral trend elimination, separation of the spectrum into frequency bands and peak
detection/classification. Most of the wheezing detection and classification approaches are based on
the feature extraction and classifier configuration: (i) Musical features and Logistic Regression Model
(LRM) [16]; (ii) Spectral features and Support Vector Machine (SVM) such as Power spectral density mean
and harmonics [17], Intensity, mean frequency and standard deviation frequency [18], Power spectral
band [19], Tonality index [20] and Ensemble Empirical Mode Decomposition (EEMD) [21]; and finally,
(iii) Mel Frequency Cepstral Coefficients (MFCC) using K-nearest neighbour (KNN) [22], LRM [23] and
Gaussian Mixture Model (GMM) [24], that obtain sensitivity/specificity results from 90% to 99%. Thus,
a wheezing detection [20] was developed at the segment level by means of a SVM classifier whose
features are the spectral envelope variation and a tonality index. Other works have been focused on the
wavelet domain [25,26]. In this context, Ulukaya et al. [26] presented a tunable RAtional Dilation Wavelet
Transform (RADWT) based method to discriminate monophonic and polyphonic wheeze sounds by
means of localized energy peaks which are calculated from wavelet coefficients. Other studies have
applied different types of neural networks (NN) to wheezing sound analysis [27–30] obtaining the best
promising performance in terms of sensitivity and specificity results, specifically, from 86% and 100%.
Thus, Lin et al. [27] introduce a method that searches for horizontal or nearly horizontal edges of the
spectrogram and a back-propagation neural network (BPNN) classifier is applied using features such as,
frequency range and the slope of the potential wheeze. However, wheezing detection and classification
tasks could be improved applying sound source separation techniques as a preliminary step since these
techniques can increase the clarity of the wheezing content hidden in the signal being auscultated.
Although very few works [31,32] have addressed in depth the separation of wheezing sound sources
to the best of our knowledge, all of them are based on Non-negative Matrix Factorization (NMF) since
NMF is a recent and promising tool that can extract hidden sound events with physical interpretation
in nature. Specifically, Torre et al. [31] present a constrained NMF approach to separate wheezes from
respiratory sounds applied to single-channel mixtures. The proposed constraints, smoothness and
sparseness, model common spectral behavior shown by wheezes and normal breath sounds. Results
report that the proposed method improves the acoustic quality of the wheezes removing most of the
respiratory sounds.

In this paper, an extended version of Non-negative Matrix Partial Co-Factorization (NMPCF)
is proposed to suppress RS while preserving the wheezing acoustic content. Here, we assume that
RS can be considered as repetitive sound events during breathing so, RS can be modeled by sharing
together the spectral patterns found in each respiratory stage (segment), inspiration or expiration,
with a respiratory training signal. However, this sharing of patterns can not be applied to wheezes
since WS could not be present at each segment due to their unpredictable nature in time motivated by
the pulmonary disorder. To improve the sound separation performance of the conventional NMPCF
that treats equally all segments of the spectrogram, the main contribution of the proposed method
adds higher importance to those segments classified as non-wheezing using inter-segment information
informed by a wheezing detection system. As a result, our proposal is able to characterize RS more
accurately by forcing to model more on those non-wheezing segments in the bases sharing process
into the NMPCF decomposition.

The rest of this paper is structured as follows. First, Section 2 briefly reviews the background of
the most relevant approaches based on Non-negative Matrix Factorization and Non-negative Matrix
Partial Co-Factorization. Section 3 details the proposed method. Section 4 discusses the evaluation
and the experimental results. Finally, conclusions and further research are presented in Section 5.
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2. Background

2.1. Non-Negative Matrix Factorization

Non-negative Matrix Factorization (NMF) [33,34] is a rank-reduction method that has been
widely applied to learning images [35] and audio [36]. NMF includes the non-negativity constraint to
recover hidden patterns of the input data using basis and activation matrices. Considering a monaural
input mixture x(t), composed of sources of interest (target) xW(t) and non-target sources xR(t), NMF
factorizes the input spectrogram X into the product of two non-negative matrices: basis matrix
U ∈ RF×K

+ and activation matrix V ∈ RK×T
+ as shown in Equation (1). We assume an approximate

linear additivity between the input spectrograms XW ∈ RF×T
+ and XR ∈ RF×T

+ . The subscript W is
often used to refer the sounds of interest and the subscript R is applied to the sounds that act as
acoustic interference,

X = XW + XR ≈ X̂ = X̂W + X̂R = UV =
[
UW UR

] [VW
VR

]
= UWVW + URVR (1)

obtaining the estimated spectrograms X̂ ∈ RF×T
+ , X̂W ∈ RF×T

+ , X̂R ∈ RF×T
+ with F frequency bins and T

frames using K bases and the corresponding time-varying activations. Therefore, U can be interpreted
as a dictionary of spectral bases or patterns that represents the frequency information associated to
the target and non-target sources active in the input spectrogram. Instead, V represents a matrix of
activations that indicates the activity of each spectral basis in a given frame.

NMF is often calculated using an iterative algorithm, based on multiplicative update rules [33], to
obtain those parameters that reduce the cost function D(X|X̂) based on penalizing the error reconstruction
between X and X̂. In this paper, the generalized Kullback-Liebler divergence DKL(X|X̂) [37] has been
applied because it confirms the non-negativity of U and V as can be observed in Equations (3) and (4).
In addition, recent works [32,38] report that DKL(X|X̂) can be used in biomedical signal processing to
achieve promising results,

DKL
(
X|X̂

)
= X log

X
X̂
− X + X̂ (2)

Uz ← Uz �
((

X�UV
)

Vz
T �

(
1VT

z

))
, z = W, R (3)

Vz ← Vz �
(

Uz
T
(

X�UV
)
�
(

Uz
T1
))

, z = W, R (4)

where UW ∈ RF×KW
+ , UR ∈ RF×KR

+ , VW ∈ RKW×T
+ and VR ∈ RKR×T

+ are initialized as random
positive matrices, 1 ∈ RF×T

+ represents an all-ones matrix, T is the transpose operator, � is the
element-wise multiplication, � is the element-wise division and K = KW + KR indicates the number
of bases, being KW the number of bases related to the sounds of interest and KR the number of bases
related to the acoustic interference.

The main drawbacks shown by NMF can be summarized in the following three points: (i) poor
signal quality when the iterative algorithm reaches a poor local minimum; (ii) NMF can not reconstruct
each source because it does not have enough information to cluster all the bases generated by the
same source; (iii) NMF does not guarantee a parts-based objects reconstruction with physical meaning
as occurs in nature [39]. To overcome this problem, three approaches have been widely proposed in
literature [40]: (i) supervised NMF (SNMF) [41,42] in which UW and UR are learned in advanced by
means of training and fixed during the iterative process. As a result, only the activations matrices VW
and VR are updated; (ii) semi-supervised NMF (SSNMF) [43,44] in which UR is learned in advanced
by means of training and fixed during the iterative process. As a result, VW , VR and UW are updated;
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and (iii) constrained NMF (CNMF) in which no training is used because different constraints are
included into the factorization procedure to model the specific time-frequency characteristics of the
sources to extract [45,46].

To sum up, SNMF, SSNMF and CNMF find better solutions compared to NMF since all of
them model, into the bases or activations obtained from the factorization, temporal or spectral
behaviors shown by the sounds, that are intended to be recovered, in nature. Nevertheless, the main
disadvantages observed in both SNMF and SSNMF are the following: (i) highly dependent of the
training data so, the separation performance is limited to the spectral similarity between the training
and sounds contained in the input mixture and; (ii) there may not be public training databases available.
On the other hand, the main disadvantage observed in constrained NMF approaches, such as CNMF
is the difficulty of mathematically defining both the constraints that correctly model the temporal and
spectral behaviors shown by the target sources and their incorporation into the cost function on which
the factorization is based [47].

2.2. Non-Negative Matrix Partial Co-Factorization

Non-negative Matrix Partial Co-Factorization (NMPCF) has been used in several audio processing
tasks, such as extraction of rhythmic sources [48–50], singing-voice separation [51] or speaker
diarization [52]. The main idea of NMPCF is to apply a joint matrix factorization using multiple
input matrices to obtain a set of shared spectral bases or temporal activations.

In general, NMPCF-based methods can be classified into four approaches: (i) semi-supervised
factorization (1S-NMPCF) [50] in which a joint decomposition, considering the input mixture
and a training matrix related to repetitive sounds, is performed by sharing some bases active
in both of them [48]; (ii) supervised factorization (2S-NMPCF) in which a joint decomposition,
considering the input mixture and two training matrices related to repetitive and non-repetitive sounds,
is performed by sharing some bases active between each training matrix and the input mixture [51];
(iii) unsupervised factorization (T-NMPCF) [50] in which a joint decomposition using multiple shorter
segments from the input mixture is obtained factorizing them into repetitive sound events by finding
common bases across segments [49]; and (iv) semi-supervised factorization (ST-NMPCF) [50] in
which a joint decomposition of the input mixture is performed using a training matrix associated
to repetitive sound events and multiple shorter segments to make advantage of both spectral and
temporal modelling of repetitive sounds.

However, NMPCF-based approaches treat all segments of the input mixture decomposition
together equally, ignoring the importance of each specific segment in the modelling of the repetitive
and non-repetitive sounds. As a result, it could be interesting to investigate how to include the
importance of different segments according their spectral content to weight the spectral modelling of
the repetitive sounds in the joint factorization and as a consequence, to improve the separation quality
of the sounds of interest.

3. Proposed Method

The aim of the proposed method is to enhance the quality of the WS by removing the RS that
implicitly appear in the human breathing process. In order to improve the separation performance
between WS and RS of the NMF-based and NMPCF-based baseline methods, we propose a modified
NMPCF approach denominated Informed Inter-Segment Non-negative Matrix Partial Co-Factorization
(IIS-NMPCF) that adds higher importance into the NMPCF factorization to those segments in
which WS are not present. For this purpose, IIS-NMPCF consists of three stages: (i) Segmentation;
(ii) Classification between presence/absence of WS and finally (iii) Adding weighting into the
NMPCF decomposition. The flowchart of the proposed method is shown in Figure 2, and details are
depicted in the following Sections 3.1 and 3.2.
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Figure 2. Flowchart of the proposed method IIS-NMPCF.

3.1. Time-Frequency Signal Representation

Let x[n] denote the n-th sample of a mixture signal, which consists of the sum of wheezing w[n]
and normal respiratory sounds r[n]. The magnitude spectrogram X of a mixture signal x[n] can be
represented as X = XW + XR, being XW the magnitude spectrogram of only WS and XR the magnitude
spectrogram of only RS. Each unit X f ,t is defined by the f-th frequency bin at the t-th frame and is
calculated from the magnitude of the Short-Time Fourier Transform (STFT) using a Hamming window
of N samples with 25% overlap. A normalization process is applied in order to ensure that the proposed
method can be independent of the size and scale of the magnitude spectrogram X. To avoid complex
nomenclature throughout the paper, the variable X is hereinafter referred to the normalized magnitude
spectrogram X computed as follows,

X =
X(

∑ f ,t X f ,t
FT

) (5)

Besides, y[n] denote the n-th sample of the respiratory training signal, which consists of a
concatenation of different respiratory stages composed only of RS (for more details see Section 4.3).
The magnitude spectrogram Y of the respiratory training signal y[n] has been calculated following the
same procedure used with the previous magnitude spectrogram X.
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3.2. Wheezing Sound Separation Using Informed Inter-Segment NMPCF

The key assumptions behind the proposed method IIS-NMPCF to apply WS and RS source sound
separation are the following:

(i) RS are often characterized by similar spectral patterns that represent a wideband noise spectrum
showing time and frequency smoothness [32]. In this way, Y can be useful to replicate these
similar RS spectro-temporal behaviors observed in most of the subjects.

(ii) In addition, RS can be considered as repetitive events in human breathing so, RS can be modeled
sharing common spectral patterns that can be found throughout all breathing stages (segments),
that is, some basis vectors can be shared during the inter-segment analysis due to the repeatability
of RS. If we divide the input mixture spectrogram X into segments X(1),X(2), · · ·,X(L), we can get
L-segments from the given mixture x[n] that share common spectral patterns. For this purpose,
we have used AMIE_SEG [53] that automatically allows to segment the mixture spectrogram X
into inspiratory and expiratory stages.

(iii) However, WS can be present or absent in the respiratory stages due to the pulmonary disorder.
Therefore, we can define an indicator C(l) to distinguish between non-wheezing (C(l) = 0) and
wheezing (C(l) = 1) segments. Note that the term (l) refers to the segment identifier l = 1, . . . , L
of the mixture spectrogram X. In the case of wheezing segments, the spectral patterns of both
RS and WS are present. For this reason, we propose to weight the importance of wheezing and
non-wheezing segments into the conventional NMPCF decomposition to improve the wheezing
sound separation performance. The classification between non-wheezing and wheezing segments
is provided by a wheezing detection algorithm previously developed by authors [54].

Considering two input spectrograms X and Y, the factorization of the conventional ST-NMPCF lets
the common respiratory basis vectors UR be shared jointly between the spectrogram Y and L-segments
X(1),X(2), · · · ,X(L) of the input spectrogram X (see Figure 3),

X(l) ≈ X̂(l) = X̂(l)
R + X̂(l)

W = URdiag(Dx(l)R )V(l)
R + U(l)

W diag(Dx(l)W )V(l)
W (6)

Y ≈ Ŷ = URdiag(DyR)HR (7)

where X̂, Ŷ are the estimated or reconstructed spectrograms of the input mixture and the respiratory
training signal; X̂R, X̂W are the estimated spectrograms of the RS and WS; UR, UW are the estimated
basis matrices of the RS and WS; VR, VW are the estimated activation matrices of the RS and WS for
the mixture; HR is the estimated activation matrix of the RS for the respiratory training signal. All of
these matrices are non-negative matrices. The number of respiratory and wheezing components will
be denoted as KR and KW , respectively. The L2-norm of each column of UR or UW is equal to 1.0.
The terms DxR and DxW represent vectors with the L2-norm of each activation component of RS
and WS, respectively. Similarly, the term DyR represents a vector with the L2-norm of each activation
component of RS. Therefore, the L2-norm of each row of VR, VW or HR be equal to 1.0 due to the
normalization procedure at each iteration. The operator diag() is the diagonal matrix.

Figure 3 depicts those models with L-segments of the mixture spectrogram X and the respiratory
training spectrogram Y. As mentioned in the key assumption (i), Equation (7) models the respiratory
training reconstruction by letting the estimated basis matrix UR to contain spectral patterns that
define the common behavior of RS. As mentioned in the key assumption (ii), Equation (6) aims to
learn the common basis vectors UR of L-segments X(1),X(2), · · · ,X(L) to model repetitive spectral
components throughout the segments, since RS can be considered as repetitive sound events in
human breathing. On the other hand, U(l)

W is responsible for recovering WS that can be contained
in each segment. Combining the two previous factorization models, UR can model both spectral
characteristics of the respiratory training Y and temporally repeating components belonging to the
segments X(1),X(2), · · · ,X(L). Considering the previous assumption (iii), the main contribution of
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the proposed method is to give greater importance, by means of weighting, to those segments
classified as non-wheezing (C(l) = 0) in the NMPCF decomposition to learn more accurate the
common basis vectors UR since these segments will not be interfered by WS so, the spectral modelling
of RS will be more acoustically reliable. In Figure 3, the segments X(2) and X(L) are classified as
non-wheezing segments.
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Figure 3. Pictorial illustration of the matrix decomposition based on IIS-NMPCF.

The objective function of the proposed method IIS-NMPCF can be constructed to minimize the
residuals of the models (6) and (7),

ΓI IS−NMPCF =

Objective function applied to the set of L-segments of the input mixture︷ ︸︸ ︷
L

∑
l=1

[
λC(l)

DKL

(
X(l)|X̂(l)

)]
+ LDF (UR|0) +

L

∑
l=1

[
DF

(
U(l)

W |0
)]

+

+

Objective function applied to the respiratory training︷ ︸︸ ︷
αDKL

(
Y|Ŷ

)
+ DF (UR|0)

(8)

where DKL () is the Kullback–Leibler divergence used to calculate the signal reconstruction error for
each segment DKL

(
X(l)|X̂(l)

)
and the respiratory training spectrogram DKL

(
Y|Ŷ

)
. The penalization

term DF () represents the Frobenius norm applied to each basis matrix in order to prevent basis vectors
from convergence to too small values [50]. The weighting factor λC(l)

controls the relative importance
of each segment matrix X(l) depending on the type of segment, wheezing (C(l) = 1) or non-wheezing
(C(l) = 0), in the factorization model. The weighting factor α controls the relative importance of the
respiratory training matrix Y in the factorization model.

Highlight that the weighting factor λC(l)
plays a crucial role in the proposed method. The reason

is because λC(l)
controls the importance of which segments are more relevant in the modelling of the

spectral patterns related to RS, specifically, those segments in which WS are not detected. Therefore,
the following considerations about the parameter λC(l)

must be taken into account:

(a) According to the estimated basis matrix UR or U(l)
W , the weighting factor λC(l)

can be classified as

λC(l)

R or λC(l)

W , respectively. As mentioned above, WS are always overlapped with RS so, we assume
that none of the segments will model the behaviour of WS better than another. However, RS
can be found isolated in some segments of human breathing due to the unpredictable nature
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of the pulmonary disorder. In this case, those segments in which WS are not contained will be
more relevant to model the behaviour of RS. In this manner, λC(l)

W will set the same value for all

segments, that is, λC(l)

W = λW , l = 1, . . . , L and λC(l)

R will be variable depending on the type of
segment, wheezing (C(l) = 1) or non-wheezing (C(l) = 0), is analyzed. In addition, the value
assigned to the weighing factors must satisfy λC(l)

R > λW (see Section 4.4) since RS are always
present in all segments of the input mixture and WS may not be.

(b) Focusing on the type of segment indicated by the parameter C(l), the weighting factor λC(l)

R
can be classified as λ0

R or λ1
R. The parameter λ0

R is associated with the non-wheezing segments
(C(l) = 0) and λ1

R is associated with the wheezing segments (C(l) = 1). This allows to
give greater importance to non-wheezing segments for the modeling of respiratory basis
UR. As consequence, the value assigned to the weighing factors must satisfy λ0

R > λ1
R

(see Section 4.4).

Given the above, the estimated basis matrices UR, U(l)
W and activations matrices V(l)

R , V(l)
W , HR can

be obtained by applying a gradient descent algorithm based on multiplicative update rules as follows,

UR ← UR �
∑L

l=1

[
λC(l)

R

(
X(l) � X̂(l)

) (
diag

(
Dx(l)R

)
V(l)

R

)T
]
+ α

(
Y� Ŷ

)
(diag (DyR)HR)

T

∑L
l=1

[
λC(l)

R 1F,T

(
diag

(
Dx(l)R

)
V(l)

R

)T
]
+ α1F,T (diag (DyR)HR)

T + 2 (L + 1)UR

(9)

U(l)
W ← U(l)

W �
λW

(
X(l) � X̂(l)

) (
diag

(
Dx(l)W

)
V(l)

W

)T

λW1F,T

(
diag

(
Dx(l)W

)
V(l)

W

)T
+ 2U(l)

W

(10)

V(l)
R ← V(l)

R �

(
URdiag

(
Dx(l)R

))T (
X(l) � X̂(l)

)
(

URdiag
(

Dx(l)R

))T
1F,T

(11)

V(l)
W ← V(l)

W �

(
U(l)

W diag
(

Dx(l)W

))T (
X(l) � X̂(l)

)
(

U(l)
W diag

(
Dx(l)W

))T
1F,T

(12)

HR ← HR �
(URdiag (DyR))

T (Y� Ŷ
)

(URdiag (DyR))
T 1F,T

(13)

The set of matrices UR, U(l)
W , V(l)

R , V(l)
W , HR are obtained updating the rules (9)–(13) until the

algorithm converges or reaches a maximum number of iterations M. At each iteration, the activation
matrices V(l)

R , V(l)
W , HR and the basis matrices UR, U(l)

W must be normalized applying the L2-norm
(see Equation (14)). As a result, DxR, DxW , DyR must be updated multiplying by the L2-norm obtained
at each previous normalization (see Equation (15)). The normalization process ensures that both the
sum of the square elements of each k-th column of the basis matrices UR, U(l)

W and the sum of the

square elements of each k-th row of the activation matrices V(l)
R , V(l)

W , HR equals 1.0 [46].

G(k) =
G(k)√
∑ G2(k)

(14)

DJ(k) = DJ(k)
√

∑ G2(k) (15)
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where (G, J, k) = {(UR, R, kR), (U(l)
W , W, kW), (V(l)

R , R, kR), (V(l)
W , W, kW), (HR, R, kR)} respectively.

If we consider the basis matrix G = (UR, U(l)
W ) →

√
∑ G2(k) =

√
∑F

f=1 G2( f , k). If we consider the

activation matrix G = (V(l)
R , V(l)

W , HR)→
√

∑ G2(k) =
√

∑T
t=1 G2(k, t).

After the updating process, the estimated spectrograms X̂(l)
R and X̂(l)

W for each segment can be
reconstructed as follows:

X̂(l)
R = URdiag(Dx(l)R )V(l)

R (16)

X̂(l)
W = U(l)

W diag(Dx(l)W )V(l)
W (17)

Note that X̂(l)
R and X̂(l)

W must be denormalized by multiplying by the denominator of Equation (5).
A Wiener filtering [32,55] has been applied in order to ensure a conservative signal reconstruction
and to obtain the estimated complex wheezing and respiratory spectrogram of each segment.
X̂R and X̂W are obtained by concatenating the estimated complex spectrograms of each segment,
X̂R =

[
X̂(1)

R , X̂(2)
R , . . . , X̂(L)

R

]
and X̂W =

[
X̂(1)

W , X̂(2)
W , . . . , X̂(L)

W

]
, respectively. Finally, the inverse

overlap-add STFT is applied to synthesize the estimated RS signal r̂[n] and the estimated WS signal
ŵ[n] in time domain using the phase of the input mixture. The wheezing/normal respiratory sound
separation procedure is summarized in Algorithm 1.

Algorithm 1 Wheezing sound separation using IIS-NMPCF.

Require: x[n], y[n], KR, KW , λ0
R, λ1

R, λW , α and M.

1) Compute the normalized magnitude spectrogram X of the mixture x[n].
2) Compute the normalized magnitude spectrogram Y of the training y[n].
3) Divide the spectrogram X into L-segments X(1), X(2), · · · , X(L) using AMIE_SEG [53].
4) Classify the L-segments into wheezing (C(l) = 1) and non-wheezing (C(l) = 0) using a wheezing

detection algorithm [54].

5) Initialize each activation and basis matrix UR, U(l)
W , V(l)

R , V(l)
W , HR with random non-negative

values.
6) Update each activation and basis matrix UR, U(l)

W , V(l)
R , V(l)

W , HR using Equations (9)–(13) for the
predefined number of iterations M. At each iteration, normalize each activation and basis matrix
UR, U(l)

W , V(l)
R , V(l)

W , HR and update the terms DxR, DxW and DyR using Equations (14) and (15).

7) Compute the estimated magnitude spectrograms X̂(l)
R and X̂(l)

W .

8) Denormalize the estimated magnitude spectrograms X̂(l)
R and X̂(l)

W .

9) Apply a Wiener filtering [32] on X̂(l)
R and X̂(l)

W .

10) Concatenate all the estimated complex respiratory spectrograms: X̂R =
[
X̂(1)

R , X̂(2)
R , . . . , X̂(L)

R

]
.

11) Concatenate all the estimated complex wheezing spectrograms: X̂W =
[
X̂(1)

W , X̂(2)
W , . . . , X̂(L)

W

]
.

12) Synthesize r̂[n].
13) Synthesize ŵ[n].

return r̂[n] and ŵ[n]

4. Experimental Results

4.1. Dataset and Metric

Because there is no public database where only wheeze sounds can be found to the best of
our knowledge, two datasets P1 and T1 (T1H, T1M and T1L), detailed in Table 1, have been used in
the evaluation of the proposed method with a total of 64 recordings considering the two databases.
Specifically, the database P1 consists of 48 recordings (that is, 3/4 of the total recordings used in the
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experiments) and the database T1 consists of 16 recordings (that is, 1/4 of the total recordings used
in the experiments). The dataset P1 has been used in the hyperparametric optimization process (see
Section 4.4) while the dataset T1 has been used in the separation testing (see Section 4.5). The databases
P1 and T1 have been created by collecting a set of recordings from different subjects of the most
widely used Internet pulmonary repositories [56–68]. These recordings, captured from the trachea,
anterior, and posterior chest using either a stethoscope or microphone, were collected from subjects
with different pathologies, including asthma, bronchitis or COPD. The databases P1 and T1 have
been created by randomly selecting recordings from the above-mentioned repositories. It must be
highlighted that P1 is not a part of T1 in order to validate the results. Therefore, the recordings selected
for the database P1 are not the same as the recordings selected for the database T1. In total, these
databases provide 1474 s of recording, 96 unhealthy subjects, 874 respiratory events (a respiratory
event is defined as inspiration or expiration) and 133 wheezes. Note that each recording has been
created using single-channel configuration, a sampling rate equals 2048 Hz and a bit resolution of
16 bits.

Specifically, the datasets P1 and T1 (T1H, T1M and T1L) have been created mixing only
WS recordings manually separated w[n], in which respiratory sounds are inactive, and only RS
recordings r[n], in which wheezing sounds are inactive, obtained from the above-mentioned repositories.
Highlight that wheezing sounds cannot be recorded isolated since WS are always overlapped with
RS, that is, both sounds are produced by the same bronchial tree in the lungs. To do this, a MATLAB
tool, designed by the authors, has been used to visually modify the spectrogram values. Specifically,
this tool behaves as an eraser that allows us, by means of the mouse, to set to zero those bins of the
spectrogram that we observe that do not belong to a wheeze sound, a fact that is also verified by a
listening inspection of the resulting signal. Therefore, only the bins corresponding to WS have been kept
active for each signal w[n]. Both the fundamental component of WS and its corresponding harmonics
have been considered. Note that the recordings used to create the database P1 are different from those
used to create the database T1.

The datasets T1H (SNR = 5 dB), T1M (SNR = 0 dB) and T1L (SNR = −5 dB) are composed of the
same set of signals w[n] and r[n] but they have been mixed using a different Signal-to-Noise Ratio
(SNR). Specifically, T1H is composed of mixtures in which the power of w[n] is 5 dB greater compared
to r[n] so, WS are louder than RS. The dataset T1M is composed of mixtures in which the power of
both w[n] and r[n] is the same so, both type of sounds is similarly audible. Finally, the dataset T1L is
composed of mixtures in which the power of w[n] is 5 dB lower compared to r[n] so, RS are louder
than WS. Note that in each mixture process, the power related to w[n] and r[n] are calculated and the
signal with the highest power is left fixed while the signal with the lowest power is scaled to obtain
the desired SNR in order to avoid audio saturation or distortion in the signal scaling process.

Table 1. Characteristics of each database.

ID1 ID2 ID3 ID4 ID5 ID6 ID7 ID8 ID9

P1 48 5–24 721 [0–9] [4–16] 496 [1–8] 92
T1H 16 7–22 251 5 [6–14] 126 [1–5] 41
T1M 16 7–22 251 0 [6–14] 126 [1–5] 41
T1L 16 7–22 251 −5 [6–14] 126 [1–5] 41

ID1: identifier; ID2: number of recordings captured from unhealthy subjects; ID3: the shortest and longest
duration, in seconds, captured from recordings; ID4: total duration in seconds; ID5: the lowest and highest SNR,
in dB, between WS and RS; ID6: the minimum and maximum number of respiratory events found in the
recordings; ID7: the total number of respiratory events; ID8: the minimum and maximum number of wheezes
found in the recordings; ID9: the total number of wheezes.

To assess the sound separation performance of the proposed method, the BSS EVAL toolbox [69,70]
has been applied because it is widely used in the field of sound source separation. The metrics used are
the following: (1) Source-to-distortion ratio (SDR), which provides information on the overall quality
of the separation process; (2) Source-to-interferences ratio (SIR), which reports the presence of WS
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contained in RS and vice versa; and (3) Source-to-artifacts ratio (SAR), which provides information on
the artifacts in the separated signal from separation and/or resynthesis. The principle to obtain the
value of these metrics is to decompose the total error, between the estimated target signal ŝ[n] and the
original target signal s[n], in three terms related to three types of error, as follows [70]:

ŝ[n]− s[n] = es
inter f [n] + es

arti f acts[n] + es
spatial [n] (18)

where es
inter f [n] is the error term related to the interference produced by the unwanted sources;

es
arti f acts[n] is the error term attributed to the artifacts generated by the separation algorithm;

and es
spatial [n] is the error term attributed to spatial distortion. We can now define the SDR, SIR

and SAR values, expressed in dB, as follows:

SDR = 10 log10
‖s[n]‖2∥∥esinter f [n] + esarti f acts[n] + esspatial [n]

∥∥2 (19)

SIR = 10 log10
‖s[n]‖2∥∥esinter f [n]

∥∥2 (20)

SAR = 10 log10

∥∥∥s[n] + es
inter f [n] + es

spatial [n]
∥∥∥2

∥∥esarti f acts[n]
∥∥2 (21)

Note that the term s indicates the target signal to be analyzed. In this article s could be the
wheezing signals (s = w) and the respiratory signals (s = r). Therefore, in the case of the wheezing
signals (ŝ[n], s[n], es

inter f [n], es
arti f acts[n], es

spatial [n]) = (ŵ[n], w[n], ew
inter f [n], ew

arti f acts[n], ew
spatial [n])

and in the case of the respiratory signals (ŝ[n], s[n], es
inter f [n], es

arti f acts[n], es
spatial [n]) = (r̂[n], r[n],

er
inter f [n], er

arti f acts[n], er
spatial [n]). The estimated signals ŵ[n], r̂[n] are obtained by the separation

algorithm, the original signals w[n], r[n] are obtained from the original separated signals used in the
creation of the mixtures of the databases and the error terms are obtained using the BSS EVAL toolbox.
We refer the reader to [70] for more details.

In this article, three different sets of SDR, SIR and SAR metrics will be analyzed as follows:
(i) SDRw, SIRw and SARw are referred to WS, (ii) SDRr, SIRr and SARr are referred to RS; and (iii) SDRm

is associated to the average considering SDRw and SDRr, SIRm is associated to the average considering
SIRw and SIRr, and SARm is associated to the average considering SARw and SARr.

4.2. Experiments Setup

According to the results obtained in similar works [32,54] related to wheezing sound analysis,
the following parameters provided the best trade-off between the separation performance and the
computational cost: sampling rate fs = 2048 Hz, Hamming window with N = 256 samples length and
25% overlap (temporal resolution of 31.3 ms), and a discrete Fourier transform using 2N points.

The performance of the proposed method depends on the initial values with which each activation
and basis matrix is initialized. For this reason, we have evaluated four times each input mixture with
the proposed method and therefore, the results are averaged values. Furthermore, the convergence of
the proposed method was empirically achieved after 50 iterations for all mixtures, so M = 50 iterations.

4.3. Comparison Methods

A set of reference baseline sound source separation methods have been compared to assess the
sound separation performance achieved by the proposed method (IIS-NMPCF). As mentioned in
Section 2, these methods can be divided into two groups: (i) NMF-based methods (NMF, SNMF, SSNMF
and CNMF); and (ii) NMPCF-based methods (1S-NMPCF, 2S-NMPCF, T-NMPCF and ST-NMPCF).
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Highlight that the main parameters of the previous baseline methods have been optimized using the
database P1. However, the following considerations must be taken into account to a fair comparison:

• A training signal y[n], created to simulate the behavior of RS, is used in the baseline methods
SNMF, SSNMF, 1S-NMPCF, 2S-NMPCF, ST-NMPCF and the proposed method IIS-NMPCF.
The training signal y[n] has been created by concatenating randomly a set of normal respiratory
stages only composed of RS obtained from the previously mentioned Internet pulmonary
repositories [56–68]. Specifically, the signal y[n] has a temporal duration of 128 s and 54 respiratory
stages (inspiration or expiration). Note that the normal respiratory stages used to construct y[n]
do not correspond to any of the respiratory stages used in the databases P1 or T1.

• SNMF and 2S-NMPCF must use a training signal to simulate the behaviour of wheezing sounds.
Taking into account that WS can be defined as continuous adventitious sounds that show a pitched
sound (see Section 1), a signal z[n] has been created by concatenating a set of single pitches located
along the frequency band 100 Hz–1000 Hz in which WS are typically present. Each pitch is
represented by a sinusoidal signal multiplied by a Hamming window of N samples. The distance
between the frequencies of each pitch is equal to the value provided by the spectral spacing of
the model. Considering that all evaluated methods have used the same parameters previously
mentioned in Section 4.2, the spectral spacing equals to 4 Hz.

• T-NMPCF and ST-NMPCF as well as IIS-NMPCF has been implemented using AMIE_SEG [53] to
divide the input spectrogram X into the L-segments X(1),X(2), · · · ,X(L).

• CNMF has been evaluated using its optimal parameters found in [32].

4.4. Optimization

The proposed method employs a wide range of parameters KR, KW , α, λW , λ0
R and λ1

R that can
affect significantly the separation performance and the reconstructed sound quality. A hyperparametric
optimization procedure has been applied to the main parameters of the proposed method IIS-NMPCF
to obtain the optimal parameters that maximize the audio quality of the estimated wheezing signal ŵ[n].
In this work, a preliminary evaluation using visual inspection reduced the parameter space as follows:
KR = (8, 16, 32, 64, 128, 256, 512), KW = (8, 16, 32, 64, 128, 256, 512), α = (0, 0.01, 0.1, 1, 10, 100), λW =
(0.001, 0.01, 0.1, 1, 10), λ0

R = (0.001, 0.01, 0.1, 1, 10, 100) and λ1
R = (0.001, 0.01, 0.1, 1, 10, 100).

The hyperparametric procedure is performed for each mixture of the dataset P1 in order to
obtain the audio quality of the estimated wheeze signal ŵ[n] in terms of SDRw, SIRw and SARw.
This procedure has been computed by evaluating all the possible combinations of the parameters
KR, KW , α, λW , λ0

R and λ1
R that can be found within the parameter space defined above, providing

the SDRw, SIRw and SARw average values for each combination of parameters. Table 2 shows the
optimal combination of the previous parameters that provides the best separation performance in
terms of SDRw. Specifically, the optimal parameters corroborate our previous assumptions described in
Section 3.2: (i) the highest weighting factor λ0

R = 10 is due to the high importance of the non-wheezing
segments in the factorization of the respiratory bases since RS can be modeled by sharing spectral
patterns that can be found in all non-wheezing segments during the breathing process; (ii) the second
highest weighting factor α = 1 is associated with the training signal since RS typically show common
spectral behavior; (iii) the low weighting factor λ1

R = 0.1 is associated with the wheezing segments in
the factorization of the respiratory bases since WS can interfere in the RS reconstruction; and (iv) the
lowest weighting factor λW = 0.01 is due to none of the L-segments is only composed by isolated WS.

Table 2. The optimal parameters of the proposed method that obtain the best wheezing audio quality
evaluating the dataset P1.

IIS-NMPCF approach parameters KW KR λ0
R α λ1

R λW

Optimal values 64 32 10 1 0.1 0.01
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Focusing on the parameter space defined above and keeping the optimal parameters shown in
Table 2, the aim of the rest of the section is to analyze the stability and efficiency of the proposed
method when its main parameters KW , KR, α, λW , λ0

R and λ1
R are distanced from the optimal values.

Figure 4 shows the SDRw results varying the number of respiratory KR and wheezing
KW components. Figure 4 shows that the difference, in terms of SDRw, between the configuration
of the parameters KR and KW that provides the best performance (SDRw = 16.99 dB) and the worst
performance (SDRw = 14.01 dB) is approximately 3 dB. Therefore, the proposed method is stable within
the defined parameter space KW and KR since the maximum loss that the algorithm can suffer is
less than 3 dB regardless of the number of wheezing KW and respiratory KR components evaluated.
Besides, the difference in SDRw results is marginal (less than 0.2 dB) either using KW ≥ 256 and
KR ≥ 256 or (less than 0.3 dB) using KW ≤ 16 and KR ≤ 16. Highlight that the proposed factorization
model needs a minimum of respiratory and wheezing components so that WS and RS can be modelled
correctly. An empirical analysis showed that the SDRw results start to drop significantly when KW < 16
and KR < 16. Figure 4 shows that SDRw results increase when the number of wheezing components is
greater than the number of respiratory components (KW > KR). Specifically, comparing the parameter
space KW ∈ [32− 512] and KR ∈ [8− 16] with KW ∈ [8− 16] and KR ∈ [32− 512], the performance of
the method, in terms of SDRw, improves by about 1.7 dB. As a result, RS seem to be modelled with a
lower number of bases than WS. Finally, the best performance of the proposed method IIS-NMPCF
can be found in the parameter space comprised by KW ∈ [32− 128] and KR ∈ [32− 128] with SDRw

results above 16.5 dB. As previously indicated in Table 2, the proposed method provides its highest
wheezing separation performance, SDRw = 16.99 dB, using KW = 64 and KR = 32.

8 16 32 64 128 256 512

KR

512

256

128

64

32

16

8

K
W

14

14.5

15

15.5

16

16.5

17

SDRw (dB)

Figure 4. SDRw average results from the hyperparametric optimization of the proposed method
varying the parameters KW and KR. The rest of parameters are the following: λ0

R = 10, α = 1, λ1
R = 0.1

and λW = 0.01.

Figure 5 shows the optimization of the parameters λW , λ0
R and λ1

R of the proposed method
in terms of SDRw results, of the proposed method. Figure 5E shows a poor wheezing separation
when the proposed method uses a λW = 10 since the performance of the proposed method decreases
exponentially (below 2 dB) in this scenario. The reason seems to indicate that WS are always overlapped
with RS since both are produced by the same airflow through the bronchial tree of the lungs. Therefore,
the proposed method wrongly models the wheeze bases when λW ≥ 10 since it assumes that the
L-segments of the input mixture are composed mostly of prominent WS. Figure 5A shows that
SDRw results decrease significantly when λW = 0.001. In this case, the use of an excessively low
weighting factor makes WS less important in the factorization process, causing that the separation
process is not performed correctly since the estimated respiratory signal r̂[n] contains both WS and RS.
Figure 5B,D show the lower and upper limit of the weighting factor λW so that the performance of
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the method is not drastically affected. Figure 5 shows an improvement of the wheeze separation
performance of the proposed method when λ0

R > λ1
R. Results suggest that, unlike the wheezing

segments, the non-wheezing segments improve the modeling of the RS bases since these segment do
not contain wheeze content so, they are not interfered by WS. As a result, λ0

R must be greater than λ1
R

to increase the quality of the reconstructed respiratory signal r̂[n]. In the parameter space comprised
by λ0

R ∈ [0.001− 100] and λ1
R ∈ [10− 100], the SDRw results are reduced significantly as can be seen

in Figure 5. Therefore, a remarkable increase of λ1
R causes that the factorization model inserts a large

proportion of wheezing interferences into the reconstructed respiratory signal. This fact produces more
of the WS to be present in the reconstructed respiratory signal r̂[n] rather than in the reconstructed
wheezing signal ŵ[n]. It can be observed that the maximum SDRw value, approximately equal to
17 dB in Figure 5B, is provided by the proposed method for the set of parameters λW = 0.01, λ1

R = 0.1
and λ0

R = 10. This optimization process confirms the assumptions introduced in Section 3.2. Firstly,
the proposed method provides the greatest importance, with a weighting factor of λ0

R = 10, to the
non-wheezing segments for the factorization of the basis matrix related to RS. Secondly, the proposed
method provides less importance, with a weighing factor of λ1

R = 0.1, to the wheezing segments
for the factorization of the basis matrix of the RS. Finally, the proposed method provides the least
importance, with a weighting factor of λW = 0.01, to the L-segments that composes the input mixture
signal for the factorization of the basis matrix of WS, as in none of these segments are WS isolated.

Note that when λW = λ0
R = λ1

R, the proposed method works similarly to the conventional
NMPCF approach, that is, ST-NMPCF. In particular, Figure 5B shows that ST-NMPCF obtains a SDRw

result equal to 13 dB (4 dB less than the optimal value obtained with the proposed method) using
λW = λ0

R = λ1
R = 0.01. This improvement provided by the proposed method confirms that adding

different weighting factors to different segments of the input mixture into the NMPCF factorization
enhances the acoustic fidelity of the spectral content of both RS and WS in the sound separation.
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Figure 5. SDRw average results from the hyperparametric optimization of the proposed method
varying the parameters λW , λ0

R and λ1
R. The rest of parameters are the following: KW = 64, KR = 32

and α = 1. (A) λW = 0.001, (B) λW = 0.01, (C) λW = 0.1, (D) λW = 1 and (E) λW = 10.

Focusing on the importance of the respiratory training signal y[n] in the proposed IIS-
NMPCF approach, Figure 6 shows SDRw, SIRw and SARw results of the estimated wheezing signal
evaluating the parameter space of the weighting factor α. Each box represents 48 data points, one for
each mixture of the optimization dataset P1: each blue box represents the analysis for SDRw values;
each red box represents the analysis for SIRw values; and each black box represents the analysis for
SARw values. The lower and upper lines of each box show the 25th and 75th percentiles. The line in the
middle of each box represents the median value. The diamond in the center of each box represents the



Sensors 2020, 20, 2679 16 of 26

average value. The lines extending above and below each box show the extent of the rest of the samples,
excluding outliers. Outliers are defined as points that are over 1.5 times the interquartile range from
the sample median, which are shown as crosses. The proposed method using α = 0, henceforth called
IIS0-NMPCF, does not use any training to model the respiratory bases. IIS0-NMPCF shows an efficient
performance with an average separation results of SDRw = 14 dB, SIRw = 18 dB and SARw = 15 dB.
Based on these results, it can be confirmed that IIS0-NMPCF maintains a remarkable performance
in the quality of the estimated wheezing signal ŵ[n]. However, the best average separation results,
SDRw = 17 dB, SIRw = 22 dB and SARw = 20 dB, are obtained using α = 1. The optimal configuration
of the proposed method IIS-NMPCF (α = 1) produces a significant improvement of 3 dB in SDRw,
4 dB in SIRw and 5 dB in SARw compared to IIS0-NMPCF. As a result, two conclusions are stated: (i)
the performance of IIS-NMPCF is mainly due to the importance of the different segments depending
on the presence or absence of WS so, not using any respiratory training signal the method maintains
good separation results; and (ii) the use of a respiratory training signal significantly improves the
performance of the proposed method IIS-NMPCF since it is combined both the information provided
by the spectral patterns found at inter-segments with the information provided by the spectral patterns
found in the respiratory training signal. This fact implies that the probability of finding wheezing
interferences in the factorized respiratory bases decreases considerably.

Moreover, SDRw, SIRw and SARw results, obtained using α > 10, suffer a significant decrease
compared to the best performance provided by the proposed method (α = 1) as shown in Figure 6.
In this case (α > λ0

R), the factorization gives more importance to the spectral patterns obtained from
the respiratory training signal instead of the spectral patterns shared between the different segments,
that is, the proposed method IIS-NMPCF performs similarly to 1S-NMPCF.
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Figure 6. SDRw, SIRw and SARw average results from the hyperparametric optimization of the proposed
method varying the parameter α. The rest of parameters are the following: KW = 64, KR = 32, λ0

R = 10,
λ1

R = 0.1 and λW = 0.01.

4.5. Results and Discussion

This section assesses the sound quality of the estimated or reconstructed WS and RS obtained
by the proposed method (IIS0-NMPCF and IIS-NMPCF) and the baseline separation NMF-based and
NMPCF-based methods described in Section 2. Table 3 describes the methods evaluated, indicating
the approach on which they are based and the spectro-temporal information used in the modelling of
WS and RS.
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Table 3. Characteristics of the methods evaluated.

Method Approach Modelling Associated to WS and RS

NMF NMF
SSNMF NMF y[n]
SNMF NMF y[n] and z[n]
CNMF NMF Sparseness and Smoothness constraints

1S-NMPCF NMPCF y[n]
2S-NMPCF NMPCF y[n] and z[n]
T-NMPCF NMPCF L-segments

ST-NMPCF NMPCF L-segments and y[n]
IIS0-NMPCF NMPCF L-segments and C(l)

IIS-NMPCF NMPCF L-segments, C(l) and y[n]

Next, SDR, SIR and SAR results of the estimated wheezing signal ŵ[n] and the estimated
respiratory signal r̂[n] obtained by the proposed method and the aforementioned baseline methods
evaluating the testing datasets T1H (see Figure 7), T1M (see Figure 8) and T1L (see Figure 9) are
analyzed to extract interesting information about the sound separation performance of the methods
evaluated. Each blue box corresponds to the SDRw, SIRw and SARw results of the estimated wheezing
signal while each red box corresponds to the SDRr, SIRr and SARr results of the estimated respiratory
signal. Note that the methods have been shown sorted from lowest to highest separation performance
to represent results as a ranking. The following information can be derived from the analysis of results
from Figures 7–9:
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Figure 7. SDRw and SDRr results (A), SIRw and SIRr results (B) and SARw and SARr results (C)
evaluating the dataset T1H (SNR = 5 dB). Note that SDRw, SIRw and SARw are represented by blue
boxes while SDRr, SIRr and SARr are represented by red boxes.
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Figure 8. SDRw and SDRr results (A), SIRw and SIRr results (B) and SARw and SARr results (C)
evaluating the dataset T1M (SNR = 0 dB). Note that SDRw, SIRw and SARw are represented by blue
boxes while SDRr, SIRr and SARr are represented by red boxes.
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Figure 9. SDRw and SDRr results (A), SIRw and SIRr results (B) and SARw and SARr results (C)
evaluating the dataset T1L (SNR = −5 dB). Note that SDRw, SIRw and SARw are represented by blue
boxes while SDRr, SIRr and SARr are represented by red boxes.

• The decrease in SNR affects significantly the SDR and SIR results for both WS and RS. Focusing
on Figure 7 in which SNR = 5 dB, results tend to be higher for reconstructed WS compared to
the reconstructed RS because WS are louder than RS, so the sound separation benefits the audio
quality of the reconstructed WS. Focusing on Figure 8 in which SNR = 0 dB, results for both WS
and RS tend to remain stable because both WS and RS are similarly audible, so the performance
of the sound separation seems to work equally between WS and RS. However, in Figure 9 in
which SNR = −5 dB, results tend to be better for reconstructed RS since RS are louder than WS.
This decrease in SNR implies that SDRm and SIRm results are worse in T1L compared to T1H.
The reason is because RS are louder than WS when SNR < 0 dB (T1L) and as a consequence, WS be
inaudible in this acoustic scenario so, the reduction of the SNR implies a greater time-frequency
overlapping from RS to WS than the opposite.

• The standard NMF is ranked at the bottom, obtaining the worst sound separation performance
since it achieves the signal reconstruction but not a factorization composed of audio events with
physical meaning. The standard NMF cannot group the factorized bases to the sound source that
generated them unlike the other methods because the standard NMF does not incorporate any
type of information into the factorization process to model the spectro-temporal characteristics
shown by WS and RS.

• Semi-supervised approaches (SSNMF and 1S-NMPCF) obtain better performance compared to
supervised approaches (SNMF and 2S-NMPCF). Regardless of the approach, NMF or NMPCF,
the use of the RS training signal is more effective that the use of both RS and WS training signals.
It indicates that both training signals provide over-information that causes spectro-temporal
ambiguity in the factorization of both WS and RS dictionaries.

• NMPCF-based methods (1S-NMPCF) obtain better separation performance than NMF-based
methods (SSNMF). This fact seems to be because SSNMF uses a fixed dictionary composed of
respiratory bases previously trained. However, 1S-NMPCF does not need a previous training stage,
since it applies a joint matrix factorization using the input mixture and the respiratory training
to obtain a dynamic dictionary of respiratory bases shared between both signals, obtaining a
different dictionary of bases for each input mixture.

• Comparing NMPCF-based methods, T-NMPCF improves the separation performance compared
to 1S-NMPCF. Results suggest that the dictionary of respiratory bases is more efficient when the
input mixture is divided into segments in order to find repetitive patterns of RS.

• ST-NMPCF, the combination of the approaches 1S-NMPCF and T-NMPCF, obtains a significant
improvement of the wheezing separation performance. Specifically, SDRw = 5.96 dB and
SIRw = 9.73 dB evaluating T1H (Figure 7). It indicates that a more reliable modelling of RS
can be achieved using jointly the shared respiratory spectral patterns along the segments and a
prior knowledge of the respiratory spectral content by means of the respiratory training signal.
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• CNMF [32] obtains competitive SDR SIR and SAR results compared to the methods above, ranking
fourth. In some cases, WS and RS are modelled efficiently by applying its proposed constraints,
but in other cases in which WS and RS are uncommon, CNMF does not model properly the
spectro-temporal behavior of the target sounds.

Focusing on the main contribution proposed in this work, the incorporation of higher importance
to those segments classified as non-wheezing in the co-factorization process, Figures 7–9 reveal the
following information:

• A significant separation performance improvement over the conventional T-NMPCF and
ST-NMPCF is achieved adding greater importance to the non-wheezing segments in the
co-factorization process. The SDRw improvement of IIS0-NMPCF over T-NMPCF is about 8.31 dB
(T1H), 5.18 dB (T1M) and 4.85 dB (T1L). The SIRw improvement of IIS0-NMPCF over T-NMPCF is
about 11.09 dB (T1H), 10.18 dB (T1M) and 8.33 dB (T1L). The SDRw improvement of IIS0-NMPCF
over ST-NMPCF is about 2.67 dB (T1H), 3.03 dB (T1M) and 1.69 dB (T1L). The SIRw improvement
of IIS0-NMPCF over ST-NMPCF is about 1.98 dB (T1H), 2.25 dB (T1M) and 1.87 dB (T1L).
Results suggest that the inclusion of inter-segment information into the co-factorization process
for modeling repetitive RS improves significantly the separation performance because it avoids
that the respiratory spectral patterns obtained from the factorization remaining uncontaminated
in wheezing segments.

• Adding prior knowledge of RS to IIS0-NMPCF improves significantly the sound separation
performance. The SDRw improvement of IIS-NMPCF over IIS0-NMPCF is about 3.07 dB (T1H),
2.89 dB (T1M) and 4.12 dB (T1L). The SIRw improvement of IIS-NMPCF over IIS0-NMPCF
is about 4.96 dB (T1H), 3.23 dB (T1M) and 3.02 dB (T1L). However, the dispersion between
SDR and SIR results increases when the respiratory training signal is incorporated into the
co-factorization process.

Focusing on the SAR results observed in Figure 7C, Figure 8C and Figure 9C: (i) NMPCF-based
methods produce fewer artifacts than NMF-based methods; (ii) the spectro-temporal information
used in the modelling of WS and RS allows to reduce the ambiguity that NMPCF-based methods
are affected by decreasing the amount of artifacts. For this reason, the proposed method IIS-NMPCF,
which uses more spectro-temporal information to model RS compared to the other NMPCF-based
methods, obtains the best separation performance in terms of SAR.

In order to guarantee the relevance of the respiratory and wheezing SDR, SIR and SAR results
shown in Figures 7–9, an analysis of the statistical significance, using an one-side paired t-test, has
been performed comparing the proposed method (IIS-NMPCF) with the rest of the evaluated methods
as shown in Tables 4–6. It can be observed that results confirm the significant improvement obtained
by IIS-NMPCF compared to the other evaluated methods.

Table 4. Analysis of the statistical significance of the respiratory/wheezing SDR, SIR and SAR results
comparing the proposed method (IIS-NMPCF) with the other evaluated methods using an one-sided
paired t-test in the databases T1H (see Figure 7).

Method SDRr SIRr SARr SDRw SIRw SARw

NMF 6.1× 10−10 4.1× 10−10 5.4× 10−3 1.9× 10−11 1.8× 10−11 4.8× 10−7

SSNMF 1.4× 10−7 5.5× 10−8 4.8× 10−3 3.2× 10−10 4.4× 10−12 8.9× 10−8

SNMF 1× 10−7 3.1× 10−7 4.5× 10−8 7.9× 10−12 1.4× 10−10 1.2× 10−2

2S-NMPCF 3.3× 10−7 5.5× 10−6 4.9× 10−7 2.6× 10−11 1.7× 10−10 1.8× 10−3

1S-NMPCF 6× 10−6 4× 10−7 2.7× 10−6 5.2× 10−10 9.2× 10−11 4.9× 10−3

T-NMPCF 3.8× 10−5 5.7× 10−5 3.3× 10−4 4.4× 10−9 8.9× 10−9 2.9× 10−2

CNMF 1.6× 10−4 1.7× 10−3 1.8× 10−7 2.6× 10−6 1.3× 10−6 7.2× 10−4

ST-NMPCF 1.5× 10−4 9.5× 10−6 5.2× 10−2 3.9× 10−5 5.3× 10−7 2.2× 10−2

IIS0-NMPCF 4× 10−2 2.2× 10−3 1× 10−1 4.2× 10−2 8.2× 10−3 1.1× 10−1

Each cell shows the parameter ρ that represents the probability of setting a statistically significant result.
Considering a confidence interval of 95%, small values of ρ < 0.05 indicate that there exists statistical significance
of the results evaluated.
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Table 5. Analysis of the statistical significance of the respiratory/wheezing SDR, SIR and SAR results
comparing the proposed method (IIS-NMPCF) with the other evaluated methods using an one-sided
paired t-test in the databases T1M (see Figure 8).

Method SDRr SIRr SARr SDRw SIRw SARw

NMF 4× 10−13 4.1× 10−14 9.4× 10−2 6.2× 10−13 2× 10−12 2.7× 10−9

SNMF 4.3× 10−13 7.3× 10−13 4.3× 10−2 2.8× 10−13 1× 10−10 1.3× 10−10

SSNMF 9.7× 10−11 2.3× 10−10 2.5× 10−6 5.6× 10−11 4.3× 10−10 2.9× 10−7

2S-NMPCF 6.9× 10−11 1.1× 10−11 4.9× 10−6 5.1× 10−11 5.8× 10−11 3.5× 10−8

1S-NMPCF 8.7× 10−8 4.9× 10−10 1.3× 10−6 1.7× 10−8 1.4× 10−9 3.3× 10−7

T-NMPCF 9.7× 10−9 3.7× 10−9 1.1× 10−7 6.9× 10−9 1.6× 10−7 1.2× 10−9

CNMF 9.6× 10−7 1.1× 10−5 5.7× 10−5 9.4× 10−6 7.4× 10−5 5.2× 10−7

ST-NMPCF 1.9× 10−4 1.6× 10−4 4.4× 10−2 8.4× 10−5 4.3× 10−4 1.3× 10−9

IIS0-NMPCF 4.1× 10−2 6.3× 10−4 4× 10−1 2× 10−2 3.1× 10−2 3.3× 10−4

Each cell shows the parameter ρ that represents the probability of setting a statistically significant result.
Considering a confidence interval of 95%, small values of ρ < 0.05 indicate that there exists statistical significance
of the results evaluated.

Table 6. Analysis of the statistical significance of the respiratory/wheezing SDR, SIR and SAR results
comparing the proposed method (IIS-NMPCF) with the other evaluated methods using an one-sided
paired t-test in the databases T1L (see Figure 9).

Method SDRr SIRr SARr SDRw SIRw SARw

NMF 2.1× 10−9 6.8× 10−12 3.9× 10−8 2.2× 10−9 1.5× 10−12 8.6× 10−10

SNMF 5.5× 10−10 3× 10−11 1.9× 10−5 1.7× 10−9 2.7× 10−12 8× 10−12

SSNMF 5.3× 10−10 1.1× 10−13 6.5× 10−10 1.2× 10−9 6.2× 10−11 3.6× 10−10

2S-NMPCF 2.8× 10−10 3.1× 10−9 4.7× 10−10 1.1× 10−8 1.2× 10−10 9.3× 10−10

1S-NMPCF 1.8× 10−9 9.9× 10−12 5.5× 10−12 2.1× 10−8 3.3× 10−9 2.9× 10−6

T-NMPCF 1.5× 10−7 1.7× 10−8 5.4× 10−12 1.8× 10−7 1.2× 10−7 2.5× 10−8

CNMF 2× 10−5 4.4× 10−4 3.9× 10−2 4.7× 10−9 3.4× 10−4 5.6× 10−6

ST-NMPCF 5.6× 10−4 4× 10−6 3.7× 10−4 1.9× 10−6 1.1× 10−3 5.2× 10−6

IIS0-NMPCF 3.6× 10−2 9.6× 10−3 3× 10−6 2.5× 10−3 2.7× 10−2 4.3× 10−3

Each cell shows the parameter ρ that represents the probability of setting a statistically significant result.
Considering a confidence interval of 95%, small values of ρ < 0.05 indicate that there exists statistical significance
of the results evaluated.

Finally, a set of spectrograms are presented in Figures 10 and 11 in order to display the sound
separation performance obtained by each of the assessed methods. Unlike the other evaluated
methods, it can be observed that the proposed method IIS-NMPCF removes most of the RS in
the estimated wheezing spectrogram X̂W keeping most of the wheezing spectral content. This fact
confirms the advantage of the proposed method since most of the clinical useful information contained
in the estimated spectrogram X̂W will be available to the physician to maximize the reliability of
medical diagnosis. The MATLAB implementation of the proposed method is shared by the authors
and can be downloaded from GitHub (https://github.com/JTORRECRUZ/Sensors_IIS-NMPCF).

https://github.com/JTORRECRUZ/Sensors_IIS-NMPCF
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Figure 10. The estimated wheezing spectrogram X̂W obtained from the input spectrogram X shown
in Figure 1 for the different methods evaluated. (A) NMF, (B) SNMF, (C) SSNMF, (D) 2S-NMPCF, (E)
1S-NMPCF, (F) T-NMPCF, (G) CNMF, (H) ST-NMPCF, (I) IIS0-NMPCF and (J) IIS-NMPCF.
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Figure 11. The estimated respiratory spectrogram X̂R obtained from the input spectrogram X shown
in Figure 1 for the different methods evaluated. (A) NMF, (B) SNMF, (C) SSNMF, (D) 2S-NMPCF, (E)
1S-NMPCF, (F) T-NMPCF, (G) CNMF, (H) ST-NMPCF, (I) IIS0-NMPCF and (J) IIS-NMPCF.

5. Conclusions

We propose an extended version of Non-negative Matrix Partial Co-Factorization (NMPCF)
approach to separate wheezing and respiratory sounds improving their acoustic quality. We assume
that RS can be considered as sound events that are repeated during the human breathing process.
However, WS may or may not be present along the segments due to the unpredictable nature of the
pulmonary disorder. The main contribution of the proposed method is to add importance to the
segments classified as non-wheezing to improve the sound separation performance of the conventional
NMPCF which treats all segments of the input spectrogram equally. As a result, our proposal
(IIS0-NMPCF/IIS-NMPCF) is able to characterize RS more accurately by forcing to model more
on those non-wheezing segments in the bases sharing process into the NMPCF approach.
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The main conclusions from the experimental results indicate that adding more importance to
the non-wheezing segments into the decomposition procedure (NMPCF) models more accurate the
spectro-temporal characteristics related to repetitive sound events of the mixture. In this work,
these repetitive sound events are represented by RS that are present in all cycles of the breathing.
Experimental SDR, SIR and SAR results report that the proposed method IIS-NMPCF outperforms
significantly all evaluated methods providing competitive and promising results in the wheezing
sound separation. This fact confirms the ability of the proposed method to improve the sound quality
of WS maximizing both the removal of the acoustic interference caused by RS and that as much
wheezing content is maintained. As a result, all useful medical information contained in the estimated
wheezing can be clearly preserved.

It can be observed that the separation performance for the different evaluated methods drops when
the SNR decreases. Considering the acoustic scenario in which RS are louder than WS (SNR < 0 dB),
WS are barely audible due to the high interference produced by RS. Although in this case the reduction
of the SNR implies a greater time-frequency overlapping from RS to WS, our proposal still achieves the
best performance compared to the other baseline methods evaluating. Therefore, the proposed method
can be considered an useful tool to be applied in sound environments in which WS are barely audible.

Future work will focus on the development of new constraints to be incorporated into NMF-based
approaches for modelling different types of WS according to their spectral content in order to
automatically classify the severity of the lung disorder.
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