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Abstract: Computer vision based indoor localization methods use either an infrastructure of static
cameras to track mobile entities (e.g., people, robots) or cameras attached to the mobile entities.
Methods in the first category employ object tracking, while the others map images from mobile
cameras with images acquired during a configuration stage or extracted from 3D reconstructed
models of the space. This paper offers an overview of the computer vision based indoor localization
domain, presenting application areas, commercial tools, existing benchmarks, and other reviews.
It provides a survey of indoor localization research solutions, proposing a new classification based on
the configuration stage (use of known environment data), sensing devices, type of detected elements,
and localization method. It groups 70 of the most recent and relevant image based indoor localization
methods according to the proposed classification and discusses their advantages and drawbacks.
It highlights localization methods that also offer orientation information, as this is required by an
increasing number of applications of indoor localization (e.g., augmented reality).
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1. Introduction

In recent years, the field of indoor localization has increased in popularity due to both the
increasing number of applications [1] in domains such as surveillance [2], navigation (both assistive
and general purpose) [3], robotics [4-6], and Augmented Reality (AR) [7] and the many proposed
solutions that differ in terms of the devices used for tracking, the type of sensor data, and the
localization algorithms.

This paper focuses on computer vision based localization methods; therefore, the solutions
presented are based on input from cameras. Most navigation systems use cameras carried by the
subject, which represents the mobile entity (e.g., person, robot) that requires positioning or tracking,
as illustrated in the left-hand side of Figure 1. The other type of solutions uses an infrastructure of
static cameras positioned at known locations throughout the building to track the subject, as shown
in the right-hand side of Figure 1. The vision based localization systems use 2D or 3D cameras (e.g.,
stereo, depth, RGB-D cameras) and perform the localization by identifying artificial markers (such as
Quick Response (QR) codes and fiducial markers like AprilTags, ARTags, and CALTags [8]) or objects
that are part of the environment. In many cases, the cameras are used in combination with other
sensors such as WiFi, beacon, or inertial sensors [1].
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Figure 1. Indoor localization with a mobile camera (left) or with static cameras (right).

Depending on the application, the required level of location accuracy varies [9]. Navigation
solutions for guiding people to find specific rooms in a building or when changing underground lines
accept an accuracy of several meters. In the same accuracy range are assistive solutions for the elderly
that monitor their approximate location to confirm their compliance with certain routines and to detect
situations of emergency such as a person ceasing to move. Other tracking or surveillance applications
require 1-2 m accuracy to assess risky situations such as a person getting too close to an exhibit item in
a museum. However, some of these surveillance applications require a higher accuracy of 10-20 cm
when aiming to detect whether restricted areas/perimeters are only entered by authorized people.
Applications for indoor autonomous robots or assistive systems for the visually impaired that perform
obstacle detection cannot rely on an approximate localization and need centimeter-level accuracy.
Modern AR solutions take the accuracy requirements even further. To offer seamless integration of the
multimedia content, superimposed over video flows on smartphones or over smart glasses’ lenses,
these applications require centimeter to millimeter accuracy of the position and orientation of the
user’s mobile device.

Even though a considerable number of surveys on indoor localization have been
published [1,4-6,9-15], as this research space continuously developed and the types of localization
solutions diversified, we find that for the area of vision based localization, the majority of the
previous surveys could have better focus as they are too general (encompassing all kinds of sensing
devices) or too specific (addressing only a segment of the vision based localization problem, such as
Simultaneous Localization and Mapping (SLAM) [16-21], Structure from Motion (S5fM) [22], or image
matching [23]). Other surveys discuss indoor positioning solutions particular to certain application
domains. For instance, Huang et al. [24] analyzed only localization solutions that combined visual
and inertial information. Marchand et al. [7] provided a survey of pose estimation methods used
only for AR. Silva and Wimalaratne [25] presented a survey of navigation and positioning aids for
the visually impaired. In comparison, we offer a comprehensive survey of image based localization
solutions regardless of the application domain and propose a new classification.

The paper is organized as follows: the next section describes the most impacted domains by
indoor localization; Section 3 classifies 70 selected computer vision based indoor localization methods
and details their main characteristics; Section 4 focuses on benchmarks used for evaluating image
based indoor localization solutions; and Section 5 presents our conclusions.

2. Application Domains

2.1. Assistive Devices

With the advance in technology, researchers have focused on improving the lifestyle of people
with various disabilities, including visual impairment [26]. Two of their main problems are navigating
and perceiving unknown environments.
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There are several solutions to this problem that map the environment with images containing
different visual cues such as QR codes, bar codes, or other simple synthesized geometric shapes like
circles and triangles. Idrees et al. [27] proposed an indoor navigation system that used QR codes that
were placed on the floor at certain locations. The system guided the user to a selected destination,
checking the user’s location every time a QR code was scanned. Fusco and Coughlan [28] used sign
detection and visual-inertial odometry to estimate the user’s location inside a building, requiring only
a digital map of that building that contained the locations of the signs.

Other solutions create a 3D reconstruction of the environment in a configuration stage or create
a database with images of the indoor space, annotated with location information. Endo et al. [29]
proposed a navigation system for visually impaired people, which applied Large-Scale Direct SLAM
(LSD-SLAM) to estimate the user’s position while constructing a 3D map of the environment. The 3D
model of the environment allowed for the construction of an occupancy grid map, divided into
quadrate cells, which stored information about the presence or absence of an obstacle in that location.
The system created a cost map and conducted path finding through the navigation stack provided
by the Robot Operating System (ROS) framework [30]. Li et al. [19] detected dynamic obstacles and
applied path planning to improve navigation safety for people with visual disabilities. They built
a 3D reconstruction of the environment with the visual positioning service provided by the Google
Tango device. With a time-stamped map Kalman filter, they implemented an obstacle detection and
avoidance algorithm that guided the user to a specified destination.

As previously mentioned, some localization solutions use an infrastructure of static cameras
located at known positions in the environment. Heya et al. [31] employed color detection in an indoor
localization system used for visually impaired people. A static camera located on the ceiling tracked
the screen of a smartphone that was placed on the user’s shoulder. Chaccour and Badr [32] proposed
an ambient navigation system that was composed of static cameras attached to the ceiling. The system
detected the users’ location and orientation based on markers located on their heads. Static and
dynamic obstacles were identified based on their shape or predefined images that were stored in a
database. The proposed solution provided navigation assistance and obstacle avoidance and allowed
the visually impaired users to locate missing objects.

Many navigation systems for visually impaired people assume the existence of a map for
the current environment or create such a map in a configuration stage [25]. However, there are
some solutions that allow the user to navigate in unknown environments by simply translating the
visual information through audio or haptic signals, allowing the user to create a mental map of the
surroundings. Sound of Vision [33,34] is such an example, which identifies the most important objects
in the proximity of the user and sends information about their characteristics (weight, height, elevation,
distance to the user, etc.) through headphones and a haptic belt. Sound of Vision is not only a
navigation system, but also a solution for perceiving the environment. However, the understanding of
the audio and haptic information that characterize the environment can be accomplished only through
intensive training [35].

More information about indoor positioning systems for visually impaired people can be found in
Siva’s and Wimalaratne’s survey [25].

2.2. Autonomous Robots

Designing autonomous robot applications can represent a challenge, since the localization
methods cannot rely on external information. When navigating an environment, a human being
can use the five senses, especially vision, touch, and hearing, to create a mental representation of
the surroundings. This is not the case for robots, which navigate the environment only based on the
information provided by the localization system. Therefore, localization solutions for autonomous
robots require continuous computation of the robot’s position and orientation relative to a digital
representation of the environment, as well as obstacle detection and path planning. On the other hand,
designing applications for specific robots can simplify the localization problem. Various characteristics
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of a robot, such as degrees of freedom, width, height, position of the sensors mounted on the robot,
or wheel diameter can be used to make assumptions about the movement of the robot (dead reckoning),
thus reducing the complexity of the localization algorithms.

Since most robots operate in controlled environments, a popular approach is to configure the
space with artificial landmarks such as QR codes. Li and Huang [18] presented a system that assisted
robots, as well as human beings, in navigating indoor environments. A Kinect device acquired color
information that allowed the detection of QR codes attached to the walls at known locations in a
room. The depth sensor measured the distance from the Kinect camera to the identified QR codes.
Babu and Markose [36] proposed a navigation system for Internet of Things (IoT) enabled robots.
A QR code based detection solution estimated the position of the robot, while a path optimization
step based on Dijkstra’s algorithm assisted the robot in reaching a destination node. Nazemzadeh
and Macii [37] described a localization solution for unicycle-like wheeled robots. It computed the
position of the robots by fusing information from QR codes, odometry based on dead reckoning, and a
gyroscope platform. Cavanini et al. [38] proposed a low-cost QR code based localization system for
robots operating indoors, experimentally validated on smart wheelchairs.

Other approaches used actual images of the environment, acquired with 2D or 3D cameras.
Correa et al. [39] described a Kinect based reactive navigation system that guided robots while
performing obstacle avoidance. It recognized different configurations of the indoor space with an
artificial neural network. Xin et al. [40] introduced an RGB-D SLAM method that combined the
Oriented FAST and Rotated BRIEF (ORB) and Random Sample Consensus (RANSAC) algorithms for
feature extraction and matching. They created a 3D volumetric map of the environment that could be
used for the navigation of a mobile robot. Kao and Huy [41] proposed an indoor navigation system that
performed smartphone based visual SLAM with ORB features using a wheel-robot. They combined
WiFi signals, information from inertial sensors, and monocular images for the computation of the
robot’s position.

Surveys dedicated to positioning solutions for autonomous robots [4,5] present in-depth
information on this topic.

2.3. Augmented Reality

Currently, Augmented Reality (AR) has become very popular, due to the new technologies that
are bringing it closer to the greater public. Smartphones are the most commonly used devices for
displaying augmented content. However, smart glasses, such as Moverio [42] or Google Glass [43],
are gaining ground [44]. For a seamless integration of the multimedia content within the real
environment, the position and orientation of the display device must be estimated with high accuracy.

Gerstweiller [45] presented HyMoTrack , a tracking solution that generated a 3D model of the
environment out of a vectorized 2D floor plan, and an AR path concept, called FOVPath, for guiding
people. Using the FOVPath approach, the display of a trajectory depended on the user’s position
and orientation and also on the Field Of View (FOV) capabilities of the device. Wang et al. [46]
described the development of a 3D augmented reality mobile navigation system that provided indoor
localization based on Radio-Frequency Identification (RFID) readings and computer vision. They
created 3D representations of internal and external structures of Oxford College, from the present and
the past. Based on the position and orientation of the user’s device, they displayed the 3D architectural
appearance of the college during important time periods, as well as multimedia content such as texts,
pictures, or 3D models related to various exhibits. Balint et al. [47] presented an AR multiplayer
treasure hunt game, which combined GPS position information with localization based on image
recognition. The treasures were virtual 3D objects that were displayed when the user reached a
checkpoint, and the device was oriented towards the respective direction. Baek et al. [48] proposed
an AR system for facility management, which computed the user’s pose relative to the building,
with a deep learning approach. The visualization module displayed location-specific information,
holographic pipes in this case, which in reality were not visible because they were built within the walls.
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Marchand et al. [7] offered more information on the topic of pose estimation for augmented reality,
presenting the most important approaches on vision based positioning.

AR Commercial Solutions

This section presents some of the most popular commercial tools for developing augmented
reality content, which have indoor localization capabilities.

Wikitude [49] is an augmented reality Software Development Kit (SDK) that uses the SLAM
technology to reconstruct the environment. It also performs 2D and 3D image recognition and tracking,
which can trigger the display of digital content, overlaid on the real world.

ARKit [50] is an iOS AR platform that provides scene understanding capabilities by combining
inertial data with visual information to detect horizontal and vertical planes. It also recognizes images
and 3D objects, determining the position and orientation of the camera relative to the target.

ARCore [51] is another SDK, launched by Google, which allows developers to build augmented
reality experiences that seamlessly integrate the digital content into the real world. ARCore provides
motion tracking capabilities, as well as environmental understanding based on plane detection.
It performs SLAM, making use of inertial sensors and the data acquired with a smartphone camera,
estimating the position and orientation of the user’s device relative to a 3D coordinate system.

Vuforia [52] is a popular engine that provides detection and tracking of image targets and pose
estimation of any tracked target or marker, allowing the rendering module to display the 3D virtual
content naturally, depending on the position and orientation of the user. The pose computation is
performed only relative to an image target or a marker, therefore not offering actual indoor positioning
capabilities (relative to an entire room or another type of indoor space).

ARToolKit [53] is an open-source library intended for the development of augmented reality
applications, which overlays 2D and 3D multimedia content on the real world. It is a tracking
library that computes the camera position and orientation relative to square markers or to natural
feature markers in real time. It works with both monocular and stereo cameras, providing
calibration capabilities.

MAXST [54] is a cross-platform engine that provides a variety of tracking features for the
development of augmented reality applications. It recognizes and tracks planar target images or
planar surfaces, as well as markers with regular patterns or QR codes. Their implementation of visual
SLAM can be used to create map files of the environment that are later loaded up by the Object Tracker
module, which superimposes AR experiences on them. Another module, AR Fusion tracker, generates
world representations and performs environment tracking by combining information from the other
tracking modules.

Other popular commercial solutions for developing augmented reality applications are
EasyAR [55], Kudan [56], Onirix [57], Pikkart [58], and DeepAR [59].

2.4. Surveillance and Monitoring

Indoor positioning can also be used for surveillance or monitoring purposes, detecting whether
an unauthorized person has breached a perimeter, or tracking a certain person throughout an entire
building or house. Generally, surveillance systems use an infrastructure of static cameras for the
purpose of detecting and tracking the users. However, there are cases when information from other
sensors, such as WiFi access points or beacons, is fused with the video frames.

Sun et al. [60] proposed a localization solution that used panoramic cameras and a map of
the indoor environment. They applied a background subtraction method to detect human beings,
matching their location to a corresponding position on the indoor map.

Desai and Rattan [61] used a pan/tilt camera and wireless sensor networks to track objects within
an indoor space. The estimation of an object’s position was performed with the time difference of arrival
method. The camera, equipped with a laser pointer, followed the object continuously, by computing
the pan and tilt angles based on a listener Cricket mote carried by the object. Grzechca et al. [62]
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fused Received Signal Strength Indication (RSSI) information with data from a static video camera
to track human beings in indoor environments. Zhang et al. [63] acquired video sequences with a
surveillance camera and recognized a target person by matching the information provided by the
inertial sensor of the person’s smartphone with gait and heading azimuth features extracted from the
videos. They applied a Convolutional Neural Networks (CNN) based object tracking technique in
order to handle occlusion.

As far as we know, there is no recent survey on computer vision based indoor localization
dedicated to surveillance and monitoring, but further information on this topic can be found in the
work of Shit et al. [64], which presented localization solutions with static cameras, and in the survey of
Jiao et al. [65], which discussed deep learning methods for object positioning.

3. Indoor Localization Solutions

3.1. Selection of Papers Included in the Survey

Image based indoor localization has been intensely researched. Among existing scientific
publications, we chose 70 papers based on publication date and relevance to the domain, using only
prestigious research databases (IEEE Explore, ACMDigital Library, SpringerLink, MDPI, and Elsevier).
Figure 2 shows the distribution of selected papers over time, illustrating an increased interest in the
image based localization domain in the last five years. Since it takes time for research papers to
acquire visibility, the number of citations was not one of the selection criteria, as it disadvantaged the
more recent research. The purpose of this survey was not to be exhaustive in terms of listing the work
performed in the field of vision based indoor positioning, but to illustrate the main characteristics of
the existing technologies and techniques. This allows the reader to attain an overview of the domain
while understanding the advantages and drawbacks of the various methods. Choosing an appropriate
solution does not boil down to just the application domain, but also to the particular requirements of
the applications such as accuracy, computing time, equipment, and dynamic and static aspects (the
properties of the objects contained in the environment).

Number of papers
18
16
14
12

=T L]

2011 2012 2013 2014 2015 2016 2017 2018 2019

Figure 2. Distribution of selected papers over time. The horizontal axis shows the publication years.
The vertical axis shows the number of papers published per year.

3.2. Classification

Recent surveys in the indoor positioning domain have proposed various classifications.
For instance, the survey of Yassin et al. [1], which addressed the entire domain of indoor localization
(not limited to vision based solutions), proposed a two-level classification. The first level grouped the
solutions based on the positioning algorithms, which were divided into three classes: triangulation,
scene analysis, and proximity detection. The second level classified the solutions within the first
level classes based on the measurement techniques as follows: the triangulation class had two
sub-classes: lateration and angulation; the scene analysis class had only one sub-class: fingerprinting
based; and the proximity detection class had two sub-classes: cell-ID and RFID. Another general
survey in indoor localization [10] classified existing research solutions into local infrastructure
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dependent techniques (ultra-wideband, wireless beacons), local infrastructure independent techniques
(ultrasound, assisted global navigation satellite systems, magnetic localization, inertial navigation
systems, visual localization, infrared localization), and visual/depth sensors (structured light
technology, pulsed light technology, stereo cameras).

Mendoza-Silva et al. [9] presented a meta-review of indoor positioning systems, resulting from
the analysis of 62 indoor localization-related surveys. They reviewed the most commonly used
technologies for localization applications and proposed the following classes: light, computer vision,
sound, magnetic fields, dead reckoning, ultra-wideband, WiFi, Bluetooth Low Energy, RFID, and
Near-Field Communication (NFC). In the computer vision class, they discussed several positioning
techniques, such as visual odometry and vision based SLAM, and mentioned different acquisition
devices (monocular, stereo, omnidirectional). However, they did not propose any classification for
this domain. They also observed the complete lack of recent surveys on computer vision based indoor
localization solutions and claimed the necessity of such a work.

Analyzing the research papers mentioned in the previous section, several discriminating
characteristics emerged. Therefore, we propose a new classification of computer vision based indoor
localization solutions, as illustrated in Figure 3.

All indoor positioning methods have a configuration stage, in which the environment is filled with
landmarks and sensors, images from the environment are saved into a database, or a 3D representation
of the indoor space is created. Therefore, environment data could consist of information about the
position of the markers (e.g., QR codes, geometric synthetic identifiers) or the location of the static
cameras placed within the scene. Another type of environment data is represented by databases
with images or features from images, annotated with position and orientation information. Lastly,
environment data could consist of a 3D model of the environment, a point cloud, a 3D mesh, or a 3D
map, obtained with various methods such as manual modeling, SLAM, or SfM.

Yo Y ) i ! Vol \
| Marker / Pl . P [ !
'| camera position | | ' Static cameras b P i
| P i | D . Artificial . Traditional |
1 1 \.—/ ! 1 1 1 - . !
! L . Markers | image analysis |'
w S > o b |
1 [ . 1 I 1 i
/| Image /feature | Mobile b o !
! database o cameras b P !
[ oo e : : : : H
] 1 - . 1
i | 0! Lo Artificial i
| ' 3D " || Realfeatures | | | . . '
P U b . intelligence !
| . Cameras + P o !
| 3D model i i | other sensors - b |
A ) 11 | (WiFi, IMU, etc.) b - !
Environment data Sensing devices Detected elements Localization method

Figure 3. Proposed classification based on environment data, sensing devices, detected elements, and
localization method.

Another element that helps discriminate between methods is the type of employed sensing
devices. As previously mentioned in Section 1 and illustrated in Figure 1, the main acquisition devices
are static and mobile cameras. Furthermore, the input information can be enriched with data from
other sensors, such as WiFi access points or IMU devices. Another differentiating aspect of image
based localization methods is the type of visual input, which can be either 2D or 3D.

The localization methods can search for artificial markers (e.g., QR codes and other fiducial
markers such as AprilTags [66], ARTags, and CALTags [8]) or for features from the real environment.
The latter category includes any type of element that can be extracted from the real environment
(without the need to insert synthesized items into the scene), either features of interest such as
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Speeded Up Robust Features (SURF) and Scale-Invariant Feature Transform (SIFT) or semantic objects.
Therefore, we propose a new level of classification, namely the detected elements, which refers to the
type of features (artificial markers or natural, real elements from the environment) that are tracked or
matched within the images.

Indoor positioning solutions employ various localization methods, which range from low-level
feature matching to complex scene understanding. We divided the techniques into traditional
image analysis and artificial intelligence. The ones belonging to the second category include
any type of artificial intelligence, such as Bayesian approaches, Support-Vector Machine (SVM),
and neural networks.

We applied the proposed classification to the selected indoor localization solutions. Table 1 assigns
each of the chosen research papers to a class, based on environment data, sensing devices, detected
elements, and localization method.

Out of all the classes that could result from combining the differentiating elements from
Figure 3, we chose only 17 of the more popular ones, which were represented by a large number of
research papers.

Table 1. Classification of computer vision based localization research papers considering the
environment data, the sensing devices, the detected elements, and the localization algorithm.

Classification
Environment Data Sensing Devices Detected Localization Research Papers
Elements Method

Marker/camera position 2D static cameras Artificial ~ Image analysis [31,32]
Marker/camera position 2D static cameras Real Image analysis [60,67-69]
Marker/camera position 2D static cameras Real Al [70-74]
Marker/camera position 2D mobile cameras Artificial ~ Image analysis [38,75-81]
Marker/camera position 3D mobile cameras Artificial ~ Image analysis [82,83]
Marker/camera position 2D cameras, sensors Artificial Image analysis [36,37,84]
Image/feature database =~ 2D mobile cameras Real Image analysis [85-88]
Image/feature database 2D mobile cameras Real Al [89-91]
Image/feature database 3D mobile cameras Real Al [63,92]
Image/feature database =~ 2D cameras, sensors Real Image analysis [93-96]
Image/feature database =~ 2D cameras, sensors Real Al [97-101]
Image/feature database ~ 3D cameras, sensors Real Image analysis [102,103]

3D model 2D mobile cameras Real Image analysis [29,104-111]

3D model 2D mobile cameras Real Al [112,113]

3D model 3D mobile cameras Real Image analysis [114-119]

3D model 3D mobile cameras Real Al [120,121]

3D model 2D cameras, sensors Real Image analysis [41,45,46,122-125]

The following sub-sections analyze each category, presenting representative indoor localization
solutions and discussing their advantages and drawbacks. For each examined scientific paper,
we include in Tables 2-18 information about the characteristics of the datasets used for evaluation,
the computing time or refresh rate (related to a certain running platform), and the achieved
accuracy. If there were papers that did not report information about a certain characteristic, the field
corresponding to that characteristic is marked with “-”. Some papers evaluated their solutions only
visually, while others applied various metrics, such as average and/or absolute errors for position and
orientation, percentage of tested cases when accuracy was within certain intervals, Detection Success
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Rate (DSR), Root Mean Squared Error (RMSE), Navigation Success Rate (NSR), Relative Pose Error
(RPE), and Absolute Trajectory Error (ATE).

3.2.1. Indoor Localization Solutions with 2D Static Cameras, Markers, and Traditional Image Analysis

This class of indoor localization methods uses an infrastructure of 2D static cameras with known
locations. The images from these cameras are processed with traditional computer vision algorithms
in order to detect synthetic identifiers carried by people or robots.

Belonging to this class is the work of Heya et al. [31], where the screen of the user’s smartphone
was detected with a simple color tracking algorithm. Each user was assigned a color, which was
displayed on the smartphone, and the system tracked the screen of the device, which was placed on
the user’s shoulder. Another example of indoor localization solution using static 2D cameras and
traditional image processing was an ambient navigation system proposed by Chaccour and Badr [32],
which detected the users’ location and orientation based on markers located on their heads. The system
was evaluated within a home composed of three rooms, kitchen, living room, and bedroom, each
containing an IP camera placed on the ceiling. The tests performed with eight people, including
dynamically added obstacles, proved the reliability of the system.

The methods in this class require the map of the building and a configuration step that consists of
annotating the positions of the static cameras on the map. They can achieve good, centimeter-level,
accuracy, as can be seen in Table 2, which makes them viable solutions for scenarios requiring high
accuracy positioning in small spaces. However, maintaining this accuracy level in large indoor spaces
comes with high costs in terms of both effort and infrastructure, due the cumbersome configurations
and the high number of cameras required.

Table 2. Characteristics of indoor localization solutions with 2D static cameras (with known positions),
markers, and traditional image analysis.

Research Dataset Characteristics Computing Time Accuracy
Paper and Platform
own dataset: 1 static camera, covering avg. 0.2 s per err. between 0.0002 and 0.01 m
[31]
126 m x 1.67 m frame on a server (max. err.: 1 cm)
[32] own dataset: 3 rooms, each with 1 real-time observational

IP camera

3.2.2. Indoor Localization Solutions with 2D Static Cameras, Real Features, and Traditional
Image Analysis

In this class of indoor localization solutions, the images from the static cameras are processed with
traditional computer vision algorithms in order to track objects or people and compute their positions
within a certain room. Localization solutions within this class identify people or robots without the
need for the tracked entities to carry devices or artificial markers.

Bo et al. [67] recursively updated the position of multiple people based on the detected foreground
and the previous known locations of each person. The foreground was identified by analyzing changes
in image structure (edges) based on the computation of the normalized cross-correlation for each pixel.
They applied a greedy algorithm to maximize the likelihood of observing the foreground for all people.
The efficiency of their algorithm was evaluated on public datasets, using the Multiple Object Tracking
Accuracy (MOTA), a metric computed based on object misses, false positives, and mismatches.

Shim and Cho [69] employed a homography technique to create a 2D map with accurate object
position, using several surveillance cameras. Dias and Jorge [68] tracked people using multiple cameras
and a two level processing strategy. Firstly they applied region extraction and matching to track people,
and secondly, they fused the trajectories detected from multiple cameras in order to obtain the positions
relative to a global coordinate system, using homography transformations between image planes.



Sensors 2020, 20, 2641 10 of 36

Sun et al. [60] proposed a device-free human localization method using a panoramic camera.
They employed pre-processing, human detection with background subtraction (with mean filtering
and a Gaussian low pass filtering), and an association between the location of users in the image space
and their location on a given map of the indoor environment.

Compared to the previous class of solutions that use artificial markers, the methods in this class
have slightly higher localization errors, as can be observed in Table 3. However, this accuracy level
(tens of centimeters) is still good for many types of applications, and these methods have a wider
applicability, especially in the monitoring and surveillance domains, due to them not requiring the
tracked entities to carry devices or markers.

Table 3. Characteristics of indoor localization solutions with 2D static cameras (with known positions),
real features, and traditional image analysis.

Research Computing Time and

Paper Dataset Characteristics Platform Accuracy
approximately 140 ms ~ Multiple Object Tracking
[67] public datasets: PETS2009 [126], on Intel Core2Quad Accuracy (MOTA): 87.8%
TUD-Stadtmitte [127] 2.66 GHz with8 GB  on the PETS2009 and 64.2%
RAM on the TUD-Stadtmitte

own dataset: indoor space with
[69] 22m X 6 m, images with 320 x 240 - less than 7.1 cm
pixels from 2 cameras

own dataset: 12,690 frames acquired
[68] with 3 cameras; public dataset: -
PETS2001

95.7% hit rate and 96.5%
precision

own dataset: office with
[60] 51m X 85m X 2.7 m - mean ert. of 0.37 m

3.2.3. Indoor Localization Solutions with 2D Static Cameras, Real Features, and Artificial Intelligence

This class of indoor localization methods differs from the class described in Section 3.2.2 by the
type of employed algorithms for determining the entities” positions. An alternative to traditional image
processing algorithms is artificial intelligence, in the form of Bayesian approaches, SVM, or neural
networks. For instance, Utasi and Benedek [70] proposed a Bayesian method for people localization
in multi-camera systems. First, pixel-level features were extracted, providing information about the
head and leg positions of pedestrians. Next, features from multiple camera views were fused to
compute the location and the height of people with a 3D Marked Point Process (MPP) model, which
followed a Bayesian approach. They evaluated their method on two public datasets and used the
Ground Position Error (GPE) and Projected Position Error (PPE) metrics for accuracy computation.
Cosma et al. [73] described a location estimation solution based on 2D images from static surveillance
cameras, which used pose estimation from key body points” detection to extend the pedestrian skeleton
in case of occlusion. It achieved a location estimation accuracy of approximately 45 cm, as can be
observed in Table 4, in complex scenarios with a high level of occlusion, using a power efficient
embedded computing device. See-your-room [74] represents another localization solution that uses
cameras placed on the ceiling. It employs Mask R-CNN and OpenPose [128] to detect people and their
pose (standing, sitting) and the perspective transformation to obtain the position of the users on a
map. Hoyer et al. [71] presented a localization framework for robots based on Convolutional Neural
Networks (CNN) using static cameras. In a first stage, they used a CNN object detection to estimate
the type and the bounding box of a robot. In the second stage, they ran two more neural networks, one
for computing the orientation of the robot and another one to provide identification (based on a code
placed on the robot). An algorithm was also proposed for generating synthetic training data by placing
contour-cropped images of robots on background images. The solution described by Jain et al. [72]
was based on the assumption that, in an office, employees tend to keep their phones lying on the table
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and that the ceiling layout is unique throughout the building, containing different tiles. They used
a combination of artificial intelligence and traditional image processing to detect landmarks such as
ceiling tiles, heating or air conditioning vents, lights, sprinklers, audio speakers, or smoke detector
sensors. First, they applied the Hough transform to extract tiles, then SURF for feature extraction,
and SVM to classify the type of landmark with the ECOCframework [129].

Table 4 presents the characteristics of the localization methods that use 2D static cameras, real
features, and artificial intelligence based algorithms. The computational challenge of using neural
networks or other Al based implementations can be met with the use of GPUs, as can be observed for
several methods [71,73], which achieve interactive or real-time performance. Although a higher
complexity of the algorithms would lead to expecting a higher accuracy level compared to the
previous class of solutions, relevant accuracy comparisons cannot be made due to the evaluations
being performed on different datasets/scenarios.

Table 4. Characteristics of indoor localization solutions with 2D static cameras (with known positions),
real features, and artificial intelligence.

Research Computing
Dataset Characteristics Time and Accuracy
Paper
Platform

Ground Position Error (GPE)
. . metric with total err. rate
[7oj ~ Public datzslf;i' tzfrzi’ezggfa(sify Center), - 0.122/0.131, Projected Position
Error (PPE) metric with total err.
rate 0.107/0.140

training: 1542 images (own) + 25,608 50 Hz on a detection rate between 70% and
[71] images from MS COCO; evaluation: GPU and 10 97.9%; orientation err. between
1400 images/robot type + 110/ pattern Hz on a CPU 1.6 and 11.9 degrees
2.8 s per o . P
own dataset: 47 employees, 18 rooms . . 88.2% accuracy for identifying
[72] . e image (offline .
and 6 cubicles, 960 ceiling images . locations
computation)
(73] own dataset: over 2100 frames in 6.25 fps on approximately 45 cm mean err
42 scenarios Jetson TX2 PP y ’
[74] own dataset: office room with 1 camera 5fpsona detection success rate of 90% and
and supermarket with 6 cameras server avg. localization err. of 14.32 cm

3.2.4. Indoor Localization Solutions with 2D Mobile Cameras, Markers with Known Positions,
and Traditional Image Analysis

This class of indoor localization solutions employs a configuration step, in which artificial
landmarks, predominantly QR codes, are placed at known locations inside a building (generally
on the ceiling, walls, or floor). These solutions make use of cameras attached to people or robots and
apply traditional image processing during the localization stage. Each QR image codifies its position
within the coordinate system of the building. Based on the appearance of the QR code in the acquired
images during the localization stage, compared to the raw images of the QR codes, the orientation of
the camera can also be estimated by computing the projective transform matrices.

QR codes allow for fast detection and decoding of stored information. However, in cases where
the video camera is moving fast, the detection of these codes can be difficult. This led Lee et al. [75]
and Goronzy et al. [76] to surround their codes with simple borders such as circles or rectangles, which
can be detected faster than QR codes with Hough transform.

Ooi et al. [79] used QR codes to reposition mobile sensor networks, in the form of four wheeled
robots. When QR codes were not in range, the system estimated the position of the robot using
dead reckoning.
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Lightbody et al. [78] proposed WhyCode, a new family of circular markers that enable faster
detection and pose estimation, of up to two orders of magnitude compared to other popular fiducial
marker based solutions. They extended the WhyCon algorithm [130], which localizes a large number
of concentric black and white circles with adaptive thresholding, flood fill, and a circularity test.
The position of a marker, along with the pitch and roll, was estimated based on eigenvalues with
a method proposed by Yang et al. [131]. The yaw was computed by detecting the Necklace code
contained in the WhyCode marker. Benligiray et al. [80] presented STag, a fiducial marker system that
used geometric features to provide stable position estimation. The markers contained an inner circular
border and an outer square border used for detection and homography estimation. They compared
their detection capabilities against the ARToolkit, ArUco [132], and RUNE-Tag [133] fiducial markers.
Khan et al. [81] proposed a generic approach for indoor navigation and pathfinding using simple
markers (ARToolkit) printed on paper and placed on ceilings. The orientation of the smartphone
relative to a marker enabled the computation of the user’s direction along a certain path.

As can be observed in Table 5, the performance of these methods is quite impressive.
The centimeter or even sub-centimeter level position accuracy is achieved due to the precise matching
mechanism when dealing with synthesized images. The fast detection and decoding of QR codes and
fiducial markers enables real-time applications.

Table 5. Characteristics of indoor localization solutions with 2D mobile cameras, markers with known
positions, and traditional image analysis.

Research Dataset Characteristics Computing Time and Accuracy
Paper Platform
175] own dataset: classroom with area Nexus 4 Google (fpsnot  localization err. 6-8 cm, heading
24 m x 1.8 mand 4 QR codes mentioned) direction err. 1.2 angles
own dataset, simplified and complex 47 ms f01T QR code complex scenario: planar 'pos#non
[76] . extraction on a err. 17.5 cm, 3D pose estimation
scenarios - S
Raspberry Pi 2 self-localization err. 10.4 cm
0.11s,0.16s,0.27 s,
public dataset proposed by Mikolajczyk  0.14 s; 1-2 iterations to T
(771 and Schmid [134], 4 image pairs reach the threshold threshold similarity 0.8
similarity
own dataset: hall with 6 QR codes and 10 Hz on Linux Ubuntu  err. for circular path 0.2 m, err. for
[38] 2 possible trajectories (circular and 12.04 OS running ROS 8-shape path 0.14 m, orientation

8-shape) framework err. 0.267 radians

own dataset acquired with an RGB

camera fixed on an FLIR Pan Tilt Unit .0'07 S v processing .
. . time of a scene with 550 avg. error of angle estimates:
[78] mounted on a mobile platform with an . .
markers (up to 200 times 0.02 rad.for pitch/roll
SICK s300 laser scanner (ground truth), .
faster than AprilTags)
markers placed on a wall
[79] own dataset: space covered with 4 x 4 ) the robot can travel more than
QR codes, placed 50 cm apart 7 times on the same route
18.1 ms on an image
. . with a cluttered scene less than 0.6 degrees std. dev. for
own dataset, images of resolution . .
[80] 1280 x 720 and a single marker, rotation, less than 0.4 cm std. dev.
using a single core for translation
3.70 GHz Intel Xeon
own dataset in an academic building,
[81] four different paths, markers on the ) 0 miss detections, 2 false
ceiling, guidance test with detections out of 40 tests

10 blindfolded users

Compared to the previously presented static camera based solutions, even though deploying
such a system in a large built environment also comes with a considerable effort in the configuration
stage, it is significantly less expensive (artificial markers are practically free in comparison to static
cameras). However, the tracked entity is required to carry a mobile camera, which in certain scenarios
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can represent an inconvenience, and mapping a building with artificial images can have a negative
impact on the building’s appearance.

Another important aspect when choosing marker based localization solutions is their detection
success when facing occlusion. This problem was addressed in the solution proposed by
Garrido-Jurado et al. [132], which combined multiple markers with an occlusion mask computed
by color segmentation. Sagitov et al. [8] compared three fiducial marker systems, ARTag, AprilTag,
and CALTag, in the presence of occlusion, claiming that CALTags showed a significantly higher
resistance for both systematic and arbitrary occlusions.

3.2.5. Indoor Localization Solutions with 3D Mobile Cameras, Markers with Known Positions, and
Traditional Image Analysis

Localization based on fiducial markers can also be performed by analyzing RGB-D images with
traditional image processing methods. Li et al. [82] used RGB-D images in order to detect and recognize
QR landmarks with the Zbar [135] code reader. The distance to the QR code was computed based on
the depth image. Dutta [83] proposed a real-time application for localization using QR codes from
RGB-D images, based on the keystone effect in images from range cameras (the apparent distortion of
an image caused by projecting it onto an angled surface).

Some solutions achieve centimeter accuracy when computing the distance from the camera to
the artificial marker (see Table 6). These solutions are very practical, since 3D cameras already offer a
depth map of the environment, allowing for a faster and less complex computation of the position in a
3D coordinate system. However, as can be observed in Section 3.2.4, detection and pose computation
for markers is very fast for 2D cameras as well, due to the geometric properties of the synthetic images.
Therefore, using 3D cameras could represent an unnecessary excess of resources. Furthermore, RGB-D
cameras usually have a lower resolution than RGB cameras, both for the color and depth maps. Thus,
their use is rarely justified for marker based solutions.

Table 6. Characteristics of indoor localization solutions with 3D mobile cameras, markers with known
positions, and traditional image analysis.

Research Dataset Computing Time and Accurac
Paper Characteristics Platform y
182] own dataset ) distance from the camera to the QR code:
1 cm err.
183] own dataset real time maximum distance and angles from which the

robot can see the QR code are: 270 cm and 51o0.

3.2.6. Indoor Localization Solutions with 2D Cameras + Other Sensors, Markers with Known Positions,
and Traditional Image Analysis

Synthetic identifiers represent a very powerful tool when estimating the subject’s position and
orientation in indoor scenarios. However, the use of other sensors, such as inertial sensors, WiFi,
or beacons, could enrich the information, thus increasing the accuracy, or could help reduce the
number of necessary synthetic landmarks. Nazemzadeh et al. [37] proposed a localization solution for
unicycle-like wheeled robots, using Zbar and OpenCV to detect QR codes that were placed on the floor.
They applied an Extended H-Infinity Filter (EHF) to compute the odometry based on dead reckoning
and on a gyroscope platform. Babu and Markose [36] also invoked dead reckoning with accelerometer
and gyroscope information, increasing the accuracy of their QR based localization solution.

Gang and Pyun [84] configured the indoor space, in an offline phase, by creating a fingerprint
map with the RSSI of the beacon signals and the intensity of the geomagnetic field at each reference
point. In the localization stage, they combined the information from the beacons and the inertial
sensors with the coordinates extracted from QR codes, obtaining an accuracy of approximately 2 m,
as can be observed in Table 7.
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The use of other sensors besides cameras can add many benefits to a localization solution,
especially if there is no need to acquire supplementary equipment. This is the case for WiFi access
points, already installed in a building for other purposes. However, most of the WiFi localization
solutions are based on the WiFi fingerprinting procedure, a manual and cumbersome configuration
stage in which the signal strengths of the access points are recorded for known locations on the map of
the building.

Since smartphones have become very popular and their cameras have reached impressive
capabilities, they can be successfully used as acquisition devices in computer vision based localization
solutions. Another advantage of using a smartphone is represented by the built-in inertial sensors.
Thus, an application that combines input from the camera and the inertial sensors of a smartphone
does not require equipment that is not already owned by the users.

Table 7. Characteristics of indoor localization solutions with 2D cameras + other sensors, markers with
known positions, and traditional image analysis.

R;ie;::h Dataset Characteristics Computing Time and Platform Accuracy

less than 4 ms per frame: less than 0.2 m for position

[37] own dataset P ! and less than 0.1 orientation

convergence time 18 s
for EHF
computational load increases if visual (performance

[36] own dataset dead reckoning is invoked with ~  affected if dead reckoning is

IMU sensors not used)

own dataset: corridor with
[84] 100 m x 2.25 m and hall -
with14m x 6.5m

accuracy is within 2 m 80%
of the time

3.2.7. Indoor Localization Solutions with Real Image/Feature Databases, 2D Mobile Cameras,
and Traditional Image Analysis

Using a database of real images or features from real images of the environment in localization
solutions represents an alternative to decorating the indoor space with QR codes or other
synthesized images.

In a configuration stage, images or features, labeled with location and orientation information,
are stored in a database. For instance, Hu et al. [85] obtained a panoramic video of the scene, which
was processed with traditional computer vision algorithms for computing omni-projection curves.
Bai et al. [86] constructed a landmark database by using a laser distance meter to measure the distance
between the location of the camera and selected landmarks.

In the localization stage, the images acquired with the mobile camera were compared with the
ones from the database using feature matching algorithms such as SIFT, SURF, or ORB. The processing
time in this stage is highly affected by the number of images/features in the database, which must be
compared against the images from the mobile camera’s video flow. The first line of Table 8 is a good
example, as it shows that running the localization algorithm with a database of 1000 frames was eight
times faster than with a database of 8000 frames. To reduce the processing time, Elloumi et al. [87]
limited the similarity search of two images to only a selection of areas within the images, thus
reducing the number of features by 40%. These areas were considered to contain the most important
characteristics and were selected based on a metric that combined orientation, color, intensity, flickering
effects, and motion.

Compared to solutions that use artificial markers, the solutions in this class do not require
decorating the indoor space with visual markers, thus not affecting the aesthetics of the indoor space.
Although they have a higher localization error (few meters), this error level can still be acceptable for
certain applications.
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Table 8. Characteristics of indoor localization solutions with real image/feature databases, 2D mobile
cameras, and traditional image analysis.

Research Dataset Characteristics Computing Time and
Paper Platform

single CPU/Kepler K 20 chip:
own datasets: 862 frames, 20 ms/1.13 ms for a database
3674 frames of 1000 frames, 160 ms/8.82
ms for 8000 frames

Accuracy

[85] within 2 m in most cases

estimated moving speed

own datasets: hallwavs compared to ground truth: max
[86] 15mlo y - absolute err. 0.0643 m/s, RMSE
miong for speed 0.24-0.37 m /s, RMSE

for distance 0.16-0.23 m

187] own dataset: 1866 images, . }

40 key frames
own dataset: over 90,000 4 m avg, absolute er. for
annotated frames out of ’ ’
[88] 60 videos from six corridors - Hgi%%?{ni‘}j ?SBO;SF
(approximately 3.5 km ’

of data) traveling distance

3.2.8. Indoor Localization Solutions with Real Image/Feature Databases, 2D Mobile Cameras,
and Artificial Intelligence

Artificial intelligence includes a plethora of localization algorithms for systems that use mobile
cameras. For instance, Lu et al. [89] proposed a multi-view regression model to determine the location
and orientation of the user accurately. Xiao et al. [90] determined the location of a smartphone,
based on the detection of static objects within images acquired with the smartphone’s cameras.
Faster-RCNN was used for static object detection and identification. Another deep CNN, Convnet,
was used in the localization system proposed by Akal et al. [91]. This network uses compound
images from four non-overlapping monocular images placed on a ground robot, achieving centimeter
accuracy, but requiring a sizeable dataset of compound images for training. As can be observed in
Table 9, the machine learning based solutions achieved interactive computing times or even real-time
performance and a localization accuracy of under one meter to tens of centimeters. These solutions
seemed to have better accuracy performance compared to the solutions in the previous class, while
benefiting from the same advantages of not requiring deploying visual markers in the indoor space.

Table 9. Characteristics of indoor localization solutions with real image/feature databases, 2D mobile

cameras, and artificial intelligence.

Research Dataset Characteristics Computing Time

Paper and Platform Accuracy

own dataset: 1800 images from 30 95.56%/94.44% accuracy for

different locations, 480 indoor videos 0.00092 s fOI.A 1mage location/orientation with
1 . based localization . o
[89] of buildings (each lasting around image based localization and
2-3's), public dataset: Dubrovnik and 0.0012 s for the 98% with the video based
! ’ video based method
[136] method
own dataset: 302 training images, object detection . L
501 resolution 3024 x 4032 phase takes 0.3 s location accuracy is within 1 m
own dataset: 112,919 compound ave. median err. after a 20 ste
images (composed of 4 images taken . & ] ) . P
[91] close to real-time moving for compound images

by 4 Google Nexus phones) of

resolution 224 x 224 is12.1cm
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3.2.9. Indoor Localization Solutions with Real Image/Feature Databases, 3D Mobile Cameras,
and Artificial Intelligence

Another class of indoor localization methods uses RGB-D images acquired with mobile cameras
that are processed with the help of CNN. Guo et al. [92] used a CNN (PoseNet network) for exploiting
the vision information and the long short-term memory network for incorporating the temporal
information. Zhang et al. [63] applied visual semantic information for performing indoor localization.
A database with object information was constructed using Mask-RCNN, extracting the category and
position for each object. Then, using the SURF descriptor, keypoints of the recognized objects were
detected. Furthermore, CNN features were obtained using a pre-trained ResNet50 network. The visual
localization was performed in two steps: the most similar key frames were obtained using the selected
CNN features; the bundle adjustment method [137] was used to estimate the matrix between the
current image and candidate frames. Both methods were tested on public datasets. Localization results
were within 0.3 m and 0.51 m (as shown in Table 10).

3D cameras give access to a depth map of the environment, either through built-in algorithms,
as in the case of structured light or time-of-flight devices, or through stereo matching algorithms that
have multiple implementations, available to the public. However, these cameras come with various
limitations. For instance, the estimation of the depth map with stereo cameras in the case of untextured
surfaces (such as white walls) is very inaccurate. Furthermore, structured light and time-of-flight
depth cameras cannot estimate the distance to reflective surfaces or in case of sunlit environments.
Moreover, although 3D cameras have gained popularity, they are not as common as 2D cameras,
and therefore, their applicability is reduced. While localization solutions with 2D mobile cameras
can be easily deployed, using generally available smartphones, 3D cameras are more appropriate for
specialized applications, in areas like assistive devices or autonomous robots.

Table 10. Characteristics of indoor localization solutions with real image/feature databases, 3D mobile
cameras, and artificial intelligence.

Research Dataset . .
Paper Characteristics Computing Time and Platform Accuracy
ICL-NUIMdataset 296 ms to find the mos.t similar more than 8.0 /1? of the images are
[92] [138] and TUM frame and 277 ms to estimate the localized within 2.5 degrees and
dataset [139] final pose on Intel Xeon E5-1650 v3 more than 90% are localized
) CPU 3.5 GHz, NVidia TITAN GPU within 0.3 m
[63] ICL-NUIM dataset - 0.51 m living room, 0.41 m office

[138]

3.2.10. Indoor Localization Solutions with Real Image/Feature Databases, 2D Cameras + Other
Sensors, and Traditional Image Analysis

If WiFi signals, inertial sensors, beacons, or other sensors can increase the accuracy of marker
based localization solutions or can help reduce the number of synthesized images that should be
placed on the ceiling/floor/walls of the building (as discussed in Section 3.2.6), a hybrid approach can
be even more useful when dealing with natural features from the environment. Acquiring additional
information from various sensors can help reduce the search space in the image matching stages.

Yan et al. [94] also used WiFi information to increase the accuracy and improve the processing
time of a natural feature extraction algorithm, which combined Features from Accelerated Segment
Test (FAST) with SURF.

Marouane et al. [93] used accelerometer data for step counting and gyroscope information
for orientation and transformation of images into histograms for more efficient image matching.
Rotation invariance was achieved by adding the perspective transformation of two planes. Another
solution that used inertial sensors was the one proposed by Huang et al. [95]. They applied the
vanishing points method and indoor geometric reasoning, taking advantage of rules for 3D features,
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such as the ratio between width and height, the orientation, and the distribution on the 2D floor
map. Arvai and Dobos [96] applied the perspective-n-point algorithm to estimate the user’s position
inside the 2D floor-plan of a building, relative to a series of landmarks that were placed in the
configuration stage. They used an extended Kalman filter to estimate the position by combining visual
and inertial information.

Table 11 presents the characteristics of indoor localization solutions that combine data from 2D
cameras and other sensors, estimating the position and orientation of the subject with traditional image
processing. Several such solutions achieved centimeter location accuracy, due to this fusion between
images and information from inertial sensors, WiFi signals, RFID devices, or beacons. However, this
fusion of data from several sensors brings a computational load.

Table 11. Characteristics of indoor localization solutions with real image/feature databases, 2D cameras
+ other sensors, and traditional image analysis.

Research Dataset

Paper Characteristics Computing Time and Platform Accuracy

mean distance err. rate is
2.5/2.21 m for extended
distance estimation
method /hybrid approach

own dataset: 75
[93] location images from query time 40-230 ms
1.5-2 m distance

90 ms FAST-SURF, 100-130 ms indoor
positioning, 3-7 ms character detection,
30-45 ms tracking and registration on
Honor 3C smartphone

[94] own dataset

own dataset (offices 907% of location and

[95] 0.5 s per frame orientation errors are within
and hallways) 25 cm and 2 degrees
iPhone5s, iPhone X, LG Nexus 5X, bZSSt (r:lisul;s‘,; OILE?;EZ?nfn?:
[96] - Samsung Galaxy S7, S9, Huawei : & ave.

250 mm position err. from

Mate tablet 1 m in front of the marker

3.2.11. Indoor Localization Solutions with Real Image/Feature Databases, 2D Cameras + Other
Sensors, and Artificial Intelligence

The solutions based on the detection of objects or markers from RGB images offer a relative
position and orientation estimation, but are unreliable when markers or objects are not visible.
Furthermore, detection is influenced by camera exposure time. Thus, images combined with data from
other sensors can increase the precision of the localization.

Rituerto et al. [97] estimated the user’s location using values acquired from inertial sensors
combined with computer vision methods applied on RGB images. The particle filtering method was
used for combining all these data. A map with walls, corridors, and rooms and some important signs
(such as exit signs and fiducial markers) was also considered.

Neges et al. [98] combined an IMU step based counter with video images for performing indoor
localization. IMU data were used to estimate the position and orientation of the mobile device, and
different semantic objects were extracted from the video (e.g., exit signs, fire extinguishers, etc.) for
validation of the obtained position. The recognition of different markers was achieved using Metaio
SDK [140], a machine learning based development tool. In Sun et al. [99], RSS samples, surveillance
images, and room map information were used for performing indoor localization. People were
detected using background subtraction from images acquired with a camera placed on the ceiling of
the room. The foreground pixel that was the nearest to the location of the camera would approximate
the person position in the image. Then, this position was mapped to a localization coordinate using
a multi-layer neural network (with three layers). The iStart system [100] combines WiFi fingerprints
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and RGB images for indoor localization. The system proposed by Zhao et al. [101] was based on a
combination of CNN with a dual-factor enhanced variational Bayes adaptive Kalman filter. Channel
State Information (CSI) was extracted from an MIMO-OFDM PHY layer as a fingerprint image to
express the spatial and temporal features of the WiFi signal. CSI features were learned with a CNN
inspired by the AlexNet network obtaining the mapping relationship between the CSI and the 2D
coordinates. Results were processed with the Bayes adaptive Kalman filter in order to achieve noise
attenuation. These methods were evaluated on their own datasets with good results (position accuracy
of approximately 1 m), as shown in Table 12.

Table 12. Characteristics of indoor localization solutions with real image/feature databases, 2D cameras
+ other sensors, and artificial intelligence.

Research Dataset Characteristics Computing Time and Accuracy
Paper Platform
own dataset, 3 blind . . .
[97] volunteers 2 fps on a laptop visual inspection
own dataset, 5 people with
different weight and 93% accuracy in case of
[98] height, walking at 3 real time ? y
. normal speed
different speeds, on two
tracks (straight or zig-zag)
panoramic camera based
own dataset: office floor method: mean err. for
[99] 51m x 20m x 2.7 m and 7 - localization 0.84 m, cumulative
WiFi routers probability within localization
err. of 1 m/2 mis 70%/86%
own dataset: room-level 4s per image 0.8s fmge}"prmt less than 0.6 m avg. location err.
. location on server, 2.9 s image and less than 6 degrees avg.
[100] environment and open . . o .
. location on smartphone, 1 s direction err., 90% location
large environment L L
data transmission) deviations are less than 1 m
own dataset: 50 m? office lieaaltgmsv?; én;eife ?;(faljzla(s:
and 2 cases (with and . Iflallieceiver and Ubuntu V& position err. is 0.98/1.46 m
[101] without line-of-sight); & for line-of-sight/none

ground divided into 42
reference points

server with Intel Xeon e5-2609
CPU, GeForce GTX TITAN X
GPU and 256 GB RAM

line-of-sight

Even though artificial intelligence and especially deep convolutional networks have become
very popular, they still come with certain limitations. First, they require a large amount of training
data, usually manually annotated. Second, the training stage is both time consuming and hardware
demanding. Even though in the online stage, the already trained network requires less resources,
adding the complexity of fusing the visual data with information from other sensors can have a
negative impact on the runtime, as can be observed for several selected papers [97,100].

3.2.12. Indoor Localization Solutions with Real Image/Feature Databases, 3D Mobile Cameras + Other
Sensors, and Traditional Image Analysis

Localization precision can be increased by matching of RGB-D images using traditional feature
descriptors combined with information obtained from an IMU sensor. In Gao et al. [102], key points
were extracted from the RGB-D images using an improved SIFT descriptor. Then, the RANSAC
algorithm [141] eliminated mismatched points from the matching pairs. Their corresponding depth
coordinates were obtained from the depth images. Using this information, the rotation matrix and
translation vector were computed from two consecutive frames. Furthermore, IMU data were used
to eliminate the noise, improving the stability and positioning accuracy. Adaptive fading extended
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Kalman filter fused the position information of Kinect and IMU outputs. Furthermore, this fusion
eliminated the noise and improved the stability and accuracy of the system. A similar idea was
proposed by Kim et al. [103]. Their solution generated 3D feature points using the SURF descriptor,
which were next rotated using IMU data to have the same rigid body rotation component between
two consecutive images. The RANSAC algorithm [141] was used for computing the rigid body
transformation matrix. Table 13 shows the dataset characteristics and obtained accuracy for the
localization methods based on RGB-D images processed with traditional image analysis algorithms
and sensor fusion. Since robots can be equipped with many sensors, including 3D cameras and inertial
units, the solutions in this class have been successfully applied to the autonomous robots domain.

Table 13. Characteristics of indoor localization solutions with real image/feature databases, 3D mobile
cameras + other sensors, and traditional image analysis.

Research Dataset Characteristics Computing Time

Paper and Platform Accuracy

own dataset: small number
[102] of experiments and short real time
tested trajectories

avg. err. in the X-axis direction is 0.06 m with
IMU

translation error: 0.1043 m, rotation err.:
6.6571 degrees for static environments;
[103] own dataset real time translation err.: 0.0431 m + 0.0080 m, rotation
err.: 2.3239 degrees £ 0.4241 degrees for
dynamic environments

3.2.13. Indoor Localization Solutions with a 3D Model of the Environment, 2D Mobile Cameras, Real
Features, and Traditional Image Analysis

Simultaneous Localization and Mapping is a very popular algorithm in several domains, such as
autonomous robots or Augmented Reality. During recent years, various solutions to the problem of
localization and mapping have been proposed. For instance, Endo et al. [29] used LSD-SLAM for map
construction, localization, and detection of obstacles in real time. Teixeira et al. [104] used the pattern
recognition SURF method to locate natural markers and reinitialize Davison’s Visual SLAM [142].

Several SLAM based solution use 3D cameras in the configuration stage, to create a 3D
reconstruction of the environment, and then change the acquisition device to a monocular camera
in the localization stage. Sinha et al. [105] applied RGBD-SLAM on images acquired with Microsoft
Kinect to reconstruct 3D maps of indoor scenes. In the localization stage, they used monocular images
acquired with a smartphone camera and estimated the transformation matrix between frames using
RANSAC on the feature correspondences. They applied SIFT or SURF for feature extraction, in order
to detect landmarks, which were cataloged as sets of distinguished features regularly observed in the
mapping environment, being stationary, distinctive, repeatable, and robust against noise and lighting
conditions. Deretey et al. [106] also applied RGBD-SLAM in an offline, configuration stage, to create
3D point clouds that contained intensity information. 2D features were extracted with a matching
algorithm (SIFT, SURF or ORB), and then, a projection matrix of matched features between 2D images
and 3D points was computed. A comparison with RGBD-SLAM was offered by Zhao et al. [109],
which used Kinect to collect the 3D environment information in a configuration stage. They also built
a 2D map of the indoor scene with Gmapping, an ROS package that used Rao-Blackwellized Particle
Filters (RBPF) [143] to learn grid maps. In the online phase, they applied Monte Carlo localization
based on the previously created 2D map.

Ruotsalainen et al. [107] performed Visual SLAM for tactical situational awareness by applying a
Kalman filter to combine a visual gyroscope and a visual odometer. The visual gyroscope estimated
the position and orientation of the camera by detecting straight lines in three orthogonal directions.
The visual odometer computed the transformation of the camera from the motion of image points
matched using SIFT in adjacent images. A similar approach, which took into account the structural
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regularity of man-made building environments and detected structure lines along dominant directions,
was the solution proposed by Zhou et al. [108]. They also applied an extended Kalman filter to solve
the SLAM problem. Ramesh et al. [110] combined imaging geometry, visual odometry, object detection
with aggregate channel features, and distance-depth estimation algorithms into a Visual SLAM based
navigation system for the visually impaired.

A different approach was the one proposed by Dong et al. [111], which reused a previous
traveler’s (leader) trace experience to navigate future users or followers. They used ORB features for
the mobile Visual SLAM. To combat environmental changes, they culled non-rigid contexts and kept
only the static contents in use.

SLAM based approaches can attain centimeter or even millimeter location accuracy, but at a high
computational cost. They also require significant memory resources to store the 3D representation of
the scene. Table 14 presents the characteristics of some solutions that create a 3D reconstruction of the
environment in an offline stage, acquire images with a monocular camera in the localization stage, and

perform low-level image processing to estimate the position and orientation of the user/robot.

Table 14. Characteristics of indoor localization solutions with an existing/generated 3D model of the

environment, 2D mobile cameras, real features, and traditional image analysis.

Research Dataset Characteristics Computing Time and Accuracy
Paper Platform
own dataset: simple experiment . . . . .
[29] with obstacles along a route real time on a single CPU visual inspection
[104] own dataset: images of resolution 232f0péfHO; ?igil—:c(c))?e 90% detection success rate and
320 x 240 ’ 14.32 cm avg. localization err.
computer
3 own datasets: images of resolution avg. search time for 80-100% accuracy. dependin
640 x 480 (from Galaxy 54 camera);  Dataset 1 (176 frames) is ° Y, aep 8
[105] . . on dataset; 0.173-0.232 m
public dataset: feature set of Liang 10 ms and for Dataset 4 localization error
etal. [144] (285 frames) is 28 ms
own dataset: reconstruction with avg. localization time is avg. localization error is less
[106] RGBD-SLAM, Dataset 1 (50 frames, 0.72 s per frame on an than 10 mm: translation err. for
139 mp), dataset 2 (33 frames, Intel Core i7 with Dataset 1 is 0.9-35 mm and for
37 mp) 8 GBRAM Dataset 2 is 0.3-17 mm
images captured at 0.8 Hz 1.5 degrees mean accuracy for
[107] own dataset: office environment, using a smartphone visual gyroscope, 0.3 m/s mean
with 154 m long route camera, computing time accuracy for visual odometer,
not mentioned 1.8 m localization err.
own dataset: synthetic scenes (20 m 0.5-1 s for MATLAB . -,
. . . 0.79 accuracy err. in position on
x 20 m scene with 88 lines and 160 version, 25.8 ms avg.
[108] . . . . a 967 m path; 0.2 m accuracy
points, 794 generated images); running time for C++ err. for synthetic scenes
public dataset: Biccoca_2009 [145] version ’ 4
. only visual inspection, in
o Sy daet: Sngdong Ko - comparn il he G5
Y y SLAM method [146]
94-98% distance and depth
own dataset: indoor environment; measurements accuracy;
. ’ 4 real time on an i7 absolute err. of 5.72/9.63 m for
[110] public dataset: Karlsruhe outdoor
datasets [147] processor 2 outdoor datasets and
4.07/1.35 cm for 2 indoor
datasets
e g approximately 0.1 s for
( 4%‘87212;1 tasisr;;sfiiii l();l(;é)c(l)l;%) relocalization and 98.6% immediate NSR, 93.1%
[111] ' 8Y g navigation on Huawei NSR after 1 week, 83.4% NSR

and a shopping mall (6000 m?), 21
navigation paths, 274 checkpoints

P10, Nexus 6, Nexus 7,
Lenovo Phab2 pro

after 2 weeks
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3.2.14. Indoor Localization Solutions with a 3D Model of the Environment, 2D Mobile Cameras, Real
Features, and Artificial Intelligence

Artificial intelligence based 2D localization methods can also be applied on 3D representations
of the space. Han et al. [112] removed obstacles detected with the Mask-RCNN network to enhance
the performance of the localization. It detected persons as potential obstacles and split these
obstacles from the background. Then, ORB-SLAM?2 [148] was used for localization. Xiao et al. [113]
proposed Dynamic-SLAM for solving SLAM in dynamic environments. It was based on ORB-SLAM.
First, a CNN was used for static or dynamic object detection. Then, applying a missed detection
compensation algorithm based on the speed invariance from adjacent frames, the detection recall rate
was improved. Finally, tracking was performed using ORB features extracted from each keyframe
image for performing feature based visual SLAM by processing feature points of dynamic objects.
The pose estimation was obtained by solving the perspective-n-point problem with the bundle
adjustment method.

Table 15 presents the characteristics of some solutions belonging to the current class. The neural
networks introduce a high computational load, but can help not only with the localization, but also
with the scene understanding problem.

Table 15. Characteristics of indoor localization solutions with an existing/generated 3D model of the
environment, 2D mobile cameras, real features, and artificial intelligence.

Research . Computing Time
Paper Dataset Characteristics and Platform Accuracy
. . . . 5fps for
1) p“blﬁafiﬁiffﬁgg M Dynamic bect - pasl RCNN on - RMSE between 0.006134 and
ges, Iep NVidia Tesla M40 0.036156

information, ground truth trajectory) GPU [149]

the trajectory RMSE err. is
2.29 m, the accuracy is
7.48-62.33% higher than
ORB-SLAM2 [148]

own dataset: 370 m from route; public
[113] datasets: TUM dynamic dataset, KITTI real time
dataset (outdoor large scenarios)

3.2.15. Indoor Localization Solutions with a 3D Model of the Environment, 3D Mobile Cameras, Real
Features, and Traditional Image Analysis

Several localization solutions use 3D cameras in the configuration step, as well as in the actual
localization stage. For instance, Du et al. [114] created an interactive mapping system that partitioned
the registration of RGB-D frames into local alignment, based on visual odometry, and global alignments,
using loop closure information to produce globally consistent camera poses and maps. They combined
RANSAC inlier count with visibility conflict in the three point matching algorithm to compute
6D transformations between pairs of frames. Paton and Kosecka [115] applied feature extraction
and mapping on RGB-D data with SIFT, motion estimation and outlier rejection with RANSAC,
and estimation refinement to compute the position and orientation of a camera. Correspondences
established between SIFT features could initialize a generalized Iterative Closest Point (ICP) algorithm.

Salas-Moreno et al. [116] proposed a GPGPUparallel 3D object detection algorithm and a pose
refinement based on ICP. Their real-time incremental SLAM was designed to work even in large
cluttered environments. Prior to SLAM, they created a database of 3D objects with KinectFusion.
The scene was represented by a graph, where each node stored the pose of an object with a
correspondent entry in the database. Their object level scene description offered a huge representation
compression in comparison with the usual reconstruction of the environment into point clouds.

A robust key-frame selection from RGB-D image streams, combined with pose tracking and global
optimization based on the depth camera model, vertex-weighted pose estimation, and edge-weighted
global optimization, was described by Tang et al. [118].
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Most solutions acquire images with structured light or time-of-flight cameras, but stereo cameras
can also provide 3D information. For instance, Albrecht and Heide [117] acquired images with a
stereo camera and applied ORB-SLAM?2 for poses of the keyframes, creating a 3D reconstruction
of the environment with OpenCV’s Semi-Global Block Matching (SGBM) algorithm. Then, they
condensed the point cloud into a blueprint-like map of the reconstructed building, based on ground
and wall segmentation.

Martin et al. [119] applied Monte Carlo based probabilistic self-localization on a map of colored
3D points, organized in an octree. They demonstrated that their algorithm recovered quickly from
cases of unknown initial position or kidnappings (the robot was manually displaced from one place of
the environment to another).

Table 16 presents the computing capabilities and obtained accuracy for several SLAM based
localization solutions that apply low-level image processing on data that contain both color and depth
information. It can be observed that some of the researchers evaluated their algorithms only through
visual inspection. Even so, inspection of the obtained 3D reconstruction and especially loop closure
can demonstrate the performance in the case of SLAM based solutions. This class is reduced to a
3D to 3D matching problem, much less complex than the 3D to 2D matching problem described in
Sections 3.2.13 and 3.2.14. However, the requirement to have a 3D camera both in the configuration
stage and in the online phase greatly reduces the applicability of this kind of solution.

Table 16. Characteristics of indoor localization solutions with an existing/generated 3D model of the

environment, 3D mobile cameras, real features, and traditional image analysis.

Research . Computing Time
Paper Dataset Characteristics and Platform Accuracy
own dataset: a room, check if the 3—4 fps for map difference in dimensions between
[114] virtual objects have the same size  building on a laptop 3D reconstructed and real objects:
as the real ones with i7-720qm CPU dm/cm level accuracy
own dataset: barren office 0.1-1.5 m translation RPE,
[115] hallway; public dataset: TUM - 2-18 degrees rotational RPE,
dataset [139] 0.02-1.1 m ATE
own dataset: room of size 20 fps on a gaming visual inspection, checking
[116] 3
15 x 10 x 3m laptop loop closure
own dataset: a path of 70 m . . .
[117] through a building 25 Hz visual inspection
own datasets: taken with a 0.011-0.062 RMSE of ATE for public
[118] handheld structure sensor; public 5 fps datasets; 1.44.1 cm closing distance
datasets: Freiburg Benchmark, p and 1.08-3.32 degrees closure angle
TUM dataset [139] for own datasets
tracking mode (robot starts from a
own dataset collected with 2 known position): x-mean: 0.082 m,
[119] wheeled robots (RB-1 and Kobuki) less than 30 s y-mean 0.078 m; global mode (robot

with Asus Xtion RGB-D sensors

starts from unknown position):
x-mean 0.27 m, y-mean 0.43 m

3.2.16. Indoor Localization Solutions with a 3D Model of the Environment, 3D Mobile Cameras, Real
Features, and Artificial Intelligence

Another class of indoor localization solutions is the one that uses 3D cameras in the configuration
stage, to create a reconstruction of the scene with SLAM or other algorithms, but also in the localization
stage, applying high level computer vision techniques for computing the position and orientation of
the user.

Guclu et al. [121] proposed an SLAM method applied on RGB-D images using a graph based
approach. The keyframe autocorrelogram database estimated motion between frames. Keyframes were
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indexed based on their image autocorrelograms [150], using a priority search k-means tree. Adaptive
thresholding was used to increase the robustness of loop closure detection.

Kuang et al. [120] improved ORB-SLAM. A combination between quasi-physical sampling
algorithm (based on BING features [151], obtained by SVM training) with depth information was used
to pre-process an image for decreasing the computing time of the ORB algorithm. Then, improved
KD-trees were used to increase the matching speed of the ORB algorithm. Furthermore, using RGB-D
images, a 3D dense point cloud map system was constructed, instead of a sparse map from ORB-SLAM.

As can be observed in Table 17, the use of 3D cameras can improve the accuracy of known
localization methods such as ORB-SLAM or ORB-SLAM2. 6till, the dimensionality of the data
introduces a high computational cost. Furthermore, the lack of 3D training data could represent
a limitation of this class.

Table 17. Characteristics of indoor localization solutions with an existing/generated 3D model of the
environment, 3D mobile cameras, real features, and artificial intelligence.

Research Dataset Computing Time and Accurac
Paper Characteristics Platform y
. . 0.015 and 0.103 RMSE for the error
[120] public dataset: TUM  37.753 ms per frame on Intel i5 size of the posture, better than

dataset [139] 2.0 GHz CPU with 3 GB RAM ORB-SLAM [152]

119.0 ms (average) on a desktop
PC running Ubuntu 12.04 with
an Intel Core i7-2600 CPU at
3.40 GHz and 8 GBRAM

public dataset:
[121] ICL-NUIM [138] and
TUM dataset [139]

Absolute Trajectory Error ATE:
1 cm-5 cm, mostly competing with
ORB-SLAM2 [152]

3.2.17. Indoor Localization Solutions with a 3D Model of the Environment, 2D Mobile Cameras +
Other Sensors, Real Features, and Traditional Image Analysis

A hybrid approach that fuses information from 2D cameras and other sensors can be applied on
3D models of the environment as well.

For instance, Wang et al. [46] used RFID readers for an approximate estimation of the location
and calculation of 3D image coordinates with low-level image matching.

Kao and Huy [41] combined information from WiFi access points with the K-nearest neighbor
method, inertial sensors (accelerometer and gyroscope), and a CMOS camera. They chose ORB
features in their SLAM implementation to navigate Bluetooth connected wheeled robots in indoor
environments.

Yun et al. [122] saved the WiFi access point information in a configuration stage and assembled
the images acquired with an Xtion PRO LIVE depth camera, building a 3D indoor map of the indoor
location. In the localization stage, they reduced the per-frame computation by splitting a video frame
region into multiple sub-blocks and processing only a sub-block in a rotating sequence at each frame.
They applied SIFT based keypoint detection and optical flow for tracking.

Huang et al. [95] applied an extended Kalman filter to fuse data from LSD-SLAM computed on
RGB images, ZigBee localization, and IMU sensors (accelerometer, gyroscope, and magnetometer).
Ullah et al. [125] combined data from a monocular visual SLAM and an IMU with an unscented
Kalman filter. Gerstweiler [45] also fused IMU information with SLAM, using the HyMoTrack
framework [153], a hybrid tracking solution that uses multiple clusters of SLAM maps and image
markers, anchored in the 3D model.

Chan et al. [124] computed a laser based SLAM and a RBPF based visual SLAM. Perspective
trajectories obtained from the laser SLAM were mapped into images, and the essential matrix between
two sets of trajectories was combined with the monocular camera based SLAM.

Even if the fusion between sensor data and visual information introduces a high computational
load, several solutions achieve real-time frame rates on commodity computers, as can be observed in
Table 18.
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Table 18. Characteristics of indoor localization solutions with an existing/generated 3D model of the

environment, 2D mobile cameras + other sensors, real features, and traditional image analysis.

Research Dataset Characteristics Computing Time and Accuracy

Paper Platform

[46] own dataset - visual evaluation

own dataset: robot moves 200 ms for basic image
[41] along a specific pathina  processing on LG P970, whole position err. converges from
lab room, QVGA pipeline processed offline 35-50 cm to less than 3 m
resolution (manual extraction of features)
own dataset: 120 m indoor ciﬁﬁilizi fplsatot§3.l(‘>2f}6)sc?ﬁz
[122] hallway with 5200 video ty ‘aptop (2. 0.17 m position err.
. quad-core CPU and 4 GB
frames of size 640 x 480
RAM)
[95] own dataset - visual inspection
map building and fusion relative error of ORB-SLAM2
[124] own dataset process: real time on Intel [148] calibrated with proposed
Core i7-8550U CPU mapping matrix is less than 5%
own dataset and public real time on an embedded 0.01-0.15 m position err. for own
[125] dataset: EuRoCdataset board (1.92 GHz processor dataset; 0.234 m max. err. for
[154] and 2 GB DDR3L RAM) EuRoC dataset
[45] own dataset: Vienna 23 s for the proposed method visual inspection

airport, path of 200 m to complete a guiding task

3.3. Discussion

This section draws conclusions from our analysis of the proposed classes of vision based
localization solutions, enabling readers to make better informed choices in terms of indoor positioning
technologies to accommodate their specific requirements or particularities. While positioning
technologies are numerous and do not limit themselves to image processing, vision based solutions
have become popular due to the increasing affordability of cameras and their integration in pervasive
devices such as smartphones.

Localization methods that use static cameras can benefit from the camera surveillance
infrastructure already available in most modern large office and public buildings. Furthermore,
since most robotic platforms have RGB or RGB-D cameras, it makes it easier to port visual positioning
solutions on the different platforms, enabling their use in assisted living scenarios. Other applications
in the autonomous robots domain can take advantage of 2D /3D cameras already integrated in the
robots. Smart glasses with cameras can enable a more seamless user experience for indoor localization
applications; however, until they reach a wide market adoption, most applications that localize people
(especially in the domains of assistive devices and augmented reality) use smartphones.

Even though 2D cameras have larger applicability due to their ubiquity and the dimensionality
of the acquired data, 3D cameras have several advantages. 3D cameras offer a depth map of the
environment, either obtained from a disparity map computed with stereo matching algorithms or
estimated with time-of-flight and structured light technologies. Stereo cameras require optimal lighting
conditions and are affected by lens distortion, similar to 2D cameras. Furthermore, depth cannot be
estimated in untextured environments through stereo matching. On the other hand, structured light
and time-of-flight cameras work even in unlit environments and can estimate the depth regardless of
texture properties. Although these cameras are affected by bright light and reflective surfaces, typical
indoor environments contain untextured surfaces (especially uniformly painted walls) and are rarely
characterized by bright sunlight. Therefore, we considered that among 3D cameras, structured light,
and time-of-flight devices are the most suited for indoor applications.
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While cameras have many advantages, they are affected by lighting conditions, occlusion, and
position changes of objects from the environment. In order to increase localization accuracy or to
decrease the computational load of the computer-vision algorithms, visual data can be combined with
data from other sensors. Other popular indoor localization solutions are those based on sensors such
as WiFi, beacons, and RFID. WiFi based solutions use the received signal strength and the media access
control address of access points to determine the position. WiFi based methods also enjoy the advantage
of using existing infrastructure in buildings, as WiFi access points are even more widely available in
buildings than camera surveillance systems. While beacon based positioning technologies can reach
higher accuracy than WiFi based solutions, they require deploying additional hardware. The RFID
technology poses even more limitations in terms of range. Although the positioning algorithms that
use sensors such as WiFi, beacons, or RFID have a lower accuracy compared to vision based methods,
they also have a lower complexity. Thus, possible localization solutions can benefit from a two-step
positioning algorithm: firstly obtaining a quick, approximate location using beacons or WiFi, which
tightens the search space of computer vision algorithms; secondly achieving an accurate and also quick
location and orientation estimation of the tracked entity.

Vision based indoor localization solutions can detect fiducial markers or features from real
images of the environment. The use of artificial markers enables extremely fast detection and position
estimation. Due to the geometric properties of the fiducial markers and their accurate localization
with 2D cameras, the use of 3D cameras is unjustified. The biggest disadvantage of using markers
is the requirement of covering the space with synthetic images, which can have a negative visual
impact on the environment. Therefore, the applicability of such solutions is reduced. Features
or semantic objects detected from real images of the environment do not visually influence the
environment. However, setting up a database of features/images, annotated with position and
orientation information, or creating a 3D model of the environment represent cumbersome processes.
Furthermore, changes in the environment, such as rearranging furniture or paintings and posters,
would require another configuration stage for rebuilding the feature/image database or the 3D model
of the scene.

Objects or features from images can be detected using traditional image processing or artificial
intelligence methods. Traditional image processing methods perform detection by comparing different
features that are extracted from the images, and the recognition success depends on the selected
features. On the other hand, the artificial intelligence methods used for object recognition are mainly
based on convolutional neural networks, thus not needing to select the features for recognizing objects,
as convolutional neural networks learn specific objects directly from images. One disadvantage of
these networks is the high number of images required for training the network. Training data can
be obtained either by manual acquisition and annotation or from publicly available datasets. Public
datasets are very helpful; however, they are only a few available (especially containing 3D data),
and they are limited to several semantic classes.

4. Benchmarks

The evaluation methods used for the indoor localization solutions presented in this paper differ.
Some are based on visual inspection, some on testing the solutions in certain scenarios or testbeds, and
some on using public datasets. This section presents benchmarks created for evaluating localization
methods. They can differ based on the input information, which consists of monocular or RGB-D
images and WiFi, along with other sensor readings. Some testbeds are designed with the purpose of
evaluating only the location and orientation accuracy, while others can also evaluate the correctness of
3D reconstructions in SLAM based methods. Several research papers released to the public a series of
datasets and evaluation tools [139,155,156], while others proposed reference systems that can be used
for testing the accuracy of localization solutions [157], the latter enabling fair comparisons of existing
localization systems in similar conditions [158-160].
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Sturm et al. [139] proposed a benchmark for the evaluation of RGB-D SLAM based localization
solutions. The TUM dataset and this benchmark represent a popular testing tool. This is noticeable in
the tables in Section 3. The database consists of images acquired with a Kinect sensor, containing both
color and depth information, at a resolution of 640 x 480. They provide ground truth trajectories that
are computed with a motion-capture system composed of eight cameras that acquire images at 100 Hz.
These sequences cover a variety of cases, from short to long trajectories, with or without loop closure.
Their benchmark offers automatic evaluation tools to assess the drift of visual odometry solutions,
as well as the global pose error of SLAM based methods. Another popular benchmark, which contains
the ICL-NUIM dataset, was provided by Handa et al. [138]. The database consists of RGB-D frames
within synthetically generated scenes with the point of view of handheld cameras. It contains ground
truth camera poses and surface models, which enable not only the evaluation of localization solutions,
but also of the surface reconstruction accuracy of SLAM based methods. Sun et al. [155] proposed
a dataset for evaluating computer vision based localization solutions that compute the pose of a
2D camera with respect to a 3D representation of the scene. Their database contained training data
acquired with cameras and a LIDAR scanner, which measured the distance to a target by illuminating it
with a laser light and computing the difference in return times for the reflected light. The LiDAR point
clouds were used as a reference in a semi-automatic localization workflow that estimated the camera
pose with six degrees of freedom. They compared this dataset with several image based localization
datasets produced with the SfM algorithm [136,161,162], claiming the creation of a point cloud with
much higher density and precision. EgoCart [156] is another benchmark dataset, comprising of almost
20,000 RGB-D images, annotated with information of the camera position and orientation. The authors
made the dataset public, along with the evaluation (in terms of accuracy, computing time, and memory
requirements) of various machine learning based localization solutions [163-166].

Schmitt et al. [157] presented an indoor localization system that relied on visual information
provided by two Microsoft Kinect devices and on wheel-odometry data acquired with a Roomba robot.
Within the ROS framework, they enhanced a pre-drawn floor plan with SLAM, achieving an average
error of 6.7 cm for the position estimation. The authors claimed that the accuracy was sufficient to use
the system as a reference, when testing the performance of other systems. Their robot could carry the
components of the system under test and collect data, without interfering with the localization process.

Ibragimov and Afanasyev [158] analyzed the feasibility of using different visual SLAM based
localization methods for robot systems in homogeneous indoor spaces. Their evaluation testbed was
built with a monocular camera, a LIDAR sensor, a ZEDstereo camera, and a Kinect device. LIDAR based
HECTORSLAM and a tape measure are considered ground truth for comparing trajectories obtained
with ORB-SLAM [152], Dense Piecewise Parallel Tracking and Mapping (DPPTAM) [167], Stereolabs’
ZedFu [168] 3D mapping tool, and Real-Time Appearance Based Mapping (RTAB-MAP) [169].
Filipenko and Afanasyev [159] compared various SLAM based methods integrated in the ROS
framework: GMapping [170], Parallel Tracking and Mapping (PTAM) [171], HectorSLAM [172],
Semi-direct Visual Odometry (SVO) [173], LSD-SLAM [174], RTAB-MAP [169], ORB-SLAM [152],
DPPTAM [167], Direct Sparse Odometry (DSO) [175], Cartographer [176], and Stereo Parallel Tracking
and Mapping (S5-PTAM) [177]. They built a robot equipped with a 2D LiDAR, a monocular camera,
and a ZED stereo camera. ATE was the chosen means of evaluation, represented through statistical
metrics such as RMSE or the standard deviation. Ragot et al. [160] performed an evaluation of two
Visual SLAM algorithms, ORB-SLAM?2 [148] and RTAB-MAP [169,178,179]. During the comparison of
the two solutions, they used a VICON motion capture system as the ground truth. They performed
various experiments, with straight-line, straight-line and back, circular paths, or trajectories containing
loop closure.

5. Conclusions

Indoor localization has an increasingly vast applicability in domains such as AR, navigation
systems, assistive devices (especially for the visually impaired), autonomous robots, surveillance, and
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monitoring. Since surveillance cameras and smartphone cameras represent a commodity currently,
researchers have developed a plethora of indoor localization solutions based on visual input.

This paper offers an overview of the computer vision based indoor localization domain, discussing
applications areas, commercial solutions, and benchmarks and presenting some of the most relevant
contributions in the area. It also provides a survey of selected positioning solutions, proposing a new
classification that organizes the solutions according to the use of known environment data, the sensing
devices, the type of detected elements (artificial markers or real features), and the employed localization
methods. The research papers selected in the 17 classes of the proposed taxonomy were chosen from
prestigious research databases based on their relevance to the domain and publication date, and their
purpose was to be illustrative for the reader in terms of the indoor positioning technologies. Since
many relevant papers were too recent to have a considerable number of citations, we decided to
not use this criterion for selection. The focus was on providing short descriptions of the solutions,
highlighting the advantages and disadvantages and presenting the achieved performances (in terms
of running time and location estimation accuracy), along with the properties of the datasets used
for testing.

Tables 2—-18 show that many papers did not report computing times and the specifics of their
testbeds, and few papers discussed the financial implications of implementing such solutions in real
life. The evaluation methodologies for the presented solutions differed. While some used visual
observations to test their solutions, others chose to use private datasets. Although public datasets and
benchmarks exist, they come with limitations in terms of required environment data and input from
cameras, limiting their use to only certain localization solutions.

We considered this paper a good guide to the field of computer vision based indoor localization.
Our proposed classification and the selection of localization solutions for each category aimed to allow
the reader to easily grasp the advantages and applicability of each class of solutions.
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