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Abstract: In the advanced driver assistance system (ADAS), millimeter-wave radar is an important
sensor to estimate the motion state of the target-vehicle. In this paper, the estimation of target-vehicle
motion state includes two parts: the tracking of the target-vehicle and the identification of the
target-vehicle motion state. In the unknown time-varying noise, non-linear target-vehicle tracking
faces the problem of low precision. Based on the square-root cubature Kalman filter (SRCKF), the
Sage–Husa noise statistic estimator and the fading memory exponential weighting method are
combined to derive a time-varying noise statistic estimator for non-linear systems. A method of
classifying the motion state of the target vehicle based on the time window is proposed by analyzing
the transfer mechanism of the motion state of the target vehicle. The results of the vehicle test show
that: (1) Compared with the Sage–Husa extended Kalman filtering (SH-EKF) and SRCKF algorithms,
the maximum increase in filtering accuracy of longitudinal distance using the improved square-root
cubature Kalman filter (ISRCKF) algorithm is 45.53% and 59.15%, respectively, and the maximum
increase in filtering the accuracy of longitudinal speed using the ISRCKF algorithm is 23.53% and
29.09%, respectively. (2) The classification and recognition results of the target-vehicle motion state
are consistent with the target-vehicle motion state.

Keywords: millimeter-wave radar; square-root cubature Kalman filter; Sage-Husa algorithm; target
tracking; stationary and moving object classification

1. Introduction

Millimeter-wave radar is an important sensor that constitutes an advanced driver assistance system
(ADAS). The estimation of the moving state of the target vehicle based on the on-board millimeter-wave
radar is essential for predicting the future trajectory of the target vehicle and determining the degree of
danger of the target vehicle to the ego vehicle. In this paper, the motion state estimation of the target
vehicle includes target-vehicle tracking and target-vehicle motion state classification.

The motion state information of the target vehicle (relative radial distance, azimuth, and relative
radial rate) measured by millimeter-wave radar is obtained from the polar coordinate system. However,
in the process of target tracking, the target motion model is usually established in the Cartesian
coordinate system. As can be seen from the radar target-tracking process, the state equation is
linear and the measurement equation is non-linear. Since the measurement equation is non-linear,
the target-tracking system based on the millimeter-wave radar is a non-linear system.

Extended Kalman filter (EKF) [1,2], unscented Kalman filter (UKF) [3,4], particle filter (PF) [5] and
cubature Kalman filter (CKF) [6] are common non-linear filtering state estimation algorithms.

The basic idea of EKF is: the non-linear system is linearized by Taylor series expansion, and then
Kalman filtering is performed. Inaccurate modeling of system noise and changes in model parameters
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due to environmental factors will cause the decrease of the EKF estimation accuracy, and even the
filter divergence will be caused. To ensure the accuracy and stability of EKF under unknown and
time-varying conditions, many scholars carry out research on the adaptive extended Kalman filter
algorithm, adaptive extended Kalman filter (AEKF) algorithm, such as Sage–Husa’s maximum a
posteriori estimation [7], fictitious noise compensating [8], dynamic bias decoupling estimation [9], etc.
To solve the filtering divergence problem caused by system modeling errors, some scholars proposed
an EKF with a suboptimal fading factor [10]. Meanwhile, to improve the estimation accuracy of the
EKF algorithm, some scholars proposed an AEKF algorithm based on a neural network [11]. The
adaptive learning characteristics of neural networks are used to identify the non-linear system model
online, to overcome the influence of unmodeled dynamic characteristics of the filter. However, due to
the following shortcomings of the EKF algorithm, its development in engineering practice is limited:

(1) The higher-order terms are truncated (with truncation error) and only the first-order terms
retained during the Taylor series are expanded, and the accuracy of EKF is the first-order Taylor series;

(2) In many engineering applications, the Jacobian matrix of the measurement equation is difficult
to solve.

The basic idea of UKF is: “It is easier to approximate the probability density distribution of
non-linear functions than the approximation of non-linear functions” [12]. UKF uses the unscented
transformation to approximate the posterior distribution of the state of the non-linear system. The
most important part of the UKF algorithm is the sampling strategy. Different sampling strategies differ
in the number, location, and corresponding weights of the extracted Sigma points [13]. Compared
with EKF, UKF has the following two advantages:

(1) The accuracy of UKF can reach at least two orders under the condition of EKF, and UKF
algorithm takes the same order of magnitude;

(2) In UKF, it is not necessary to calculate the Jacobian matrix of the measurement equation.
The above two advantages of UKF expand the application range of the EKF algorithm. However,

certain sigma point weights ω < 0 will cause the covariance matrix to non-positive definite condition
when the dimension is too high (N ≥ 4). This situation will lead to the following two effects: firstly, the
filter value is not stable or even divergent; secondly, the dimension disaster problem will occur [14].
Therefore, some scholars through theoretical analysis and experiments have proved that UKF has high
accuracy for low-dimensional (N ≤ 2) non-linear systems [15].

The basic idea of PF is to approximate the posterior probability density function of the system
state by random particles. PF uses the particle mean value instead of the integral operation to obtain
the minimum variance of state. With the increase in the number of particles, the probability density
function of particles gradually approximates the probability density function of the real state. However,
PF has the following two shortcomings, which restrict the development of PF [16]:

(1) the particle degradation problem;
(2) It is difficult to realize online estimation due to the large amount of computation.
To better solve the problem of poor filtering performance and even divergence in high-dimensional

non-linear filtering estimation, Arasaratnam and Haykin proposed a third-degree spherical-radial rule
CKF [17]. After CKF was proposed, it was widely used in target tracking [18] and navigation [19].
Compared with UKF, CKF has the following advantages:

(1) The UKF algorithm selects 2n+1 sampling points with different weights, while the CKF
algorithm selects 2n sampling points with the same weight. The CKF algorithm has fewer sampling
points than UKF, so the CKF algorithm takes less time than UKF.

(2) Since the weight coefficients of the sampling points of the CKF algorithm are all positive, the
robustness of the CKF algorithm is high when the dimension of the observed variable is too high
(N ≥ 4).

In conclusion, compared with EKF and UKF, CKF has higher estimation accuracy. During the
operation of the standard CKF algorithm, the following two conditions should be met: (1) symmetry,
(2) positive qualitative. However, in practical engineering, these two conditions are sometimes difficult
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to meet. Therefore, scholars proposed the SRCKF algorithm based on the CKF algorithm [20]. SRCKF
has the following two advantages. On the one hand, SRCKF avoids computing the square root of
a matrix by directly calculating the square root of the predicted value of error covariance and the
estimated value of error covariance. On the other hand, in the SRCKF algorithm, the symmetry and
positive qualitative value of the error covariance matrix can always be guaranteed.

During the derivation of the CKF algorithm, it is generally assumed that the statistical
characteristics of system noise and measurement noise are known [21]. However, in practice, the
statistical characteristics of noise are often unknown and time-varying. The Sage–Husa estimator is
often used to estimate the statistical characteristics of noise because of its simplicity and good real-time
performance [22]. However, the conventional Sage–Husa estimator is suitable for estimating the
statistical properties of constant coefficient noise in linear systems [23]. Based on the conventional
Sage–Husa algorithm, an adaptive noise statistical estimator for non-linear systems is derived by using
the cubature rule.

For time-varying noise statistics, the real-time updated data play a leading role, while the old
data play a small role compared with the new data. Therefore, we should gradually reduce the weight
of old data and increase the weight of new data. The exponential weighted attenuation method for
fading memory is introduced to estimate time-varying noise. The exponential weighted attenuation
method has the characteristic of remembering the past historical data, but the weighted coefficient of
the old data is small [24].

The current international standard “ISO/DIS15622 Intelligent transportation systems-adaptive
cruise control systems-performance requirements and test procedures” clearly states that adaptive
cruise control (ACC) may ignore stationary targets or do not respond to stationary targets. At the
same time, for full-speed ACC and autonomous emergency braking (AEB) systems, it is necessary to
accurately identify the target-vehicle as a stationary target-vehicle or a moving target-vehicle.

The recognition of the target motion state has the following two functions for the ADAS. On the
one hand, it can predict the future trajectory of the target-vehicle; On the other hand, it can determine
the degree of danger of the target-vehicle to the ego-vehicle. Therefore, it is essential to study the
classification of the target-vehicle motion state. In the literature [25], targets detected by radar are
divided into high-altitude targets, stationary targets, moving targets, and road targets, but the basis for
target classification is not discussed in detail. Therefore, a method of classifying the motion state of the
target-vehicle based on a time window is proposed by analyzing the transfer mechanism of the motion
state of the target-vehicle.

The motivation of writing the paper is as follows: (1) For the on-board millimeter-wave radar
in the unknown and time-varying noise environment, the accuracy of a high-dimensional non-linear
target tracking process is low. The ISRCKF algorithm based on SRCKF is proposed to accurately
estimate the unknown and time-varying noise statistics. (2) To accurately predict the future trajectory
of the target vehicle and determine the danger degree of the target vehicle to the ego vehicle. We
present a classification method for moving objects and stationary objects based on the mechanism of
moving state transfer in a time window. The vehicle test results show: (1) The filter accuracy of the
ISRCKF algorithm is higher than that of SRCKF and SH-EKF. (2) The classification and recognition
results of the target-vehicle’s motion state are consistent with the target-vehicle’s motion state.

The rest of the paper is organized as follows. Section 2, based on the Cartesian coordinate system
of millimeter-wave radar, the target-vehicle motion state model is established; In Section 3, based
on the SRCKF, an adaptive square-root cubature Kalman filter (ASRCKF) is derived. In Section 4,
based on the analysis of the motion state and transfer principle of the target, a classification method of
moving target and stationary target based on the motion state transfer mechanism in a time window is
proposed. In Section 5, the algorithm is validated and its results are analyzed by establishing a vehicle
test platform. Section 6 presents the conclusions.
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2. Motion Model of Target-Vehicle

2.1. Coordinate System

It can be learned from the dynamics that the description of the same target motion state varies in
different reference coordinate systems. Therefore, it is meaningful to clarify the coordinate system that
describes the target motion.

The target measurement information (relative radial distance, azimuth, and relative radial speed)
measured by the millimeter-wave radar is obtained from the millimeter-wave radar polar coordinate
system. This paper studies the target tracking algorithm based on the millimeter-wave radar Cartesian
coordinate system, to verify the performance and accuracy of the proposed algorithm in the target
tracking process.

The three coordinate systems herein are respectively, the geodetic coordinate system xoyozo, on
the horizontal ground, the vehicle motion coordinate system xvyvzv with its origin coinciding with the
center of gravity vehicle, the millimeter-wave radar coordinate system xroyr, as shown in the Figure 1.
The millimeter-wave radar is fixedly mounted on the front of the vehicle and the radar beam is aligned
with the longitudinal axis of the vehicle. Therefore, the millimeter-wave radar coordinate system xroyr

is parallel to the vehicle motion coordinate system xvyvzv. The radar xr axis direction is identical with
the xv direction in the vehicle motion coordinate system. The radar yr axis direction is identical with
the yv direction in the vehicle motion coordinate system.
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2.2. Equation of Motion

The forward millimeter-wave radar is installed in the middle of the front bumper and fixed to
the vehicle body. As the vehicle travels, the millimeter-wave radar detects the target in front of the
vehicle, mainly referring to the target-vehicles. These target-vehicles have no vertical motion or small
moving speed in the vertical direction, so only the movement of the target-vehicles in the XY plane
needs to be considered. Since the target-vehicles motion state has the characteristics of small mobility
and low speed, a constant velocity model is established based on the millimeter-wave radar Cartesian
coordinate system to describe the motion state of the front target-vehicles.

The model of the constant velocity of the target-vehicle can be obtained from the millimeter-wave
radar Cartesian coordinate system:

x(k + 1) = x(k) +
.
x(k) ∗ T + 1

2 wx(k) ∗ T2
.
x(k + 1) =

.
x(k) + wx(k) ∗ T

y(k + 1) = y(k) +
.
y(k) ∗ T + 1

2 wy(k) ∗ T2
.
y(k + 1) =

.
y(k) + wy(k) ∗ T

(1)

where (x(k + 1), y(k + 1)) represents the longitudinal distance and the lateral distance from the
forward target-vehicles in the millimeter-wave radar Cartesian coordinate system at k + 1, respectively.( .
x(k + 1),

.
y(k + 1)

)
is the longitudinal velocity and the lateral velocity of the target-vehicles relative to

the millimeter-wave radar Cartesian coordinate system movement at k + 1. T is the sampling time.
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The model of the target motion state is as follows:

X(k + 1) = A ∗X(k) + B ∗w(k) (2)

The target motion state vector X = [x,
.
x, y,

.
y]T here is designed to describe the motion state of

the target-vehicle in the millimeter-wave radar Cartesian coordinate system; where, A is the state
transition matrix, B noise-driven matrix, and w(k) the measurement noise at k;

A =


1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

 B =


T2/2

T
0
0

0
0

T2/2
T


The target motion state information of millimeter-wave radar in a polar coordinate system is

transformed to the front target vehicle in the millimeter-wave radar Cartesian coordinate system by
coordinate transformation, the conversion formula is:{

x = R ∗ cosθ
y = R ∗ sinθ

(3)

where (x, y) is the position of the target-vehicle in the millimeter-wave radar Cartesian coordinate
system θ is the azimuth.

The measurement equation of the target-vehicle in a millimeter-wave radar Cartesian
coordinate system:

Z(k + 1) =

 R(k + 1) =
√

x2(k + 1) + y2(k + 1) + ν1(k + 1)

V(k + 1) =
√

.
x2
(k + 1) +

.
y2
(k + 1) + ν2(k + 1)

(4)

where vi(k), i = 1, 2 are the observation noises at k.
Equations (2) and (4) are the state equation and the measurement equation, respectively. As can

be seen from the system model, the state equation is linear and the measurement equation is non-linear.
Since the measurement equation is non-linear, the target tracking based on the millimeter-wave radar
Cartesian coordinate system in a non-linear system.

2.3. Parameters of the Millimeter-Wave Radar

There are two main frequency bands for automobile millimeter-wave radar: 77 GHz and 24 GHz.
The 24 GHz millimeter-wave radar is usually installed on the side of the vehicle, the detection range
is small and mainly used for blind spot detection (BSD), lane change assistance (LCA). The 77 GHz
millimeter-wave radar has a large detection range and is usually installed in front of the vehicle. It
is mainly used for forward collision warning (FCW) and AEB. In order to verify the accuracy of the
algorithm’s estimation of the motion state of the target vehicle ahead, a 77 GHz millimeter-wave radar
is used.

Table 1 shows the specific technical specifications of the on-board millimeter-wave radar provided
by the supplier. Its main technical parameters such as detection range, measurement accuracy, and
resolution are usually provided in its specification. A 77 GHz millimeter-wave radar is used herein
provided by a supplier. The radar data rate is 40 ms. There are long-distance radar and medium-distance
radar working states, which are subject to the driving speed of the ego-vehicle. When the travel speed
of ego-vehicle is greater than 80 km/h and the millimeter-wave radar is in the long-distance radar
working mode, it achieves the farthest detection distance of 120 m, and the angle detection range of
around 30◦. When the travel speed of the ego-vehicle is less than 80 km/h and the millimeter-wave
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radar is in the medium-distance radar working mode, it reaches the farthest detection distance of 100
m, and the angle detection range of around 50◦.

Table 1. Main technical parameters of the millimeter-wave radar.

Parameter Long-Distance Mode Medium-Distance Mode

Ranging 1–120/(m) 1–100/(m)
Ranging resolution 0.6(m) 0.2(m)

Angle ±30/(o) ±50/(o)
Speed resolution 0.75/(km/h) 0.6/(km/h)

Speed –50–55/(m/s) –50–55/(m/s)

Remark: 1O The horizontal angle range is negative when the target is on the left side of the radar and positive when
on the right side. 2O The relative speed is positive when the target is far from the radar, and negative when close to
the radar.

3. Adaptive Square-Root Cubature Kalman Filter

This section is based on SRCKF. The Sage–Husa noise statistic estimator is extended from the
linear constant noise statistic estimator to the non-linear time-varying noise statistic estimator.

3.1. Cubature Rule

CKF is derived from Bayesian filter theory in the Gaussian field. Under the framework of Bayesian
filter theory in Gaussian domain, the non-linear filter problem can be summarized as a weighted
integral in the form of “non-linear × Gaussian density”. that is:

I(f) =
∫

Ω
f(x)ω(x)dx (5)

where f(x) is a non- linear function, Ω ⊆ Rn is the region of integration,ω(x) = exp
(
−xTx

)
is a Gaussian

density and satisfies the non-negativity condition in the entire region.
CKF uses the third-degree spherical-radial rule to calculate the non-linear filter problem [17].

Based on the third-degree spherical-radial rule, a set of 2n equal weight sampling points is used to
approximate the integral value. that is:

I( f ) ≈
2n∑

i=1

ωif(ξi) (6)

where ξi =
√

n[1]i is the cubature point, ωi =
1

2n is the corresponding weight, i = 1, . . . , 2n, [1]i is the
no.i element of the cubature points set:

[1]i =




1
0
...
0

,


0
1
...
0

 . . .


0
0
...
1

,

−1
0
...
0

,


0
−1
...
0

 . . .


0
0
...
−1




(7)

3.2. Square-Root Cubarure Kalman Filter

In CKF, the error covariance matrix needs to satisfy two conditions: (1) symmetry (2) positive
qualitative. It is important to ensure these two points in the algorithm iteration process to improve the
robustness of the filter. The robustness of algorithm is defined as free of failure that the parameters in
the algorithm violate the constraints, which makes the algorithm unable to continue running.
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In order to ensure the symmetry and positive qualitative of the error covariance matrix,
Arasaratnam proposed the SRCKF algorithm based on the CKF algorithm [17]. The SRCKF algorithm
process is as follows:

(1) Initialization
x̂k is the state variable, Pk is the error covariance matrix, Qk is the process noise, Rk is the

measurement noise.
(2) Evaluate the cubature points:

X j,k = Skξ j + x̂k; j = 1, 2, . . . , 2n (8)

where ξ j is the cubature points set, as shown below:

ξ j =

{ √
n[1]i i = 1, 2, . . . , n
−
√

n[1]i i = n + 1, n + 2, . . . , 2n

where [1] is the unit matrix.
(3) Spread cubature points and calculate the state prediction:

X∗j,k+1 = f
(
X j,k, uk

)
(9)

xk+1 =
1

2n
∗

2n∑
j=1

X∗j,k+1 (10)

(4) Estimate the square-root factor of the predicted error covariance

Sk+1 = Tria
([
χ∗k+1SQ,k+1

])
(11)

where Tria() represents a triangular operation. B = Tria(A) means: B is a matrix of AT upper triangular
matrix obtained QR decomposition.

χ∗k+1 and SQ,k+1 are as follows:

χ∗k+1 = 1/
(√

2n
)[

X∗1,k+1 − xk+1, X∗2,k+1 − xk+1, · · · , X∗2n,k+1 − xk+1

]
SQ,k+1 = chol

(
Qk+1

)
where chol() is Cholesky decomposition.

(5) Recalculate the cubature points

X j,k+1 = Sk+1ξ j + xk+1 (12)

(6) Spread cubature points
Z j,k+1 = h

(
X j,k+1, uk+1

)
(13)

(7) Observation Prediction:

zk+1 =
1

2n

2n∑
j=1

Z j,k+1 (14)

(8) Estimate the square-root of the innovation covariance matrix:

SZZ,k+1 = Tria
([
γk+1 SR,k+1

])
(15)
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where γk+1 and SR are as follows:

γk+1 = 1/
(√

2n
)[

Z1,k+1 − zk+1, Z2,k+1 − zk+1, · · · , Z2n,k+1 − zk+1

]
SR,k+1 = chol(Rk+1)

(9) Estimate the cross-covariance matrix

PXZ,k+1 = χk+1γ
T
k+1 (16)

where χk+1 is as follows:

χk+1 = 1/
(√

2n
)[

X1,k+1 − xk+1, X2,k+1 − xk+1, · · · , X2n,k+1 − xk+1

]
(10) Estimate the Kalman gain

Kk+1 = (PXZ,k+1/ST
zz,k+1)/Szz,k+1 (17)

(11) Estimate the updated state

x̂k+1 = xk+1 + Kk+1(zk+1 − zk+1) (18)

(12) Estimate the square-root factor of the corresponding error covariance

Sk+1 = Tria([χk+1 −Kk+1γk+1Kk+1SR]) (19)

3.3. Improved Square-Root Cubature Kalman Filter

The on-board millimeter-wave radar is driving in the roads, and the statistical parameters of
measurement noise are often unknown and time-varying. If the values of measurement noise and
process noise are not consistent with the actual noise statistics, the filter will diverge. Therefore,
constructing the ASRCKF for online estimation of unknown noise statistics is of great significance for
improving the accuracy of filters. Sage-Husa is often used to estimate the statistical characteristics of
noise online because of its simplicity and good real-time performance. However, the conventional
Sage–Husa noise statistical estimator is suitable for the constant coefficient noise statistical characteristic
estimation of linear systems. In the literature [26], the Sage–Husa noise statistic estimator in linear
system is extended to the non-linear Sage–Husa noise statistic estimator. Therefore, based on the
literature [26], we combine the Sage–Husa noise statistical estimator and cubature rules to derive a
time-varying noise statistical estimator suitable for nonlinear systems.

The noise statistical estimator based on Sage–Husa in a non-linear system is:
Recursive formula for the process noise means:

q̂k+1 =
1

k + 1
[k ∗ qk + x̂k+1 −

1
2n

2n∑
i=1

fk

(
Xi,k|k

)
] (20)

Recursive formula for the measurement noise means:

r̂k+1 =
1

k + 1
[k ∗ r̂k + zk+1 −

1
2n

2n∑
i=1

h
(
Xi,k+1|k

)
] (21)
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The process noise variance is written in the form of a recursive estimation formula as:

Q̂k+1 = 1
k+1 [k ∗ Q̂k + Kk+1vk+1vT

k+1KT
k+1 + Pk+1

−( 1
2n

2n∑
i=1

X∗i,k+1|kX∗Ti,k+1|k − x̂k+1|kx̂T
k+1|k)]

(22)

The measurement noise variance is written in the form of a recursive estimation formula as:

R̂k+1 =
1

k + 1
[k ∗ R̂k + vk+1vT

k+1 − (
1

2n

2n∑
i=1

Zi,k+1|kZT
i,k+1|k − ẑk+1|kẑT

k+1|k)] (23)

Including: q̂, r̂, Q̂, R̂ are the maximum a posterior of q, r, Q, R respectively.
As can be seen from (20), (21), (22), (23), the weight coefficient of each factor in k + 1 moments,

every factor of the weighted coefficient of q̂, r̂, Q̂, R̂ is 1/(k + 1). For time-varying noise, the role of new
data should be increased, while the role of old data should be gradually forgotten. Therefore, a different
weighting factor should be multiplied for each factor in the system noise. That is: the weighting
coefficient of new data should be greater than that of the old data. On the basis of the constant noise
statistic estimator, the time-varying noise statistic estimator suitable for SRCKF is deduced by using
the method of fading memory index weighting.

Weighted coefficient: λi = λi−1 ∗ b, 0 < b < 1,
∑k+1

i=1 λi = 1.
Therefore, the weighted index of fading memory is:{

λi = dkbi−1

dk =
1−b
1−bk

(24)

where b is the forgetting factor, and its value range is usually between 0.95 and 0.99. A time-varying
noise statistical estimator is obtained by replacing λk+1−i with the weight factor of 1/(k + 1) in the
constant noise statistical estimator:

Recursive formula for the process noise means:

q̂k+1 = (1− dk+1)q̂k + dk+1[x̂k+1|k+1 −
1

2n

2n∑
i=1

fk
(
Xi,k|k

)
] (25)

Recursive formula for the measurement noise means:

r̂k+1 = (1− dk+1)r̂k + dk+1[zk+1 −
1

2n

2n∑
i=1

hk+1

(
Xi,k+1|k

)
] (26)

The process noise variance is written in the form of a recursive estimation formula as:

Q̂k+1 = (1− dk+1)Q̂k + dk+1[Kk+1εk+1εT
k+1KT

k+1 + Pk+1

−( 1
2n

2n∑
i=1

X∗i,k+1|kX∗Ti,k+1|k − x̂k+1|kx̂T
k+1|k)]

(27)

where
εk = zk − ẑk|k−1

The measurement noise variance is written in the form of a recursive estimation formula as:

R̂k+1 = (1− dk+1)R̂k + dk+1[εk+1ε
T
k+1 − (

1
2n

2n∑
i=1

Zi,k+1|kZT
i,k+1|k − ẑk+1|kẑT

k+1|k)] (28)
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4. Classification of Target-Vehicle Motion State

Due to the influence of the ego-vehicle speed sensor and millimeter-wave radar measurement
error, the direct use of the current moment of the ego vehicle and target vehicle motion relationship to
identify the target-vehicle motion state, will lead to the vibration and even inaccurate motion state
classification results. A method of classifying the motion state of the target vehicle based on time
window is proposed by analyzing the transfer mechanism of the motion state of the target-vehicle.
According to the absolute velocity of the target vehicle, the motion state of the target vehicle is divided
into stationary target vehicle, moving target vehicle, oncoming target vehicle, start-stop target vehicle,
and unclassified target vehicle.

(1) Unclassified target vehicle: the motion state of the target vehicle obtained at the initial moment
of radar is the unclassified target vehicle;

(2) Stationary target vehicle: the target vehicle whose absolute speed stays near zero for a long time;
(3) Moving the target vehicle in the same direction: the movement direction of the target vehicle

is the same as that of the ego vehicle;
(4) Oncoming target vehicle: the movement direction of the target vehicle is opposite to that of

the ego vehicle;
(5) Start-stop target vehicle: the speed of the moving target vehicle (or the oncoming target vehicle)

is reduced to near zero.
Since the velocity measured by the on-board millimeter-wave radar is the relative motion velocity

of the target vehicle relative to the ego vehicle. Therefore, the absolute velocity of the target vehicle
relative to the geodetic coordinate system can be deduced:

V1 = Vr + Vv (29)

where:

V1: The absolute velocity of the target vehicle;
Vr: The relative velocity of the target vehicle;
Vv: The speed of the ego vehicle.

Figure 2 shows the flow chart of movement state transfer of the target vehicle.
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According to the absolute speed of the target vehicle, the determination of the target motion
state is mainly influenced by the following two factors: first, the measurement error of the ego
vehicle speed sensor; Second, millimeter-wave radar speed error. Due to the above two measurement
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errors, the stationary target may also return a non-zero velocity value. Therefore, it is essential to
determine the appropriate threshold value to judge the target motion state. The influence of velocity
sensor measurement error and millimeter-wave radar measurement error is considered. In this paper,
the reference ranges of the velocity threshold are [0.5 ∼ 1 m/s] and [−1 ∼ −0.5 m/s]. Because the
fluctuation range of the ego-vehicle velocity is 0.3 m/s. Therefore, the threshold value of the velocity of
the stationary target-vehicle is set to ±0.5m/s. The moving state transition rules of the target vehicle
are as follows:

(1) The motion state of the target vehicle obtained during the initial operation of the radar
is unclassified;

(2) The absolute speed of the target vehicle is between [−0.5 ∼ 0.5m/s] for N consecutive cycles.
The target motion state transition can be divided into the following four conditions:

1O Switch from unclassified to stationary;
2O Keep stationary;
3O Switch from oncoming to start-stop;
4O Switch from moving to starting-stopping;

(3) When the absolute speed of the target-vehicle is greater than 0.5m/s for N consecutive cycles,
the target motion state transition has the following four conditions:

1O Switches from unclassified to moving;
2O Keep moving;
3O Switch from stationary to moving;
4O Switch from start-stop to moving;

(4) When the absolute speed of the target-vehicle is less than –0.5 m/s for N consecutive cycles, the
target motion state transition has the following four conditions:

1O Switch from unclassified to oncoming;
2O Keep oncoming;
3O Switch from stationary to oncoming;
4O Switch from start-stop to oncoming;

(5) By recording the time T when the target vehicle is recognized as the start-stop motion state,
the transition relationship between the start-stop motion state and the stationary state is identified.

1O If T is greater than or equal to M, the target vehicle is switched from start-stop motion state to
the stationary state.

2O If T is less than M, the target vehicle keeps start-stop motion state.
As the length of time window N is longer, the delay of target-vehicle motion state recognition is

more serious. The value of M has a significant influence on decision-making and control of the vehicle.
In this paper, N = 3, M = 2s.

Because the target vehicle has inertia, there is no sudden change in the speed of the target-vehicle.
In the process of state transfer between moving target vehicles in the same direction and moving target
vehicles in the opposite direction, it is necessary to go through the start-stop motion state.

5. Experiment and Discussion

5.1. Construction of the Experimental Platform

As shown in the Figure 3, to check the accuracy and reliability of the proposed algorithm, the
Sagitar vehicle is applied herein in the test. Figure 3 (a) is the Sagitar test vehicle platform; (b) is the
experimental platform communication.
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The ego-vehicle is equipped with a 77 GHz millimeter-wave radar as shown in (a) and (b) of
Figure 3. The 77 GHz millimeter-wave radar is installed directly above the license plate on the
front of the ego-vehicle. The 77 GHz millimeter-wave radar is provided with two-way controller
area network (CAN). One CAN is connected to the vehicle gateway. The other is connected to
MicroAutoBoxII through CAN. The AR023Z-1080p camera is installed in the bracket above the
ego-vehicle to synchronously record the scene of the vehicle.

We use the light detection and ranging (lidar) produced by Ibeo to detect the motion state
information of the target vehicle and take it as the ground truth, which is used to verify the performance
of the target tracking algorithm of the millimeter-wave radar. In order to make the sensors smarter,
Ibeo will provide point cloud processing algorithm software for the lidar. At present, the algorithm
provided by Ibeo supports target recognition and tracking. The motion state information of the target
vehicle includes longitudinal distance and longitudinal speed. As shown in Figure 4a, the ego-vehicle
is equipped with two lidars, which are lidar-1 and lidar-2. The Ibeo TrackingBox produced by Ibeo is
responsible for data fusion of the two lidars. Table 2 shows the specific technical specifications of the
four scan levels lidar provided by Ibeo.

Table 2. Main technical parameters of the lidar.

Parameter Value/(Units)

Ranging 200(m)
Ranging resolution 0.04(m)

Fov(H*V) 110*3.2/(o)
Vertical angle resolution 0.8/(o)

update rate 25/(Hz)

The ego-vehicle is equipped with MicroAutoBoxII and connected to the vehicle gateway port via the
CAN to obtain the longitudinal velocity and steering wheel angle information of the vehicle measured
by the electronic stability controller (ESC). MicroAutoBoxII is connected to the Ibeo TrackingBox
through CAN and obtains the target vehicle movement status after data fusion.

The motion state estimation algorithm of the target vehicle is written in the environment of
MatlabR2018a/Simulink in the host computer. The automatic code generation software provided by
the dSPACE company is used to download the code to the MicroAutoBoxII1401/ 1505/1507 rapid
prototyping controller through user datagram protocol (UDP) to run.

In order to exclude the randomness of the experiments, we conducted multiple sets of experiments.
As shown in Figure 4, four test environments are selected, and three groups of experiments are carried
out for each test environment.
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5.2. Analysis of Experiment Results

Since the test results for the 12 groups of experiments are similar, one set of test data is selected
for discussion and analysis. Figure 5 to Figure 6 show the experimental results of the effect of verifying
the ISRCKF target tracking algorithm.
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Figure 6. Target-vehicle longitudinal velocity time history curve.

The measurement data of the target vehicle are indicated by the red circle, without the ISRCKF
algorithm optimization and containing noise (R-M). The solid blue line represents the ground truth of
the motion state of the target-vehicle measured by lidar. The measurement data of the target vehicle
are indicated by the magenta dashed line, with the ISRCKF algorithm optimization. The measurement
data of the target vehicle are indicated by the green solid line, with the SH-EKF algorithm optimization.
The measurement data of the target vehicle are indicated by the cyan dot-dash line, with the SRCKF
algorithm optimization.

Figures 5 and 6 show the time history curves of the longitudinal distance and longitudinal
velocity of the target-vehicle relative to the ego-vehicle. It can be concluded from the figures that
the data fluctuation of the ISRCKF algorithm during tracking the target is small, and the target
tracking performance of the ISRCKF algorithm is significantly better than the SH-EKF and SRCKF
algorithms. Through references [27–29], it is found that the root mean square error (RMSE) can be
used to quantitatively analyze the filtering accuracy. In order to quantitatively analyze the filtering
accuracy of the ISRCKF, SH-EKF, and SRCKF algorithms, we counted the RMSE of the 12 groups of
experiments. and the results are shown in Figures 7 and 8. The test environment of the statistical value
for RMSE of groups 1, 2, and 3 is the underground parking. The test environment of the statistical
value for RMSE of groups 4, 5, and 6 is the tunnel. The test environment of the statistical value for
RMSE of groups 7, 8, and 9 is the campus. The test environment for the statistical value for RMSE of
groups 10, 11, and 12 is the expressway.
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It can be concluded from Figures 7 and 8 that in the driving environment where the system noise
is unknown and time-variant, the RMSE of the longitudinal speed and longitudinal distance of target
tracking using SRCKF and SH-EKF algorithm is larger than that of ISRCKF algorithm. Compared
with SH-EKF and SRCKF algorithms, the maximum increase in filtering accuracy of longitudinal
distance using the ISRCKF algorithm is 45.53% and 59.15%, respectively, and the maximum increase in
filtering accuracy of longitudinal speed using the ISRCKF algorithm is 23.53% and 29.09%, respectively.
Through the above analysis, it can be concluded that using ISRCKF algorithm to track can effectively
suppress the divergence of target tracking, thereby reducing the tracking error and improving the
tracking accuracy.

As shown in Figure 9, the time consumption of different algorithms is measured by the mean time
of the algorithm running once in the MicroAutoBoxII.Sensors 2020, 20, x 15 of 18 
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From Figure 9, it can be concluded that the target tracking algorithm proposed herein takes
0.0053 s on average, slightly up that of SH-EKF and SRCKF. SH-EKF and SRCKF take 0.0051 s and
0.0047 s on average, respectively.

The vehicle test results show that the ISRCKF algorithm has the highest accuracy when the time
consumption is not increased much compared with SH-EKF and SRCKF.

In order to ensure the safety and rigorous of the experiment, we conducted 10 groups of
experiments on campus. During the test, the driving process of the target vehicle was divided into the
following stages: parking, accelerated reverse, braking to stop, starting acceleration, and decelerating
to stop. Since the test results of the 10 groups are similar, we choose one of the data for analysis.

Figure 10 is the time history curve of the target-vehicle’s absolute velocity. The meanings of 1O,
2O, 3O, and 4O in Figure 10 represent the stationary, moving, start-stop, oncoming movement states in

Figure 2, respectively. We have used the same colors to indicate the same motion state in Figures 2
and 10.

Figure 11 is the transition process of the target vehicle’s motion state. The initial motion state of
the target vehicle is the unclassified motion state. As the reversing speed of the target vehicle increases
at 2.3 s, the motion state of the target-vehicle changes from the stationary motion state to the oncoming
motion state. As the reversing speed of the target vehicle decreases, the motion state of the target
vehicle changes from the oncoming motion state to the start-stop motion state (at 14.5 s). As the time
T of the start-stop motion state increases, the status of the target vehicle changes from the start-stop
motion state to the stationary state at the time of 16.5 s. As the forward speed of the target vehicle
increases, the motion state of the target vehicle changes from the stationary state to the same motion
state (at 19.4 s). As the forward speed of the target vehicle decreases, the motion state of the target
vehicle changes from the same motion state to the start-stop motion state at 28.4 s.
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the time T of the start-stop motion state increases, the status of the target vehicle changes from the 
start-stop motion state to the stationary state at the time of 16.5 s. As the forward speed of the target 
vehicle increases, the motion state of the target vehicle changes from the stationary state to the same 
motion state (at 19.4 s). As the forward speed of the target vehicle decreases, the motion state of the 
target vehicle changes from the same motion state to the start-stop motion state at 28.4 s. 

 

Figure 10. Target-vehicle absolute velocity time history curve. 

 

Figure 11. The movement state transfer of the target-vehicle. Figure 11. The movement state transfer of the target-vehicle.

In the two sports periods of 14.5 s ∼ 16.5 s and 28.4 s ∼ 30 s, the classification method proposed
classifies target vehicles as start-stop targets. The classification method shows that it has a certain
memory effect on the motion state of the target vehicle. The test results show that the classification and
recognition results are consistent with the motion state of the target vehicle.

6. Conclusions

In the process of on-board millimeter-wave radar target tracking, the characteristics of unknown
time-varying noise cannot be accurately counted, which will cause the filter accuracy to decline or even
diverge. In response to this question, based on the SRCKF, the Sage–Husa noise statistic estimator and
the fading memory exponential weighting method are combined to derive a time-varying noise statistic
estimator for non-linear systems. ISRCKF can effectively overcome the problem of low accuracy and
even divergence of SRCKF filtering-varying noise. When the motion relation between the ego vehicle
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and the target vehicle in the current is used to identify the motion state of the target vehicle, there exists
the problem that the classification result of motion state is vibration or even inaccurate. A method of
classifying the motion state of the target vehicle based on the time window is proposed by analyzing
the transfer mechanism of the motion state of the target vehicle. According to the absolute velocity
of the target vehicle, the motion state of the target vehicle is divided into stationary target vehicle,
moving target vehicle, oncoming target vehicle, start-stop target vehicle, and unclassified target vehicle.
Because the target vehicle has inertia, there is no sudden change in the speed of the target vehicle. In
this classification method, the target vehicle needs to go through the start-stop motion state during
the state transfer between the same motion and the reverse motion. Since the starting and stopping
motion state of the target vehicle is different from the stationary motion state of the target vehicle, this
method reflects that the target vehicle has a certain memory effect on its motion state. The results of
the vehicle test show that: (1) the accuracy of the ISRCKF algorithm is significantly improved; (2) the
classification and recognition results of the target vehicle motion state are consistent with the target
vehicle motion state.
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