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Abstract: We design an ocean surface drifting buoy system based on an unmanned aerial vehicle
(UAV)-enabled wireless powered relay network in which the UAV acts as mobile hybrid access point
that broadcasts energy to all buoys in the downlink and forwards information from the buoys to a
ship signal tower (ST) in the uplink. In order to maximize the resource allocation efficiency of the
system, due to the different initial energy reserve of the buoys, a novel communication mode selection
strategy is proposed. In the direct transmission mode (DT mode), an energy-sufficient buoy transmits
information directly to the ST, and in the relay transmission mode (RT mode), an energy-insufficient
buoy relays information to the ST through the UAV. By applying the block coordinate descent and
successive convex optimization, a joint UAV trajectory and resource allocation algorithm is proposed
to maximize the minimum throughput of the buoys to work in the RT mode. Simulation results show
that the proposed algorithm can significantly improve the minimum throughput of the ocean surface
drifting buoys.

Keywords: buoy communication; unmanned aerial vehicle (UAV); wireless powered communication
networks; resource allocation; maximize minimum throughput

1. Introduction

As one of the most important ways for humans to explore the ocean, the development of ocean
data buoys (ODBs) can be traced back to the 1940s [1]. The surface drifting buoy is a kind of small
ODB and mainly uses various types of sensors to obtain the relevant data in the surrounding marine
environment for ocean investigations, environmental monitoring, and scientific experiments [2].
To obtain the data collected by the buoys, there are currently two main modes of buoy communication:
satellite communication (such as maritime satellites, the Beidou satellite navigation system, and the
Argo satellite communication system) and autonomous underwater vehicle (AUV) communication.
Although satellite communications can provide a good solution for buoy communication in deep-sea
exploration, there are a number of shortcomings (e.g., low transmission rate, low reliability, and high
communication cost), and the use of satellite communications offshore, in inland lakes, and other areas
with frequent ship activities may result in a waste of resources. In addition, due to the slow sailing
speed of the AUV, the delay of data transmission is high, which means AUV–buoy communication
cannot meet real-time data requirements, and the maintenance and recovery of the AUV will introduce
a series of new difficulties.

Compared to traditional AUV communications or satellite communications, unmanned aerial
vehicle (UAV)-enabled communication networks can reduce networking costs and allow rapid
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deployment [3]. In addition, the line-of-sight (LOS) communication links between a UAV and the buoys
usually provide exceptional channel quality and, consequently, more stable and reliable communication
services [4,5]. Furthermore, due to the rapid development of the UAV industry and technology, UAVs
are now available in all shapes and sizes, ranging from long-range, high-durability models to small
portable UAVs with short surveillance range [6], which means UAV communication has the potential
to become an efficient and energy-saving solution for a buoy communication system. The authors
of [7–10] explored the application of UAV in the ocean; the authors of [7] proposed a UAV and AUV
coordination mechanism for ocean exploration; the authors of [8] considered employing UAV as an
element of an ocean observing system; the authors of [9] designed UAV surveillance frameworks for
extensive ocean; the authors of [10] designed a small UAV that can fly continuously over the ocean.

UAV-enabled communication networks mainly use UAVs as mobile micro-base stations/relays/
access points to collect/transmit information from/to wireless terminals. The works in [11–15] consider
the application of UAVs in different communication scenarios and provide an optimization scheme
for the UAV trajectory and resource allocation. An efficient successive convex-approximation (SCA)
technique was proposed by Zeng et al. in [11] to optimize the UAV trajectory and communication
resource allocation. Based on the SCA technique, the authors of [12] considered a UAV-enabled date
collecting system with multiple users, and maximized the average rate by jointly optimizing the
flight trajectory of the UAV and the information transmission power of the user. The authors of [13]
studied a UAV-enabled mobile relay network and the UAV trajectory and time allocation were jointly
optimized to improve the energy efficiency. In [14,15], an efficient iterative algorithm was proposed to
optimize the UAV trajectory and transmission power in turn for a multi-UAV communication network.
Although the UAV needs to forward the collected information to the background operator through the
base station, the communication link between the UAV and the base station is not considered in the
above references. In addition, as the communication duration and information transmission rate of
devices in the network are severely limited by the current energy condition, the energy status of users
and UAVs in energy shortage buoy communication scenarios should be further analyzed.

In general, buoys are primarily powered by internal batteries, and increasing the number or
volume of batteries is the simplest way to prolong the working life of the buoys. However, increasing
the size and weight of the battery not only increases the cost of deploying the buoy, but also causes a
series of problems with battery replacement and maintenance. Therefore, the question of renewable
energy for ocean buoys has been a key issue since modern research on the topic emerged in the early
1970s [16]. Solar energy and wave energy are the two main ways for buoys to obtain renewable
energy [17].

However, due to the instability of renewable energy collection and the high construction cost of
collection devices, this approach is not suitable for large-scale use in most sea areas. Furthermore,
although this renewable energy can supplement the energy of buoys during long-term intermittent
work, the energy requirements of buoys in emergency situations or real-time communication scenarios
cannot be guaranteed. In contrast, the interference-free LOS channel in the buoy–UAV communication
network provides an ideal environment for radio frequency (RF) energy signal transmission [5], which
means that a UAV–buoy communication network based on wireless energy transfer (WET) technology
can be considered as a promising solution.

Wireless communication networks based on WET technology have been widely considered in
terrestrial scenarios [18–20], and the wireless powered communication network (WPCN) is one of the
representative technologies [21]. A typical WPCN employs a hybrid access point (H-AP) that acts as
a power station to broadcast RF energy signals to the ground terminals during the downlink and as
an information receiver station in the uplink. However, the so-called “double near-far” phenomenon
has long existed in WPCN: the user close to an H-AP can harvest more energy in the downlink and
experiences a better channel condition in the uplink than a user far from the H-AP.

Several WPCN models have been proposed to overcome the above near-far fairness problem.
The authors of [22] consider an additional constraint that guarantees the throughput required by the
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user through optimal allocation of time resources regardless of the channel condition between users
and the H-AP. Our previous work [23] proposed a relay strategy with an incentive mechanism, which
means that users closer to an H-AP can sell excess energy to help other users forward information.
The authors of [24] aim to maximize a user’s throughput by optimizing the number and locations of
H-APs. However, limited by the fixed position of the H-AP and user equipment, these existing studies
are based on the premise of a constant uplink/downlink channel power gain, which makes it difficult
to fundamentally solve the near-far fairness problem.

Several previous works [25–29] have attempted to overcome the above problems by using UAV
as a mobile H-AP and constructing UAV-Based WPCN (U-WPCN). The authors of [25] use the UAV
as relay node to fly around the fixed ground H-AP with a given radius. In this scenario, the UAV
can provide periodic information relay services for energy shortages users; however, because the
trajectory and flight speed of a UAV cannot be adjusted according to the user’s specific location, the
communication quality of edge users cannot be guaranteed in [25]. The authors of [26,27] studied a
hover-and-fly trajectory to optimize the total throughput of users. However, the problem of system
throughput maximization includes not only the UAV trajectory but also some other variables such as
the UAV flight time, the user’s initial energy and the resource allocation (e.g., energy broadcasting
power and information transfer power). Our previous work [28] proposed a user grouping and UAV
hovering strategy to improve the system’s performance by deploying multiple hovering UAVs. As the
communication coverage of a single UAV in a hover state is limited, our previous work [29] further
considers optimizing the flight path of a single relay UAV to cover a larger area to maximize the system
throughput while reducing the delay. However, the fairness problem of maximizing the minimum
throughput and the problem of joint trajectory and resource allocation including UAV energy broadcast
power optimization has not been considered in our previous works. In addition, the optimization
sequence and convergence speed in multiobjective optimization problems must be further analyzed.
Finally, to the best of our knowledge, the current research on UAV communication systems has not
delved into the wireless terminal’s communication mode selection issues, which means that compared
to resource-constrained users, those with sufficient initial energy may obtain the same services from a
UAV, resulting in a waste of resources.

This paper aims to address the difficulties regarding the energy shortage and information
transmission in the offshore surface drifting buoy system. Notably, different from the multinode system
with limited energy on the ground [29], the UAV-based information collection and energy broadcasting
platform is suitable for a floating buoy communication system. The reasons can be summarized
as follows. First, the lower electromagnetic interference and reliable LOS channel enable a UAV to
transmit energy to the buoy’s surface communication module more efficiently, which means that a
low-complexity linear energy harvesting model can be used [30]. Second, the communication area of
the buoys can reach several thousand square meters, and the buoys are scattered and far apart. In this
case, the mode selection strategy proposed in this paper can enable the UAV to selectively provide
information and energy services for energy-deficient buoys to better utilize the cruise advantages
of the drone and improve flight efficiency. Finally, because the sea level has no undulations, the
UAV can safely fly at a fixed height. At this time, the UAV’s flight trajectory can be projected onto
the two-dimensional plane for optimization, and a reliable flight path can be obtained with less
computational effort.

Motivated by the U-WPCN as well as the offshore surface drifting buoy system, this paper pursues
a unified study of both of them as shown in Figure 1. We proposed a UAV-enabled wireless powered
relay network (U-WPRN) in which the UAV platform is equipped with H-AP, broadcasts energy to
the buoy node in the downlink, and forwards the information collected from the buoy node to the
signal tower of the working ship in the uplink. To improve the utility of the UAV platform, a buoy
communication mode selection mechanism is proposed for determining which buoy requires the help
of the UAV to forward information to a ship signal tower (ST). Block coordinate descent (BCD) [31] and
SCA technology are used as an algorithm framework [32] to sequentially optimize the UAV trajectory,
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forwarding power allocation, broadcasting power allocation, time slot allocation, and transfer power
allocation of the buoy to obtain a suboptimal solution with low complexity. The main contributions of
this paper are summarized as follows.

• We proposed a U-WPRN for an ocean buoy system. Unlike the UAV hovering scenarios considered
in [26–28], this paper first proposed a U-WPRN using a single UAV cruise in the offshore buoy
communication scenario. Besides, different from the work in [25], we use the UAV as a mobile relay
and let it broadcast energy to buoys to guarantee the communication quality even when the buoy
lacks energy. Additionally, different from the work in [29], we considered a decode-and-forward
(DF) protocol that can forward information in real-time and ensure the effectiveness of information
transmission.

• We proposed an information transmission mode selection strategy for buoys. According to the buoy’s
initial energy reserve and channel condition, this paper introduces a buoy’s transmission data
rate threshold to determine whether the buoy requires UAV relay services during the wireless
information transmission (WIT) phase, thus maximizing the energy efficiency of the system. To the
best of our knowledge, in the UAV communication network, the communication mode selection
strategy based on the user’s current energy and channel conditions is discussed for the first time
in this paper.

• We proposed an optimal resource allocation algorithm for buoys working in the relay mode. The
current research in [11–15,28,29] considered optimizing the UAV trajectory, hovering point, or
transmission power for a UAV-ground node communication scenario. In contrast, this paper
considers the joint optimization in U-WPRN including subslot allocation, UAV transmission
power, buoy transmission power, UAV trajectory, and UAV broadcast power to maximize the
minimum throughput of the buoys working in RT mode. Furthermore, by applying the BCD
and SCA technique, a joint optimization algorithm with five different suboptimal problems is
proposed, and the convergence speed of the algorithm under different optimization sequences is
further analyzed to maximize the system performance and improve the UAV’s utility, these are
not considered in the above references.

The remainder of this paper is organized as follows. The U-WPRN system model is presented in
Section 2. The buoy’s communication mode selection mechanism and problem formulation are given
in Section 3. Based on the successive convex optimization algorithm, the optimal UAV trajectory and
relay resource allocation are described in Section 4. The numerical results are presented in Section 5,
and finally the paper is concluded in Section 6.

2. System Model

As shown in Figure 1, a U-WPRN system with one ST, one UAV-based H-AP, and several buoys
is considered in this paper; the buoy set is denoted as K, |K| ≥ 1, and all buoys are equipped with
two antennas, one of which is dedicated to energy harvesting and the other one for information
transmission; moreover, they do not interfere with each other. To resist the impact of ocean waves and
reduce the risk of rollover, this paper considers a spherical buoy with counterweight and the antenna
kept above the sea surface. The buoy’s structure is given in Figure 2, and the definitions of all symbols
used in this article are shown in Table 1.

In this paper, we consider a UAV equipped with a GPS module for obtaining its own position
with high accuracy in a marine LOS environment. In addition, by using cooperative localization
techniques [33,34] among the UAVs, the positioning accuracy can be further improved.
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Table 1. List of main symbols.

K Set of buoys
KBD Set of buoys in direct transmission mode
KBR Set of buoys in relay transmission mode

T UAV flying period
∆ Length of sampling slot
N Number of sampling slots
Gk Horizontal coordinate of buoys
O Horizontal coordinate of ST

U [n] Horizontal coordinate of the UAV at the n-th time slot
Vmax Maximum speed of the UAV

H Flying altitude of the UAV
G0 Channel power gain at the reference distance
R0 Reference distance
σ2 Power noise at the ST receiver
η RF-to-direct current (DC) energy conversion efficiency

gUB [n] Channel power gain between the UAV and the ST
gBU

k [n] Channel power gain between the UAV and k-th buoy
gGB

k Channel power gain between the ST and k-th buoy
QE Available energy for UAV energy broadcasting

Bk [n] Stored energy of the k-th BR before the n-th time slot
Ek [n] Harvested energy of the k-th buoy in the n-th slot

B Bandwidth
RBU

k [n] Data rate from the k-th BR to the UAV in the n-th slot
RUB [n] Data rate from the UAV to the ST in the n-th slot
RGB

k [n] Data rate between the BRs and the UAV
Rthr Data rate threshold of buoys
Rmax

k Maximum rate between the k-th buoy and ST in DT mode
δk [n] k-th allocated subslot in the n-th slot under the TMDA protocol
PE [n] Energy transmission power of the UAV during slot n
Pmax

E Peak broadcast power of the UAV
PI [n] UAV information transmission power during the n-th slot
Pmax

I UAV maximum information forwarding power
Pk [n] k-th BR transmitting power in subslot δk [n]
Pmax

k Peak transmission power of BRs
Pave

k Average transmission power of the k-th BD

Figure 1. Unmanned aerial vehicle (UAV)-enabled wireless powered relay network (U-WPRN) system
model with relay mechanism.
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Ignoring the height of the buoys, the horizontal coordinate of the k-th k ∈ K buoy is Gk = (xk, yk).
The height of the ST is assumed to be the same as the fixed flying altitude H of the UAV, and the
ST is located at the origin of the horizontal coordinate system O= (0, 0). Without loss of generality,
the horizontal coordinate of the UAV at time instant t is denoted by U(t) = (x(t), y(t)), 0 < t < T.
In addition, in this paper, buoys and ST are considered to be stationary during the UAV flying period
T. To discretize the trajectory of the drone, the flying period T is discretized into N equally spaced
time slots, and the length of each time slot, ∆ = T

N , is chosen to be sufficiently small such that a UAV’s
location is approximately unchanged between two consequent time slots even when flying at the
maximum speed Vmax.

Energy 

receiver

Information 

transmitter

Rechargeable 

battery

Energy flow Information flow

kevlar rope/Shackle

Buoy

Counterweight

Figure 2. Components of the buoys in our proposed system.

Based on the above assumptions, the trajectory of the UAV can be approximated by U [n] =
(x [n] , y [n]), n = 1, 2, ...N. Accordingly, the distance between the UAV and the ST, the distance from
the k-th buoy to the UAV, and the distance from the k-th buoy to the ST are given by

dUS[n] =
√
‖U[n]−O‖2, (1)

dBU
k [n] =

√
‖U[n]− Gk‖2 + H2, k ∈ K, (2)

dBS
k =

√
‖Gk −O‖2 + H2, k ∈ K, (3)

where ‖•‖ denotes the Euclidean norm of a vector.
Because of the unobstructed marine environment, buoys are rarely surrounded by large shelters,

which means the communication link between the UAV, the ST, and the buoys can be regarded as LOS
links [35], where the channel quality depends only on the UAV-buoy/ST distance [36]. Furthermore,
the Doppler effect caused by UAV mobility is assumed to be well compensated at the receivers.
Thus, the channel power gain follows the free-space path loss model that has been widely used for
UAV-enabled wireless networks [25,26]. Accordingly, the channel power gain between the buoys and
the UAV at time instant t ∈ T is

gBU
k [n] = G0(dBU

k [n])−2 =
G0

‖U[n]− Gk‖2 + H2
, k ∈ K, (4)

where G0 denotes the channel power gain at the reference distance R0 in an LOS channel. In general,
the reference distance is set as R0 = 1m. Similarly, the channel power gain between the UAV and the
BS is

gUS [n] =
G0

‖U[n]−O‖2 , (5)
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and the channel power gain between the buoys and the ST is

gBS
k [n] =

G0

‖Gk −O‖2 + H2
, k ∈ K. (6)

3. Relay Mode Selection Mechanism and Problem Formulation

In the WET phase, buoys harvest energy from the UAV, and the energy signal received by the k-th
buoy in the n-th slot is

yk[n] = si[n]
√

PE [n]hBU
k [n], k ∈ K, (7)

where PE [n] denotes the energy transmission power of the UAV during slot n and si[n] is the
pseudorandom energy signal with unit power. hBU

k [n] denotes the equivalent baseband channel
coefficient from the UAV to the k-th buoy in the n-th slot. As UAV broadcasts a wireless energy signal
to all buoys, the harvested energy of the buoys in the n-th slot can be expressed as

Ek [n] = ηδ0 [n]PE [n] gBU
k [n] , k ∈ K, (8)

where 0 < η < 1 denotes the RF-to-direct current (DC) energy conversion efficiency at the energy
harvester of each buoy. If the total available energy for the energy transfer at the UAV is QE, then

N
∑

n=1
δ0 [n] PE [n] ≤ QE, 0 < PE [n] < Pmax

E , where Pmax
E is the peak broadcast power of the UAV. In (6),

δ0 [n] denotes the allocated subslot for the UAV energy broadcasting phase according to the time
division multiple access (TDMA) protocol, as shown in Figure 3.

Figure 3. Communication protocol for the U-WPCN relay system.

In the WIT phase, some of the buoys are selected for a transmission mode to complete the
information transfer process.

3.1. Transmission Mode Selection Strategy

Assume that the buoys, UAV, and ST are working in the trusted network so that the current
position and energy condition are clear for each other. In the first time slot U [1], the U-WPRN system
divides the buoys K into two groups, namely, buoys in direct transmission mode (BD), KBD, and
buoys in relay transmission mode (BR), KBR, according to the current energy status, channel condition,
and location of the buoys. The relationship between the BD and BR sets can be expressed as

KBD ∪KBR=K, KBD ∩KBR = ∅. (9)
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Next, we introduce a data rate threshold Rthr. When the buoys transmit information directly
to the ST at the required rate Rthr, their energy consumption for a complete communication cycle T
will be

EDT
k =

σ2

gBS
k

(
2Rthr − 1

)
T, k ∈ K, (10)

the derivation of (8) is given in our previous work [23]. In this paper, after a given bandwidth B, Rthr
is set to the minimum value of the theoretical maximum rate Rmax

k by which buoys can communicate
directly with ST, i.e.,

Rmax
k = Blog2

(
1 +

gBS
k Pmax

k
σ2

)
, (11)

Rthr = min {Rmax
1 , Rmax

2 , ..., Rmax
k } , k ∈ K, (12)

where Pmax
k is the peak transmission power of BRs, and σ2 denotes the power of the additive white

Gaussian noise (AWGN) at the ST receiver. As a classic noise and interference model, AWGN is widely
used in UAV-enabled LOS communication scenarios, see, for instance [11–15,26,27].

Based on the above considerations, the k-th buoy will be marked as BD in the communication
cycle T when the initial energy reserve Bk [0] is enough to support the consumption EDT

k in
direct transmission mode. Conversely, the buoy will be marked as BR and works in the relay
transmission mode.

3.2. Direct Transmission Mode (DT Mode)

In DT mode, the initial energy of the BDs ensures the required data rate to communicate directly
with the ST; however, BDs can also harvest the energy broadcasted from the UAV in the DL. Therefore,
BDs can achieve higher throughput DDT

k in the flying period T, concretely,

DDT
k =

TRthr +
N
∑

n=1
log2

(
1 + gGB

k Ek [n]
σ2∆

)
, Pave

k < Pmax
k

TRmax
k , Pave

k = Pmax
k

(13)

where Pave
k =

EDT
k +

N
∑

n=1
Ek [n]

T denotes the average transmission power of the k-th BD over the UAV flying
period T.

3.3. Relay Transmission Mode (RT Mode)

In RT mode, this paper considers a DF relay model that uses a time division duplexing (TDD)
approach, and BRs can share the whole frequency allocated by the RT mode through a TDMA protocol
as shown in Figure 3.

Assume that there are K BRs working in the RT mode with |KBR| = K. The time slot of length

∆ is further divided into K + 2 subslots, and δ0 [n] +
K
∑

k=1
δk [n] + δK+1 [n]=∆, which means in the n-th

slot, the first subslot δ0 [n] is used for the DL WET phase. In the UL, the k-th BR transmits information
to the UAV in subslot δk [n] , n ∈ [2, N], k ∈ KBR, and the last subslot δK+1 [n] is allocated for the UAV
to forward the information to the ST.

Assume that the transmitting power of the k-th BR in subslot δk [n] is Pk [n] , n ∈ [2, N] and
Pk [n] ≤ Pmax

k , where Pmax
k denotes the peak transmission power of the BRs. Ignoring the constant

energy loss of the internal circuit, the stored energy of the k-th BR before the subslot δk [n] can be
given as
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Bk [n] =
n

∑
i=1

Ek [i]− δkPk [i− 1] + Bk [0] . (14)

It is worth noting that when n = 1, Pk [0] = 0.
To achieve the self-sustainable operation of the buoys, the energy neutrality constraint is

considered at each buoy k, which means that in the n-th slot, the buoy’s energy consumption for
uplink information transfer cannot exceed the sum of reserve energy and energy collected from
the downlink.

n

∑
i=2

δk [i] Pk [i] ≤
n

∑
i=1

Ek [i] + Bk [0] . (15)

The data rate Rk from the k-th BR to the UAV in the n-th slot can be expressed as

RBU
k [n] =δk [n] log2

(
1 +

gBU
k [n] Pk [n]

σ2

)
, n ∈ [2, N] . (16)

In the subslot δK+1, the UAV forwards the information received from the BRs to the ST. The
associated data rate from the UAV to the ST in the n-th slot is

RUS [n] =δK+1 [n] log2

(
1 +

gUS [n] PI [n]
σ2

)
, n ∈ [2, N] , (17)

where PI [n] denotes the information transmission power of the UAV during the n-th slot; 0 ≤ PI [n] ≤
Pmax

I , where Pmax
I denotes the maximum achievable transmission power for the UAV to forward the

BR’s information. Clearly, the forwarded information to the ST must meet

K

∑
k=1

RBU
k [n] ≥ RUS [n] , (18)

and the actual forward data rate between the BRs and the UAV in the n-th slot can be expressed as

RBS
k [n] =


RBU

k [n],
K
∑

i=1
RBU

i [n] ≤ RUS [n]

RUS [n] RBU
k [n]

K
∑

i=1
RBU

i [n]
, otherwise.

(19)

3.4. Problem Formulation

To ensure the fairness of BRs’ throughput in the relay mode, the objective of this paper is to
maximize the minimum throughput between the BR and the ST by optimizing the UAVs trajectory
U [n]; the subslot allocation δ0 [n], δk [n], and δK+1 [n]; the UAV’s power allocation PE [n] and PI [n];
and the BR’s power allocation Pk [n]. The minimum throughput of the BRs can be expressed as

DBS
min= min

k∈KBR

{
N
∑

n=2
RBS

k [n]
}

= min
k∈KBR

 N
∑

n=2
RUS [n] RBU

k [n]
K
∑

i=1
RBU

i [n]

 ,
(20)

and the optimization problem can be formulated as
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(P1) max
U[n],PE [n],PI [n],Pk [n],δk

DBS
min

subject to Equations (15) and (19), as well as the following constraints,

N

∑
n=2

RBS
k [n] ≥ DBS

min, (21)

K

∑
k=1

δ0 [n] + δk [n] + δK+1 [n]=∆, δk [1] = 0, (22)

N

∑
n=1

δ0 [n] PE [n] ≤ QE, 0 ≤ PE [n] ≤ Pmax
E , (23)

0 ≤ PI [n] ≤ Pmax
I , PI [1] = 0, (24)

0 ≤ Pk [n] ≤ Pmax
k , Pk [1] = 0, (25)

‖U [n]−U [n− 1]‖2 ≤ Vmax∆, (26)

U [1] = U [N] , k ∈ KBR, n ∈ [1, N] , (27)

where Vmax denotes the maximum achievable speed of the UAV.
For problem P1, the objective function is nonconcave and constraints (15), (19), and (21) are

nonconvex due to the complicated throughput and energy functions with respect to coupled variables
such as the UAV trajectory and subslot allocation scheme. According to the definition of convex
optimization [37], P1 is a nonconvex optimization problem that is difficult to be optimally solved in
general. To address this problem, we propose an effective iteration algorithm and obtain a suboptimal
solution in the next section.

4. Proposed Algorithm

As there is no standard method for solving the nonconvex optimization problem P1 efficiently, in
this section, we propose an iterative algorithm for P1 through applying the BCD [31] and SCA
techniques [37]. Specifically, after dividing P1 into five suboptimization problems by the BCD
algorithm, for a given UAV trajectory U [n], UAV power allocation PE [n], PI [n], and the BR’s
power control Pk [n], we optimize the subslot allocation δ0 [n], δk [n] and δK+1 [n] by solving a linear
programming (LP) problem. For given δ0 [n], δk [n], δK+1 [n], U [n], PE [n], and Pk [n], we find the closed
solution for the energy-efficiency PI [n]. The UAV’s trajectory U [n], UAV power allocationPE [n], and
the BR’s power control Pk [n] are optimized based on the successive convex optimization technique [32].
Then, we introduce the low-complexity initialization parameters and finally give the overall algorithm.
The UAV’s trajectory U [n]; the subslot allocation δ0 [n], δk [n], and δK+1 [n]; the UAV power allocation
PE [n], PI [n]; and the BR’s power control Pk [n] are optimized in turn.

4.1. Subslot Allocation Optimization

For any given UAV trajectory U [n] and resource allocation PI [n], PE [n], and Pk [n], the optimal
allocation problem of subslot δ0 [n], δk [n] and δK+1 [n] in the r-th iteration can be given as

(P2) max
δ0[n],δk [n],δK+1[n]

DBS
min

s.t.(15), (19), (21), (22).

As the UAV forwards the BRs’ information based on the DF protocol, as was concluded in [19],
the most effective condition is achieved when the transmission rate from the BRs to the UAV is equal
to the transmission rate of the UAV to the ST, which can be expressed as
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K

∑
k=1

RBU
k [n] = RUS [n]. (28)

Under the premise of guaranteeing (28), the problem P2 can be rewritten equivalently as

(P2.1) max
δ0[n],δk [n],δK+1[n]

DUS
min

subject to Equations (15), (22), and (28), as well as the following constraints,

N

∑
n=2

RUS[n] ≥ DUS
min, n ∈ [2, N] . (29)

The objective of problem P2.1 is to maximize the minimum throughput between the BR and the
ST. According to [38], P2.1 is an LP problem because the expressions in (15), (22), (28), and (29) are
all affine with respect to δk and the objective function is linear. Therefore, the problem can be solved
efficiently by using a commercial LP package or CVX, and the optimal subslot allocation in the n-th
slot is denoted as δr

k=
{

δr
0 [n] , δr

k [n] , δr
K+1 [n]

}
, n ∈ [2, N] , k ∈ [1, K].

4.2. UAV Transmission Power Optimization

As the UAV’s forwarding power is constrained by (24), the objective of UAV forwarding power

optimization is to minimize the gap between
K
∑

k=1
RBU

k [n] and RUS [n] after given a UAV trajectory U [n]

and resource allocation PE [n], Pk [n], δ0 [n], δk [n] and δK+1 [n]. Concretely,

(P3)min
PI [n]

γ [n]

s.t.(24),

while

γ [n] =
K

∑
k=1

RBU
k [n]− RUS [n] , k ∈ KBR, n ∈ [2, N] . (30)

The relationship between PI [n] and γ [n] can be deduced from (30),

γ [n] =
K
∑

k=1
RBU

k [n]− RUS [n]

⇒ γ [n] =
K
∑

k=1
RBU

k [n]− δK+1 [n] log2

(
1 + gUS [n]PI [n]

σ2

)
⇒

K
∑

k=1
RBU

k [n]

δK+1[n]
− γ [n] = log2

(
1 + gUS [n]PI [n]

σ2

)
⇒ 2Φ[n]−γ[n] − 1 = gUS [n]PI [n]

σ2

⇒ PI [n] =
σ2(2Φ[n]−γ[n]−1)

gUS [n] ,

(31)

where Φ [n] =

K
∑

k=1
RBU

k [n]

δK+1[n]
. According to Equation (31), γ [n] decreases monotonically with the increase in

PI [n] when γ [n] = 0 and (28) is satisfied, and the most energy-efficient PI [n] can be expressed as
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P̄r
I [n] =

σ2
(

2Φ[n] − 1
)

gUS [n]
(32)

therefore, the optimal UAV transmission power in the r-th iteration cycle is Pr
I =

{
min

(
P̄r

I [n] , Pmax
I
)}

.

4.3. UAV Trajectory Optimization

For any given resource allocation δ0 [n], δk [n], δK+1 [n], PE [n], PI [n], and Pk [n], in the r-th iteration,
the UAV trajectory of optimal problem P1 can be optimized by solving the following problem,

(P4)max
U[n]

DUS
min

s.t.(15), (18), (26), (27), (28).

As P4 is neither a concave nor a quasiconcave maximization problem due to the nonconvex
constraints in (15), (18), and (29), for an optimized UAV trajectory, after introducing the slack
variables Mk [n] ≥ ‖U[n]− Gk‖2 + H2 and M0 [n] ≥ ‖U[n]−O‖2, the optimization problem P4
can be reformulated as

(P4.1) max
U[n],Mk [n],M0[n]

DUS
min

subject to Equations (26) and (28), as well as the following constraints,

N

∑
n=2

δk [n] Pk [n] ≤ Bk [0] +
n

∑
i=1

G0ηδ0 [n]PE [i]
Mk [i]

, (33)

N

∑
n=2

δK+1 [n] log2

(
1 +

G0
σ2 PI [n]
M0 [n]

)
≥ DUS

min, (34)

K
∑

k=1
δk [n] log2

(
1 +

G0
σ2 Pk [n]
Mk [n]

)
≥ δK+1 [n] log2

(
1 +

G0
σ2 PI [n]
M0[n]

)
, (35)

Mk [n] ≥ ‖U[n]− Gk‖2 + H2, (36)

M0 [n] ≥ ‖U[n]−O‖2, k ∈ KBR, n ∈ [1, N] . (37)

Notably, as constraints (36) and (37) must be satisfied to obtain the optimal solution of P4.1,
we can enlarge the upper bound of the objective value DUS

min as shown in (34) by decreasing M0 [n],
such that P4.1 is equivalent to P4.

The convex function is lower-bounded by its first-order Taylor expansion at any point [37]; thus,
with the given trajectory of the UAV in the (r− 1)-th iteration, Mr−1

k [n] represents the square of the
distance between the UAV and the BRs in the (r− 1)-th iteration. Then, at local point U[n], the lower
bound of RBU

k [n] is

RBU
k [n] = δk [n] log2

(
1 +

G0
σ2 Pk [n]
Mk [n]

)
≥ R̃BU

k = δk [n]
[
αr−1

k [n]− βr−1
k [n]

(
Mk [n]−Mr−1

k [n]
)]

,
(38)
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where

αr−1
k [n] =log2

(
1 +

G0
σ2 Pk [n]

Mr−1
k [n]

)
, (39)

βr−1
k [n] =

G0
σ2 ln 2 Pk [n](

Mr
k [n] +

G0
σ2 Pk [n]

)
Mr−1

k [n]
. (40)

Similarly, Mr−1
0 [n] represents the square of the distance between the UAV and the ST in the r-th

iteration, and RUS [n] is lower-bounded by

RUS [n] = δK+1 [n] log2

(
1 +

G0
σ2 PI [n]
M0[n]

)
≥ R̃US= δK+1 [n]

[
αr−1

B [n]− βr−1
B [n]

(
M0 [n]−Mr−1

0 [n]
)]

,
(41)

where

αr−1
B [n] =log2

(
1 +

G0
σ2 PI [n]

Mr−1
0 [n]

)
, (42)

βr−1
B [n] =

G0
σ2 ln 2 PI [n](

Mr
0 [n] +

G0
σ2 PI [n]

) (
Mr−1

0 [n]
) . (43)

Next, the lower bound of Ek [n] can be obtained through a first-order Taylor expansion,

Ek [n] =
ηδ0[n]G0PE [n]
‖U[n]−Gk‖2+H2

≥ Ẽk [n] =
ηδ0[n]G0PE [n]

Mr−1
k [n]

− ηδ0[n]G0PE [n](Mk [n]−Mr−1
k [n])

(Mr−1
k [n])

2 .
(44)

Based on the above considerations, problem P4.1 can be approximated as

(P4.2) max
U[n],Mk [n],M0[n]

DUS
min

subject to Equations (26) and (27), as well as the following constraints.

N

∑
n=2

R̃US [n] ≥ DUS
min, (45)

N

∑
n=2

δk [n] Pk [n] ≤ Bk [0] +
n

∑
i=1

Ẽk [i], (46)

K

∑
k=1

R̃BU
k [n]≥R̃US [n], k ∈ KBR, n ∈ [1, N] . (47)

P4.2 is a convex optimization problem that can be efficiently solved by standard convex
optimization solvers such as CVX [39]. In addition, as the constraints in P4.2 are lower bounds
compared with P4.1, any feasible solution of P4.2 is also feasible for P4.1, but the reverse does not
hold in general. Finally, by solving P4.2, the optimal UAV trajectory Ur= {Ur [n]} , n ∈ [1, N] can be
obtained to maximize the minimum collecting data rate from the BRs.
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4.4. UAV Broadcast Power Optimization

For any given UAV trajectory U [n] and resource allocation PI [n], Pk [n], and δk, the optimization
problem of UAV energy broadcast power can be rewritten as

(P5)max
PE [n]

DBU
min

s.t.(15), (23), (29).

It is clear that the target of UAV broadcast power optimization is to maximize the minimum
energy that the BR collects during the UAV flight period T while ensuring the energy consumption
constraint (15) to further maximize DBU

min. The reason is that the transmission power of the BR is largely
determined by the current energy situation, and the energy broadcast by the drone is an important
source of energy for the BR. In addition, maintaining (15) can guarantee the convergence of the BCD
method. The optimization problem can be reformulated as

(P5.1)max
PE [n]

Emin
k

subject to Equations (15) and (23), as well as the following constraints,

Ek =
N

∑
n=1

ηδ0 [n]PE [n] gBU
k [n] ≥ Emin

k . (48)

In problem P5.1, the slack variable Emin
k is introduced to denote the minimum harvested energy

of the BRs; in addition, Ek ≥ Emin
k , and Ek is the sum of the received energy of the k-th BR. Clearly, P5.1

is a typical convex optimization problem and thus can be solved efficiently by CVX. In the n-th slot,
the optimal energy broadcast power of the UAV is denoted as Pr+1

E =
{

Pr
E [n]

}
, n ∈ [1, N].

4.5. BR Transmission Power Optimization

In the r-th iteration, with a given UAV trajectory U[n] and the resource allocation of δ0 [n], δk [n],
δK+1 [n], PE [n], and PI [n], the BR’s information transmission power in the n-th slot can be optimized by

(P6)max
Pk [n]

DBU
min

subject to Equations (15) and (25), as well as the following constraints,

N

∑
n=2

RBU [n] ≥ DBU
min, n ∈ [2, N] . (49)

Due to the nonconvex constraint (49), problem P6 is a nonconvex optimization problem, and we
can perform first-order Taylor expansion of (49) in terms of Pk, which can be expressed as

RBU
k [n] = δk [n] log2

(
1 + gBU [n]Pk [n]

σ2

)
≥ δk [n] log2

(
1 + gBU [n]Pr

k [n]
σ2

)
+ δk [n]

ln 2
(

Pr
k [n]+

σ2
gBU [n]

) (Pk [n]− Pr
k [n]

) . (50)

After substituting (50) into formula (49), P6 becomes a typical convex optimization problem that
can be solved efficiently by optimization tools such as CVX. In the n-th slot, the optimal information
transmission power of the k-th BR is denoted as Pr

k=
{

Pr
k [n]

}
, n ∈ [2, N] , k ∈ [1, K].
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4.6. Proposed Optimization Algorithm

The proposed algorithm for problem P1 is given in Algorithm 1, and the initialization parameters
are set as follows, the initial trajectory U0 of the UAV is a circle with a center of ST and radius of VmaxT

4π .
The initial transmission and broadcast power of the UAV are P0

I [1] = 0,P0
I [n] =

1
2 Pmax

I , n ∈ [2, N], and

P0
E [n] =min

(
QE
T , Pmax

E

)
, n ∈ [1, N], respectively. The initial transmission power of the k-th buoy is

P0
k [1] = 0, P0

k [n] =min
(

Ek [n] +
Bk [0]
N−1 , Pmax

k

)
, n ∈ [2, N], k ∈ K.

In the BCD method, the optimization variables in the original problem P1 are partitioned into five
blocks, and the optimization order affects not only the convergence speed but also the robustness of
the algorithm [38]. In this paper, we first optimize the time slot resource allocation scheme δk [n] for
the following reason; in the block of subslot allocation optimization, the objective function is linear
and the constraints (15), (22), (28), and (29) are affine with δr

k, and there is no strong constraint; as
a comparison, the trajectory is constrained by the flight speed and the power distribution is subject
to the total energy and a maximum power constraint. Therefore, the time slot resource allocation is
flexible compared to other optimization targets.

Notably, unlike the classic BCD method, which requires the exact optimal solution of the
subproblems in each block for global optimization [38], the SCA-enabled BCD allows nonconvex
subproblems to be approximated as convex problems: the approximate subproblems update each
block of variables with a near-optimal solution. Moreover, the SCA-enabled BCD can be guaranteed
to converge to a suboptimal solution when the objective value of P1 with the solutions obtained by
solving the subproblem with proper optimization sequence is nondecreasing over iterations and the
optimal value of P1 must be finite [15,40]. According to the above theories, the convergence of the
algorithm proposed in this paper can be proved as follows.

First, in iteration r (r ≥ 1) of Algorithm 1, define φ
(
δr

k, Pr
I , Ur, Pr

E, Pr
k
)

as the objective value of

problem P1, and φ
(

δr+1
k , Pr

I , Ur, Pr
E, Pr

k

)
as the objective value of subproblem P2.1. We have the

following inequality,

φ (δr
k, Pr

I , Ur, Pr
E, Pr

k ) ≤ φ
(

δr+1
k , Pr

I , Ur, Pr
E, Pr

k

)
, (51)

because δr+1
k is the optimal solution to problem P2.1. Second, as δr+1

k can maintain the information
forwarding constraint (28) under Pr

I , for given δr+1
k , Pr

I , Ur, Pr
E, Pr

k in step 4, we have

φ
(

δr+1
k , Pr

I , Ur, Pr
E, Pr

k

)
≤ φ

(
δr+1

k , Pr+1
I , Ur, Pr

E, Pr
k

)
, (52)

because Pr+1
I is the most energy-efficient UAV forwarding power. Third, for given δr+1

k , Pr+1
I , Ur, Pr

E, Pr
k

in step 5, it follows that

φ
(

δr+1
k , Pr+1

I , Ur, Pr
E, Pr

k

)
(a)
= φlb

(
δr+1

k , Pr+1
I , Ur, Pr

E, Pr
k

)
(b)
≤ φlb

(
δr+1

k , Pr+1
I , Ur+1, Pr

E, Pr
k

)
(c)
≤ φ

(
δr+1

k , Pr+1
I , Ur+1, Pr

E, Pr
k

)
,

(53)

similar to the nondecreasing nature of SCA in UAV trajectory demonstrated in [13,37], (53a) holds
because the first-order Taylor expansions in (38), (41), and (44) are tight at the given local points,
respectively; (53b) holds because Ur+1 is the near-optimal solution for P4.2; and (53c) holds because
the objective value of P4.2 is the lower bound of that of its original problem P4 at Ur+1. In addition,
for given δr+1

k , Pr+1
I , Ur+1, Pr

E, Pr
k in step 6, it follows that

φ
(

δr+1
k , Pr+1

I , Ur+1, Pr
E, Pr

k

)
=φ

(
δr+1

k , Pr+1
I , Ur+1, Pr+1

E , Pr
k

)
, (54)
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as Pr+1
E can ensures the energy consumption constraint (15), it will not affect the current results

immediately as shown in (55), but it can prepare for the next optimization of Pr
k . Given

δr+1
k , Pr+1

I , Ur+1, Pr+1
E , Pr

k , we have

φ
(

δr+1
k , Pr+1

I , Ur+1, Pr+1
E , Pr

k

)
(a)
= φlb

(
δr+1

k , Pr+1
I , Ur+1, Pr+1

E , Pr
k

)
(b)
≤ φlb

(
δr+1

k , Pr+1
I , Ur+1, Pr+1

E , Pr+1
k

)
(c)
≤ φ

(
δr+1

k , Pr+1
I , Ur+1, Pr+1

E , Pr+1
k

)
,

(55)

which can be similarly shown as in (53). Based on (51)–(55), we finally obtain

φ (δr
k, Pr

I , Ur, Pr
E, Pr

k ) =φ
(

δr+1
k , Pr+1

I , Ur+1, Pr+1
E , Pr+1

k

)
, (56)

which means that the objective value of problem P1 is nondecreasing over iterations in Algorithm 1,
and a suboptimal solution can be obtained through iteration.

Based on the above analysis, the subslot allocation scheme, the UAV transmission power, the BR
transmission power, the UAV trajectory, and the UAV broadcast power are alternately optimized by
solving problems P2.1, P3, P4.2, P5.1, and P6, while keeping the other four blocks of variables fixed.
Finally, a feasible suboptimal solution of the original problem P1 can be obtained.

Algorithm 1 Successive Convex Optimization Algorithm

1: Initialize Pr
I , Ur, Pr

E and Pr
k , let r = 1.

2: repeat
3: Solve problem P2.1 for given

{
Pr

I , Ur, Pr
E, Pr

k
}

and obtain the optimal solution as δr+1
k .

4: Solve problem P3 for given
{

δr+1
k , Pr

I , Ur, Pr
E, Pr

k

}
and obtain the optimal solution as Pr+1

I .
5: Solve problem P4.2 for given

{
δr+1

k , Pr+1
I , Ur, Pr

E, Pr
k

}
and obtain the optimal solution as Ur+1.

6: Solve problem P5.1 for given
{

δr+1
k , Pr+1

I , Ur+1, Pr
E, Pr

k

}
and obtain the optimal solution as Pr+1

E .
7: Solve problem P6 for given

{
δr+1

k , Pr+1
I , Ur+1, Pr+1

E , Pr
k

}
and obtain the optimal solution as Pr+1

k .
8: until The fluctuation of the objective value is below a threshold 0 ≤ DBU

min (r + 1)− DBU
min (r) ≤

ε, ε > 0.

5. Numerical Results

In this section, numerical results are provided to evaluate the performance of the proposed
algorithm. For the convenience of demonstration, consider a system with |K|= 9 ground terminals
that are randomly and uniformly distributed within 160,000 square meters, and the following results
are obtained from one random case of the buoy’s location.

The parameter settings in this article are as follows; the peak energy broadcast power of the
UAV is Pmax

E = 30 W, and the available energy of the UAV in the WET phase for each flying period
is QE= 1 Wh. The peak forwarding power of the UAV is Pmax

I = 1 mW. The peak transmit power
of the buoys in the WIT phase is set as Pmax

k = 0.5 mW, and Equation (12) can be used to obtain
Rthr = 0.012 bps/Hz. The energy harvesting efficiency of all buoys is η = 0.55, and the length of the
time slot is ∆ = 1 s. The receiver noise power is assumed to be σ2=− 90 dBm. The communication
bandwidth is B = 1 MHz. The channel power gain at the reference distance R0 = 1 m of the LOS
channel is set as G0= −30 dB. Finally, the UAV flight altitude is fixed to H = 10 m, and the maximum
speed is Vmax = 5 m/s. We selected the above simulation parameters to verify the performance of the
algorithm proposed in this paper for the following reasons.

First, there are few obstructions between surface buoys and the UAV except for islands, reefs, or
ships. Therefore, without losing generality, the LOS channel between surface buoys and the UAV can
adopt the parameters that have been widely adopted in related papers [22–29].
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Second, the flying height and speed of the UAV usually depend on the height of obstacles and
the level of wind speed [41]. As there are few obstacles on the sea surface and the sea wind in high
altitude is stronger, the numerical simulation assumes a flight speed of 5 m/s and a flight height of
10 m, so as to ensure the safe flight of the UAV while efficiently transmitting energy to the buoys [7,15].

Finally, in the U-WPRN proposed in this paper, the energy broadcast node and energy collection
module produced by Powercast are installed on the UAV and buoys, respectively [42]. The UAV
provides energy broadcasting and information relay services to the buoys in the coverage area
periodically, and landing on the ship for charging in spare time. As the lifetime of the UAV depends
on the capacity of the battery, and the load capacity of the UAV is usually a few kilograms, the cruising
time of the UAV is about half an hour to two hours after installing the battery and equipment [41].
Therefore, to approach the actual situation and considering the loss of free space, the UAV coverage of
160,000 square meters is selected in numerical simulation.

5.1. Simulation Results for the Case Bk [0] =0

Assuming that all buoys do not have an initial energy reserve, Bk [0] = 0 and k ∈ K, according to
the communication mode selection strategy proposed in this paper; these buoys are marked as BRs
and work in relay transmission mode k ∈ KBR, |KBR| = 9.

Figure 4 shows the UAV trajectory for different periods T. It is observed that when increasing
the period T, the UAV tends to traverse each BR to perform more energy broadcasts and more
information reception. The reason for this phenomenon is that due to the effect of the double near-far
problem, allocating more energy and time slot resources to the BR closer to the UAV can lead to better
performance. To ensure fair throughput of each BR in the flight period, by controlling the UAV energy
broadcast power, BR information transmission power, UAV information forwarding power, and TDMA
time slot allocation, the influence of distance is eliminated, and finally an optimized flight trajectory
is obtained.
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Figure 4. The optimized UAV trajectory for different values of period T for the case Bk [0] = 0.
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When the flight period is T = 500 s, Figure 5a shows the UAV trajectory and Figure 5b gives the
flying speed. It can be clearly seen that when the UAV passes over the BR, it tends to reduce the flight
speed to better serve the BR, while in the BR-intensive area, the UAV will intermittently reduce the
flight speed, thereby improving the service quality of the area. Notably, when the UAV passes over
the BR7, there is no deceleration because the BR7 is farther from the other BRs. At this time, the UAV
will choose to fly quickly and compensate the BR7 in other ways (e.g., improve the UAV broadcast
power PE [n] and forward power PI [n] and allocate more subslot length δ0 [n] , δ7 [n]) to achieve the
optimization goal of this paper; that is, the overall minimum throughput is maximized.
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Figure 5. The optimized UAV trajectory and flying speed when T = 500 s, Bk [0] = 0.

Figure 6 shows the minimum achievable throughput of the BRs and the UAV forward throughput
under different periods for the case of Bk [0] =0. It is clear from the above figure that the system
performance increases with the flight period, especially when T = 240 s. The reason for this
phenomenon can be obtained by analyzing the trajectory, as shown in Figure 4. In the four preset
flying periods, the UAV can traverse most buoys when T = 240 s; as a comparison, only a few buoys
are traversed. In addition, due to the characteristics of U-WPRN, the ability of BR to collect energy
and transmit information mainly depends on the LOS channel; specifically, it depends on the distance
between UAV and BR, which means that the larger the period T is, the closer the UAV can be to the BR.
Therefore, with the increase in the flight cycle T, the system performance presents nonlinear growth.
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Figure 6. Performance comparison of different periods T for the case Bk [0] = 0.
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5.2. Simulation Results for the Case Bk [0]> 0

Normally, the buoys in the U-WPCN system have nonzero stored energy before transmission,
Bk [0]>0 and k ∈ K. Thus, after using the WIT-phase buoy communication mode selection strategy,
the buoys are assigned to two communication modes during the WIT phase and we have |KBR| = 6.
For a clearer representation, the initial energy Bk [0] of the buoys is expressed as a form associated
with the energy threshold EDT

k , which was given in Equation (8). In the simulation of this chapter, the
parameter is

{
BRj

}
= {0.1, 0.2, 0.3, 0.7, 0.4, 0.5} ∗ EDT

j and {BDi} ≥ EDT
i .

Based on the above conditions, Figure 7 shows the optimized trajectory obtained by the proposed
algorithm under different periods. The UAV prioritizes the relay service for the BRs based on the
energy reserve and the location relationship of the BR. In Figure 4, the UAV provides fair service for
all buoys; however, in Figure 7, the UAV neither provides WIT-phase relay services for energy-rich
BDs nor changes trajectories and power allocations for the BDs during the WET phase. Therefore, in
Figure 8, benefiting from the pertinence of the UAV resource allocation, the buoy selection mechanism
steadily improves the performance of the BRs with an increase in the flight period.
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Figure 7. The UAV trajectories of different periods T for the case Bk [0] > 0.

Figure 9 shows the convergence performance of the proposed algorithm. Clearly, the convergence
rate is proportional to the flight period T, and there is always a difference in throughput in different
periods. The reason is that if the fixed sampling interval is 1s, the larger the flight period is, the greater
the number of time slots that need to be optimized; similarly, an increase in computational complexity
means that more resources can be utilized and optimized, which can result in better performance.
In addition, when the iteration period is large enough, the algorithm will eventually stabilize, and the
resource allocation scheme with optimal system throughput can be obtained.

Figure 10 shows the convergence performance of the successive convex optimization algorithm
under different optimization orders. As the algorithm proposed in this paper contains five subproblems,
there are theoretically 120 different optimization sequences, and Figure 10 selects four representative
sequences for comparison. T, I, K, U, and E represent the optimization sequence of the time slot
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allocation, the UAV transmission power, the BR’s transmission power, the UAV trajectory, and the
UAV broadcast power, respectively. As shown in Figure 10, when the time slot resource is optimized
first and the UAV trajectory optimization is placed at the end, the algorithm can approach convergence,
but the convergence speed is not quick enough. As a comparison, optimizing the UAV broadcast
power after optimizing the trajectory can improve the convergence speed. The reason is that the UAV
broadcast power optimization problem is designed to maximize the minimum energy collected by
the BRs, which is affected by the current UAV trajectory and the time slot allocation scheme. Thus,
optimal E after T and U can achieve better performance in each iteration cycle. In addition, as the
trajectory optimization is strictly limited by the flying speed of the UAV, the solution space is more
limited than the time slot optimization. Furthermore, the optimization T is constrained by (28); (28) is
a strict equality constraint, which poses a substantial challenge to the problem of optimizing T. Based
on the above consideration, if U is performed immediately after T or U is placed before T, errors may
easily occur.
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Figure 9. Convergence comparison of the BRs’ minimum throughput under different iterations for the
case Bk [0]> 0.

Figure 11 shows the performance comparison when evaluating algorithms proposed in this
paper to optimize four of the five potential targets. Notably, the worse the optimization result is, the
more important the variable that represents no optimization. It can be seen that when optimizing
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the remaining four items and ignoring subslot optimization, the system performance is the worst.
The reason is that the subslot allocation scheme has a great impact on system performance due to the
TDMA protocal. In addition, as the LOS channel conditions depend on the distance, optimizing the
UAV trajectory can significantly improve system performance.
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Figure 10. Convergence performance comparison of different optimization orders for the case
Bk [0]> 0, T = 240 s .
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5.3. Comparison of Optimization Results between Bk [0] =0 and Bk [0]>0

Figure 12 shows the optimization results of the system in the case of Bk[0] = 0 and Bk[0] > 0 when
T = 240 s. First, by comparing the allocation of sub-timeslot resources in Figure 12a,b, it can be seen
that when Bk[0] = 0, the time slots are mainly used for UAV energy broadcasting; however, when
Bk[0] > 0, certain time slots are used more for UAV information forwarding. Then, Figure 12c,d shows
the information transmission power allocation optimization schemes for buoys in different energy
conditions. When Bk[0] = 0, there is a significant fluctuation in the power allocation of the buoy due to
the energy harvesting situation. As a comparison, when Bk[0] > 0, the information transmission power
allocation of the BR is relatively stable. Furthermore, for ease of description, the UAV information
forward power after logarithmic transformation is given in Figure 12e and Figure 12f, respectively.
Finally, the UAV broadcast power optimization results are given in Figure 12g,h. Obviously, when
Bk[0] = 0, the closer the UAV is to the buoy, the higher is the energy broadcast, and when Bk[0] > 0,
the UAV energy broadcast power is higher at the first sampling instance and subsequently remains in
a stable state.
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(a) subslot optimization when Bk [0] = 0. (b) subslot optimization when Bk [0] > 0.

(c) buoy transmit power optimization when Bk [0] = 0. (d) buoy transmit power optimization when Bk [0] > 0.
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(e) UAV forward power optimization when Bk [0] = 0.
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(f) UAV forward power optimization when Bk [0] > 0.
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(g) UAV broadcast power optimization when Bk [0] = 0.
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(h) UAV broadcast power optimization when Bk [0] > 0.

Figure 12. Optimization results of Bk[0] = 0 and Bk[0] > 0 when T = 240 s.
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6. Conclusions and Future Work

In this paper, a U-WPRN with a buoy communication mode selection strategy has been
investigated, in which the UAV acts as a flight power station and an information relay node and
improves service for energy-poor ocean buoy networks. The UAV trajectory, the UAV broadcast and
transmission power, the buoys’ transmission power and the time slot allocation in the TDMA protocol
are jointly optimized to maximize the minimum throughput for energy-short buoys. To solve the
nonconvex problem, the original optimization problem is divided into five subproblems and solved
by alternating optimization and successive convex optimization techniques. Due to the convergence
of the algorithm, a feasible suboptimal solution can be efficiently obtained by the proposed strategy.
Numerical results demonstrate the efficiency of the proposed algorithm in different scenarios.

In the study of U-WPRN construction, the aim of this paper was to maximize the minimum
throughput of the buoys during the flight period and to further mitigate the effects of the double
near-far phenomenon and energy shortage for the U-WPRN. However, compared with hovering
UAVs, due to the cyclical tendency of resource allocation, flying UAVs cannot guarantee the
real-time communication data rate of the buoys, and hovering UAVs cannot achieve high-throughput
performance. In addition, the mobility of the buoy nodes in the UAV flight period is not considered
in this paper. In reality, the position of the buoy node is highly susceptible to water velocity, wind
speed, and other environmental and human influences, which means that the update and prediction
mechanism for the buoy’s position and wireless traffic can further improve the stability of the
system [43]. Therefore, designing a buoy position prediction algorithm, constructing a multi-UAV
cooperative network, and coordinating the relationship between hovering and cruising in the UAV
cluster provide many opportunities for further research.

In addition, as this paper uses the SCA technique to approximate nonconvex subproblems as
convex problems, the approximate accuracy of the solution in each block cannot be guaranteed, and
it will directly affect the convergence speed and the quality of the obtained suboptimal solution.
Analyzing the geometric characteristics and quadratic structure of the objective function to find
a concave surrogate function that has better curvature than the first-order Taylor expansion is a
promising direction to explore the global optimal solution in the joint UAV trajectory and power
control problem.
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