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Abstract: The AI community has been paying attention to submodular functions due to their various
applications (e.g., target search and 3D mapping). Learning submodular functions is a challenge since the
number of a function’s outcomes of N sets is 2N . The state-of-the-art approach is based on compressed
sensing techniques, which are to learn submodular functions in the Fourier domain and then recover
the submodular functions in the spatial domain. However, the number of Fourier bases is relevant to
the number of sets’ sensing overlapping. To overcome this issue, this research proposed a submodular
deep compressed sensing (SDCS) approach to learning submodular functions. The algorithm consists of
learning autoencoder networks and Fourier coefficients. The learned networks can be applied to predict
2N values of submodular functions. Experiments conducted with this approach demonstrate that the
algorithm is more efficient than the benchmark approach.
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1. Introduction

AI and robotics communities have been paying more attention to submodularity (see Definition 1 and
Figure 1) due to its variant applications (e.g., information collection [1], task assignment [2], and target
search [3]) and theoretical guarantees of solutions. The advantage of formulating a problem as maximizing
submodular functions is that greedy algorithms can give theoretical guarantees under cardinality [4],
knapsack [5], and routing constraints [6]. Moreover, if the objective function is under the cardinality
constraint, greedy algorithms can generate solutions over (1− 1/e) of the optimum [4]. Unless P = NP,
no polynomial-time algorithms can outperform greedy approaches [7].

Definition 1 (Submodularity (Nemhauser et al., 1978)). Given a finite set S={1,2,...,N}, a submodular function
is a set function F : 2N → R which satisfies the diminishing return property. For every SA, SB ⊆ S with SA ⊆ SB
and every s ⊆ S, F(SA ∪ s)− F(SA) ≥ F(SB ∪ s)− F(SB) holds.

To illustrate the concept of submodularity, an example is shown in Figure 1. There are three ground
sets (S = {1, 2, 3}). SA = {1} and SB = {1, 2} represent the selected two sets, respectively. The set
SB = {1, 2}means that the sensors are selected at location 1 and 2. F(SA) and F(SB) mean the coverage
of sensor at location 1 and {1, 2} (see Figure 1a,b), respectively. The submodular gain of SA and SB
after adding a set s = {3} is represented by the red dashing lines (see Figure 1c). It is obvious that the
coverage function satisfies the diminishing return property. In other words, the objective function of
maximizing coverage is submodular. Greedy approaches can generate near-optimal solutions even if this is
an NP-hard problem [4,7].
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(a) F(SA) (b) F(SB) (c) F(SA ∪ s)− F(SA) and F(SB ∪ s)− F(SB)

Figure 1. Illustration of submodularity. The decimal number represents the selected sensor. The blue
and white colors represent the covered and uncovered areas, respectively. (a) F(SA) represents the area
covered by SA, where SA = {1}. (b) F(SB) represents the area covered by SB, where SB = {1, 2}. (c) The
red dash lines represent the submodular gain after adding s, where s = {3}. The left figure shows the
F(SA ∪ s)− F(SA) and the right figure shows that F(SB ∪ s)− F(SB).

Although submodularity sheds light on solving NP-hard problems with theoretical guarantees, the
submodular functions are unknown for most of the applications. Therefore, submodular functions need
to be learned via real-time sensor data. Learning submodular functions is a challenging problem in
machine learning, since there are 2N values based on binary values of N discrete sets. In [8], the authors
proposed Fourier sparse set functions (FSS) to learn submodular functions using compressed sensing
techniques [9]. However, the number of Fourier bases is still 2N . In [3], the authors found the relationship
between the set configuration and sparsity of Fourier bases. If there is no sensing overlapping between
two sets, the value of its corresponding Fourier basis is zero. Hence, the number of Fourier bases could
be dramatically reduced if there are a few overlapping sets. Then, the compressed sensing is feasible for
learning submodular functions.

The disadvantages of the spatial Fourier sparse set (SFSS) [3] approach are as follows: First, the
precomputation step for computing sets’ sensing overlapping could be time-consuming. Second, the
number of bases is relevant to the number of sets’ sensing overlapping. If most of the sets are overlapping,
the number of the Fourier basis is close to 2N . Third, SFSS adopts Hadamard transform, which has Fourier
bases consisting of +1 and −1. This transform limits the possibility of Fourier support. These shortages
are based on the Hadamard transform which is a linear transform. Deep neural networks could solve
these issues through nonlinear transforms.

This research proposes a submodular deep compressed sensing (SDCS) approach to learn submodular
functions. The proposed approach consists of three stages (see Figure 2). The transformation learning
stage is to learn the nonlinear transform (Θ) via an autoencoder (see Figure 2a), which transfers the data
to the Fourier domain. The Fourier coefficient learning stage is to learn the coefficients ( f ) in the Fourier
domain (see Figure 2b). The reconstruction stage is to predict submodular functions according to any
combinational data and the Fourier coefficients ( f ) (see Figure 2c).

The contributions of this paper are as follows: First, the proposed algorithm can learn submodular
functions via deep compressed sensing techniques. To the best of our knowledge, this is the first work to
learn submodular functions via deep compressed sensing. Second, the nonlinear transformation network
is learned for training data. In other words, the algorithm teaches the decoder networks from data
to generate sparse coefficients ( f ) in the frequency domain. Third, the experiments demonstrate that
the proposed algorithm is able to reconstruct submodular functions with fewer Fourier bases than the
benchmark approach [3].
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(a) Transformation learning stage (b) Fourier coefficient learning stage

(c) Reconstruction stage

Figure 2. The illustration of the deep neural networks for submodular functions. (a) Transformation
learning stage: In this stage, the goal is to train the decoder networks through input signal (F1:M

m ). The
input signal F1:M

m is compressed as the Fourier coefficients ( f ) by encoder networks. Then, the f is
decompressed by decoder networks. The decompressed f and combinational inputs generate the estimated
signal (F̂1:M

m ). (b) Fourier coefficient learning stage: In this stage, the goal is to train the Fourier coefficients
( f ). The Fourier coefficients (rt) at time t are decompressed by the decoder networks. The decompressed
f and combinational inputs generate the estimated signal y. Then, the y is computed through ADAM to
get the Fourier coefficients (rt+1) at time t+1 . (c) Reconstruction stage: In this stage, the goal is to predict
submodular functions according to f and combinational input.

The paper is organized as follows. Section 2 describes the related work. Section 3 introduces the
problem formulation and the proposed deep compressed sensing. Section 4 describes the proposed
algorithm. Section 5 describes the experiments. Finally, Section 6 concludes the paper with a summary of
the work.

2. Relevant Work

This section reviews the prior work of sparse regression, learning submodularity, and deep
compressed sensing.

2.1. Sparse Regression

Due to “Big Data” applications, scientists need to analyze millions or billions of data points via
machine learning techniques. If the data has the sparse property, it can be solved efficiently. The objective
function includes loss and regularization terms. The loss term is to minimize the error of estimated data
while the regularization term is to avoid overfitting (e.g., L2 norm) or ill-posed problems (e.g., L1 norm).
Different norms can provide different regularization purposes. For example, L1-norm was proposed to
learn from the data with sparse solutions [10]. Elastic net was proposed to learn from the data and trade-off
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between L1 and L2 norms [11]. Pairwise elastic net (PEN) was proposed to learn from the data with
group sparsity (so called group LASSO) [12,13]. Graphical LASSO was proposed to learn the conditional
correlations between high dimensional variables [14].

Sparse regression not only provides rigid theoretical proofs but also supports various applications.
For example, the compressed sensing technique is to learn from the data in a certain domain and reconstruct
the data in the time or spatial domain with random sampling data [15,16]. Elastic net was applied to select
sensors for maximizing the environmental coverage [17]. Graphical LASSO was applied to analyze human
operators’ search behavior [18,19].

2.2. Submodularity

The set function is submodular if it satisfies diminishing returns property. In [4], the authors show
that if the objective function is submodular, a greedy policy finds the solution of maximizing the objective
function with theoretical guarantees. In [7], the authors further proved that greedy algorithms give
near-optimal guarantees. The applications include sensor placement for indoor temperature prediction [20],
motion planning for collecting lake information using multiple robots [21], and collecting WiFi information
using UAVs [1].

2.3. Learning Submodular Functions

For searching and mapping applications, submodular functions are unknown. The agents need
to learn submodular functions via real-time measurements. In [22], the authors proposed probably
mostly approximately correct (PMAC) learning, which approximates submodular functions through
linear classifiers. However, this approach cannot approximate submodular functions accurately within
polynomial samples. In [8], the authors proposed a compressed sensing technique, which can learn
submodular functions in the Fourier domain and reconstruct them in the spatial domain. Unfortunately,
the number of Fourier bases is still 2N . In [3], the authors proved that the submodular function is sparse
in the Fourier domain when the sets’ sensing is not overlapping in the spatial domain. In other words, the
number of the Fourier basis could be polynomial if the sets were spread out. Hence, this approach shows
that it is possible to learn submodular functions under certain spatial conditions.

2.4. Deep Compressed Sensing

Inspired by the successful applications of deep networks, several deep compressed sensing (DCS)
algorithms have recently been proposed. Those approaches can be divided into three classes. The first
one is a network-based approach. In [23], the DCS reconstructs the original signal with blocks by a
deep fully connected neural network. In [24], the authors apply a stacked denoising auto-encoder (SDA)
with a deep fully connected network to learn the representation from training data and to reconstruct
test data from their CS measurements. In [25–29], the authors propose convolutional architectures for
image reconstruction from low-dimensional measurements. The second one is the frame-based approach.
The DCS learns the parameters of the iterative soft thresholding algorithm (ISTA), the parameters of
the encoder and layer-dependent threshold [30], or the step size of each layer [31]. The third one is a
combination of two classes. In [32], the authors proposed ISTA-Net, which utilizes the advantages of
network-based and optimization approaches to design a learnable deep network framework. Instead
of handcrafting, the parameters of the autoencoder and networks are learned through the ISTA-Net.
This approach inspired us to study whether there are nonlinear transformations which can compress
submodular functions into the Fourier domain.



Sensors 2020, 20, 2591 5 of 19

3. Problem Formulation

In this section, how to learn submodular functions via compressed sensing (e.g., FSS and SFSS) is
introduced [3]. The properties and disadvantages of SFSS are also highlighted. Then, the proposed deep
compressed sensing framework to learn submodular functions is introduced.

Figure 3. Illustration of the compressed sensing concept [3]. (a) FM(m,1) is collected by the system after
taking measurements from a signal F(n,1). The color cells represent real values and black/white cells
represent binary values (0 and 1 in Φ while 1 and -1 in Θ.) (b) The system has FM(m,1) and tries to recover
F(n,1). (c) The signal F is sparse in the Fourier domain. In this example, m is 8, n is 16 and k is 4. Given
Φm,n and FM(m,1), it’s impossible to recover F(n,1) (m < n). But, given Ψ(m,n) and FM(m,1), fB(n, 1) can be
recovered (k < m).

3.1. Learning Submodular Functions via Compressed Sensing

The major difference between compressed sensing techniques for image data and submodular
functions is that the size of image data is fixed while the size of submodular functions is 2N , where
N is the number of the sets. Hence, the challenge of learning submodular functions is that the number of a
function’s outcomes for N sets is 2N . In [8], the authors first proposed Fourier sparse set (FSS) to learn
submodular function using compressed sensing techniques [15,16].

As Figure 3a shows, assume there are N sets and the submodular function is F(n,1), where n = 2N .
The system first acquires a signal from F(n,1) via a sensing matrix Φ(m,n) and collects FM(m,1) for learning,
where m << n. The system has to recover the signal F (see Figure 3b). Notice that this is an ill-conditioned
linear inverse problem. However, if the signal is sparse in certain domains, the system can recover F via
sparse regression [10,33]. As Figure 3c shows, F is the inner product of the transform matrix Θ(n,n) (e.g.,
Fourier transform) and coefficient fB(n,1). The fB(n,1) has only k nonzero values (so called k-support). Since
Θ and Φ are known, the reconstruction matrix Ψ can be computed. Although directly recovering F is
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impossible, the robot can recover fB(n,1) if k < m, and then reconstruct F. The signal recovery formulation
is given as:

f̂B = arg min
fB

1
2
||FM −Ψ fB||2 + λ|| fB||1

where fB is the submodular function in the Fourier domain, FM is a measurement vector of the submodular
function, Ψ is a reconstruction matrix (so called dictionary), Ψ = ΦΘ, and Φ is a sensing matrix and Θ is a
Fourier transform matrix.

However, two combinatorial explosion issues of compressed sensing are as follows: First, since the
size of submodular functions is 2N , it is infeasible to access the whole dataset. Second, since the size of the
Fourier transform matrix is 2N by 2N , it is infeasible to compute all of the spectrum. In [3], the authors
found that if there is no sensing overlap between two sets, the coefficients of its corresponding Fourier
basis are zero. This approach is called spatial Fourier sparse set (SFSS). The SFSS approach utilizes the
sparsity of submodular functions in the Fourier domain to avoid combinatorial explosion issues.

As Figure 4 shows, there are two cases of set configurations. There are four sets (e.g., sensors) in
the environment. The number of submodular function values is 24. The order of set is defined as the
number of selected sets. The number of nth order terms is CN

n , where N is the total number of sets. Hence,
the numbers of 0th, 1st, 2nd, 3rd, and 4th order terms are 1, 4, 6, 4, and 1, respectively. In case A, only
sets 2 and 3 have sensing overlapping. Hence, only f2,3 of the 2nd order terms is non-zero. There is
no overlap between the third and fourth order sets, so the Fourier coefficients of 3rd and 4th orders are
zero. Therefore, the number of non-zero coefficients in case A is 1 + 4 + 1 = 6. In case B, there is sensing
overlapping between all sets, Hence the number of non-zero coefficients in case B is 1 + 4 + 6 + 4 + 1 = 16.
This example demonstrates that utilizing the overlapping relationship can dramatically reduce the number
of Fourier basis from 2N to polynomial numbers if there are a few sensing overlaps between sets.

The major assumptions of SFSS are that if there are a few overlapping sets, the Fourier basis can be
dramatically reduced. If most of the sets have sensing overlapping, the number of Fourier basis is close to
2N . Since the SFSS approach adopts Hadamard transform, this transform limits the possibility of Fourier
basis selections. To solve this issue, finding another transform (e.g., deep neural networks) could lead to
different sparsity in certain domains.

(a) Fourier coefficients in case A (b) Fourier coefficients in case B

Figure 4. Illustration of the sparsity of submodular functions in the Fourier domain. The black and white
areas are obstacles and unoccupied grids, respectively. The black circles and lines represent the robot
position and heading, respectively. The blue dash lines are the covering area of the corresponding robot
position. The colorful and white cells in the bars represent non-zero and zero values, respectively.

3.2. Learning Submodular Functions via Deep Compressed Sensing

The prior research of deep compressed sensing was for image or video applications [23,30–32],
wherein the signal size is fixed. The challenge of deep compressed sensing techniques for submodular
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functions is that the networks must avoid processing the original signal since its size is 2N . Even if N = 50,
the networks cannot save the weighting parameters and compute the forward propagation. Hence, the
key to design SDCS is to estimate the signal in the Fourier domain and then reconstruct the signal in the
spatial domain.

The definition of learning submodular functions via deep compressed sensing is as follows:

Definition 2. Learning submodular functions in the Fourier domain:
Given a finite set S = {1,2,...,N}, submodular data (y), and corresponding set data (X), the learning coefficient

of the submodular function in the Fouier domain ( f ) is: f̂ = min f ||Ψ(X, f ) − y||22 + λ|| f ||1, where Ψ is a
reconstruction function, λ is the parameter to tune the sparsity of f , || · ||2 is the L2 norm, and || · ||1 is the L1 norm.

For example, the given data are N = 3, y = {0.3, 0.4}, and X = {0, 0, 1; 0, 1, 0}. That means there are
three sets. When the third set is selected (X = {0, 0, 1}), its submodular value is 0.3 (y = 0.3). When the
second set is selected (X = {0, 1, 0}), its submodular value is 0.4 (y = 0.4). In fact, this is an ill-conditioned
case, since the number of the unknown variable is 23 and the number of measurements is 2. However, if
the submodular function in the Fourier domain is sparse, it is possible to learn it in the Fourier domain
first and then reconstruct it in the spatial domain. Hence, the goal is to find the submodular function in
the Fourier domain ( f ) first through given X and y.

Definition 3. reconstruction of submodular functions in the spatial domain:
Given a finite set S = {1,2,...,N} and corresponding set data (X), the reconstruction of submodular functions in

the spatial domain (y) is: y = Ψ(X, f ).

For example, N = 3, f = {0.7, 0.1, 0, 0.2, 0, 0, 0, 0}, and X = {0, 0, 1; 0, 1, 0}. The submodular values
can be reconstructed through the given f and Ψ function.

The major problems of learning and reconstruction of submodular functions are as follows: First, what
is the Fourier transform (Θ), which makes submodular functions sparse? Second, what is the submodular
function in the Fourier domain ( f )? Third, how can one reconstruct the submodular function (F) through
( f )? To solve these problems, this research proposes submodular deep compressed sensing (SDCS) to
learn submodular functions. There are three stages of SDCS: transformation learning, Fourier coefficient
learning, and reconstruction.

In the transformation learning stage (see Figure 2a), the goal is to train the autoencoder, which consists
of encoder and decoder networks. The input data is the submodular data of a measurement set in different
environments (F1:M

m ), where F denotes submodular values, m denotes the size of measurements, and M
denotes the number of the environments. Each submodular datum also encodes the set combination.
The data connect to the L layers encoder (θ̃) and the encoder outputs to the Fourier coefficients ( f ).
The Fourier coefficients ( f ) connect to the L layers decoder (θ) and the decoder outputs to the weighting
networks (W). The combination data (X) are an n by m matrix. This matrix (X) and the weighting
networks (W) output the estimated submodular values F̂1:M

m . Mathematically, the transformation is:
F̂1:M

m = W(X, θ( f )) = Ψ(X, f ), where Ψ is the reconstruction function, which reconstructs the submodular
values given the corresponding f and X. The objective function of transformation learning stage is:

minθ,W ||Ψ(X, f )− F1:M
m ||22 (1)

In the Fourier coefficient learning stage, the Fourier coefficients (rt) at time t connect to the decoder
(θ). The decoded data (θ( f )) and the weighting networks (W) with combinational input (X) generate the
predicted submodular data (y). The y is optimized via ADAM and updated as rt+1. There are k phases in
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this stage. The loss function of this stage is:

min f ||Ψ(X, f )− y||22 + λ| f | (2)

In the reconstruction stages, the learned Fourier coefficients ( f ) are decoded by the decoder Θ.
The decoded data Θ( f ) and the weighting networks (W) with combinational input (X) generate the
reconstruction data (y).

y = W(X, Θ( f )) = Ψ(X, f ) (3)

4. SDCS Algorithm

There are three algorithms for learning and recovering submodular functions: transformation learning,
Fourier coefficient learning, and reconstruction.

In the transformation learning stage (Algorithm 1), the transformation is an autoencoder based
framework with fully connected neural networks (FCN) or convolutional neural networks (CNN).
The training data are the submodular data from a measurement set (F1:M

m ), which include m data in
different M environments and their corresponding set combinations (X). The weighting vector in the
last layer of a decoder is the output of another weighting network (W) whose input is X. All weights in
each layer of an autoencoder and W are initialized as a normal distribution. Lines 4–7 show one epoch
of the training step. The number of epochs is 3000 and the batch size is 100. Line 5 is to do forward
propagation from the batch data. Line 6 is to calculate the loss function (see Equation (1)), and adjust the
model parameters via the Adam optimization. After training, all weights and biases are saved for learning
Fourier coefficients.

In the Fourier coefficient learning stage (Algorithm 2), the goal is to learn f through training data.
The training data are the submodular data from a measurement set (Fm). Notice that the measurement
data are from the same environment to ensure the parametrical consistency of the neural networks.
Line 4 is to run soft-thresholding for computing sparse f with the threshold (λ). Line 5 is to compute
submodular function values based on current f . Line 6 is to update f according to data (Fm and X) and
Adam optimization (see Equation (2)). After training, the f is saved for the reconstruction of functions.

In the reconstruction stage (Algorithm 3), the goal is to predict F given any combination set (X). Line
3 shows that the neural networks process the set (X) and f to predict the submodular values. The major
difference between compressed sensing for image data and submodular functions is that the data size
of submodular functions is 2N . Hence, in the reconstruction step, it is infeasible to reconstruct all values
of submodular functions. Algorithm 3 shows that the neural networks only predict submodular values
according to the input set (X).



Sensors 2020, 20, 2591 9 of 19

Algorithm 1: Transformation learning.

1: Input: F1:M
m , corresponding set combination X

2: Initial weights in the encoder (τ0
e ), decoder (τ0

d ) and W (τ0
W)

3: for e=1:epoch do

4: for b=1:](batches) do

5: (F̂batch(b)
m )n = W(X, θ(θ̃(Fbatch(b)

m , τn
e ), τn

d ), τn
W)

6: τn+1
e , τn+1

d , τn+1
W = AdamOptimizer( ||(F̂batch(b)

m )n − Fbatch(b)
m ||22 )

7: end for

8: end for

9: Save trained τe, τd, τW

Algorithm 2: Fourier coefficient learning.

1: Input: FMi
m , X, trained τd, τW , threshold λ

2: Initial Fourier coefficients (γ0)

3: for e=1:epoch do

4: f n = so f t(γn, λ)

5: (F̂Mi
m )n = W(X, θ( f n, τd), τW)

6: γn+1 = AdamOptimizer( ||(F̂Mi
m )n − FMi

m ||22 )

7: end for

8: Save trained f

Algorithm 3: Reconstruction.
1: Input : Set combinations X, Trained f , τd, τW

2: Output : submodular values (F) corresponding to input combinations (X)

3: F = W(X, θ( f , τd), τW)

5. Experiments

The goal of the experiment is to evaluate the learning performance of the proposed algorithm (SDCS)
and compare with the prior work (SFSS) [3]. The adopted performance metrics are the mean error of
estimated coverage, the results of the greedy algorithm, and the number of Fourier support (non-zero
coefficients). For each approach, the number of all subgoals |S| is 54. The subgoal configuration (see
Figure 5) illustrates the performances of three approaches in the experiments. Selecting the optimal
solutions of three approaches is infeasible, since it needs to compute |54|G solutions where G is the number
of selected subgoals. The coverage of selected subgoals of three approaches is compared with G = 15 in
Section 5.3. Hence, the greedy algorithms are adopted for the three approaches to finding near-optimal
solutions [7]. In Section 5.1 the experimental setup is described. In Section 5.2 the reconstruction results
and sparsity of three approaches are compared. In Section 5.3, the greedy results of three approaches are
compared. In Section 5.4, the computational time of three approaches is compared.
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Figure 5. The subgoal configuration in the experiment. The red points represent the subgoal locations. The
black and white grids represent the occupied and unoccupied grids, respectively. The blue areas and red
lines represent the areas covered and field of view, respectively. The sensor-covered radius is 75 and the
distance between subgoals is 20.

5.1. Experimental Setup

The maps and subgoals configurations are as follows: The experimental environments are 300× 300
grid maps (see Figure 6). The Map-1 is adopted for training Θ. Map-0 is adopted for training f and testing
reconstruction results. The subgoal configuration is shown in Figure 5. The range and field of view for
each subgoal are 75 and 60◦, respectively. There are nine subgoals with six directions for each subgoal (i.e.,
there are 54(9× 6) subgoals). The distance of two adjacent subgoals is 20.

The training data are collected by 3000 set combinations, which are randomly selected.
The distributions of each subgoal’s frequency and the order of the combinations are shown in Figure 7.
There are 500 different training maps (see Figure 8) which are randomly generated obstacles in Map-1.
The input dimension of the transformation learning stage is 100× 3000 in every batch.

(a) Map-0 (b) Map-1

Figure 6. The experimental environments. The black and white grids represent the occupied and
unoccupied grids, respectively. (a) A grid map built in a Lab environment. (b) A grid map without
any obstacles.
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(b) Frequency vs. Order

Figure 7. The distribution of 3000 test data. The sugoal is chosen uniformly, and the order is normal.

Figure 8. The training data for the transformation stage. The black areas represent different obstacles in
each map.

Since the network structures of the Fourier coefficient learning and reconstructions stages are similar
to that of the transformation learning stage, the network structures of the transformation learning stage
are explained as follows (see Figure 9): This stage includes an autoencoder, weighting networks (W), and
combinational networks. The autoencoder is implemented by two network structures, a fully connected
neural network (FCN) and a convolutional neural network (CNN).

The structure of the FCN autoencoder is as follows (see Figure 9a): In the encoder, there are three
hidden layers, and the dimensions of each layer are 1500, 1000, and 500, respectively. The dimension of
transformed coefficients ( f ) is 400. In the decoder, there are three hidden layers but the dimensions are
converse. The activation functions of each layer are hyperbolic tangents except the output layers of the
encoder and decoder. The output layer’s activation function of the encoder is a soft-threshold function
with λ = 0.01, while that of the decoder is a sigmoid function. In the weighting network (W) of the decoder
output layer, the dimensions are 200, 500, and 1000. The output dimension is the same as the output layer
of the decoder. The transpose of this part’s output (see “T” in Figure 9) is the weights of the output layer
in the decoder.

The structure of the CNN autoencoder is as follows (see Figure 9b): The first layer and the output
layer are fully connected. There are four convolution layers in the encoder and four deconvolution layers in
the decoder. In each hidden layer, the filter size of a channel is 1 × 6 and the stride is 1 × 4. The activation
functions in the output layer of encoder and decoder are soft-threshold functions with λ = 0.01 and
sigmoid function, respectively. The numbers of filters in each layer in the encoder are 16, 32, 64, and 64.

In the experiment, all of the weights of each layer are initialized in a truncated normal distribution
(∼N(0, 0.07)) and the biases are set as 0.05. The epoch of the transformation training stage is 3000 while
that of the Fourier coefficient training stage is 1000. The prediction errors are computed by 5000 different
set combinations (Figure 10) in Map-0.
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SDCS is implemented via Tensorflow in Python while SFSS is implemented via sklearn package
in Python. All the experiments are performed on a workstation with Intel Core i7-8700k CPU and
GTX2080Ti GPU.

(a) Fully Connected Network (FCN)

(b) Convolutional Neural Network (CNN)

Figure 9. The frameworks of the transformation learning. This stage includes an autoencoder, weighting
networks (W), and combinational networks.
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Figure 10. The distribution of 5000 test data. The subgoals are chosen uniformly, and the order of subgoals
is normal.

5.2. Reconstruction Results vs. Sparsity

In this experiment, the distance between two adjacent subgoals is 20, and the number of Fourier basis
b of SFSS is 9852; it is decided by the algorithms in [3]. The number of bases (| f |) of SDCS-CNN and
SDCS-FCN is 384 and 400, respectively. The different thresholds (λ) are tested to get the reconstruction
in the Fourier coefficient learning stage. The thresholds are set as follows: SDCS-CNN: [1× 10−5, 0.001,
0.005, 0.01, 0.05, 0.1, 0.15]; SDCS-FCN: [1× 10−5, 0.0005, 0.001, 0.005, 0.01, 0.02]; SFSS: [1× 10−5, 0.001,
0.0015, 0.002, 0.0035, 0.005, 0.01]. As Figure 11 shows, when the number of non-zero elements in f is lower
than 400, the mean error of SDCS-FCN and SDCS-CNN is lower than that of SFSS. These experiments
demonstrate that SDCS approach is able to reconstruct submodular functions using fewer Fourier bases
than the SFSS approach does.
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Figure 11. When the distances of two adjacent subgoals are 20, the figure shows the k-sparse in transferred
coefficient vs. mean error between reconstructed result and ground truth in Map-0 and two different
numbers of measurements. The reconstruction resulted in 500 and 1000 measurements in Map-0 (Figure 6a).

5.3. Greedy Results vs. Sparsity

The reconstruction results having lower errors does not mean that the coverage of selected subgoals
(so called greedy results) is higher. The k is defined as the number of the non-zero Fourier coefficients.
The test data are 1000 measurements in Map-0 (see Figure 12). The reconstruction error and greedy results
of three approaches are further compared with different λ parameters.

As Figure 12a shown, when the reconstruction error of three approaches is around 0.01, their greedy
results are similar. The number of non-zero elements of SDCS-CNN is just 38, which is smaller than that of
SDCS-FCN and SFSS. The coverage area in the Map-0 of each approach is shown in Figure 13. The greedy
results of SDCS approach are similar to those of SFSS, while the k of SDCS is lower than that of SFSS
(38 vs. 408).
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As Figure 12b shows, the reconstruction’s mean error is still around 0.01 when the λ of SDCS-CNN
increases from 0.14 to 0.15 and λ of SDCS-FCN increases from 1× 10−5 to 0.0005, but SDCS-FCN greedy
results are worse. The coverage area is shown in Figure 14. The experiments in Figure 12a,b demonstrate
that the greedy results of SDCS-CNN are more stable than that of SDCS-FCN. In other words, CNN is
more suitable for SDCS framework than FCN.

As Figure 12c shows, the performances of the three approaches with the smallest λ values in Section
5.2 were compared. SFSS has the lowest reconstruction mean error, but the k is the biggest (1014). Although
the reconstruction error of SDCS-CNN is more than that of SFSS, the greedy results of three approaches
are similar. This experiment demonstrates that SFSS can be replaced by SDCS-CNN (see Figure 15).

5.4. Computational Time

In this experiment, the execution time for the three approaches is calculated. All approaches are
implemented via Python on a workstation. The time of training transform and collecting the training data
in SDCS and the time of finding the basis in SFSS are not considered. The execution time includes learning
the Fourier coefficients and reconstruction. We calculate the time to find 30 subgoals using the greedy
algorithm to represent the reconstruction time. There are seven different thresholds (1× 10−5, 0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05). For each approach with each threshold, we compute the execution time 10
times and calculate the mean and the variance of them. Figure 16 shows that SFSS needs more time to find
the coefficient and do reconstruction, since the Ψ matrix is computed by sampling and basis combination
where the basis is 9852 in this experiment. Hence, SDCS is faster than SFSS when the Fourier basis is large.
This experiment shows that SDCS is more efficient than SFSS when most of the sets’ sensing areas are
overlapped.
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Figure 12. Cont.
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(b) λSDCS−CNN=0.15;λSDCS−FCN=0.0005;λSFSS=0.002
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Figure 12. Comparison of results of three approaches.
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(a) SDCS-CNN (b) SDCS-FCN (c) SFSS (d) Ground Truth.

Figure 13. Coverage area is shown in Map-0 with Figure 12a. The black and white grids represent the
occupied and unoccupied grids, respectively. The blue grids represent the coverage area of the sensor.
The grid being dark blue means that this grid is covered by at least two sensors. The green circle and red
cross represent the subgoal being selected or not.

(a) SDCS-CNN (b) SDCS-FCN (c) SFSS (d) Ground Truth

Figure 14. Coverage area is shown in Map-0 with Figure 12b.

(a) SDCS-CNN (b) SDCS-FCN (c) SFSS (d) Ground Truth

Figure 15. Coverage area is shown in Map-0 with Figure 12c.
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Figure 16. Computational time of three approaches.

6. Conclusions

In this paper, a deep compressed sensing approach is proposed to learn submodular functions.
The contributions of the research are as follows: First, the proposed algorithm is able to learn submodular
functions via deep compressed sensing techniques. Second, the nonlinear transformation network can be
learned through different data. In other words, the network automatically finds the Fourier domain, which
generates the sparse coefficients ( f ). Third, the experiments demonstrate that the proposed algorithm is
more accurate than the benchmark approach when the number of Fourier bases is 200 ∼ 400.

The future work of this research is as follows: First, spatial search problems are potential applications
of submodular functions. If the proposed algorithm is applied to spatial search, it could improve the
learning efficiency. Second, in most of the compressed sensing approaches, the transformation functions
are given. This research shows a way to learn the transformation functions through data. Finding optimal
Fourier bases (e.g., a minimal number of Fourier bases) is a potential research topic. Finally, since humans
are able to search target environments efficiently, exploring how humans solve search problems is another
way to construct neural networks. A promising approach is to let human subjects remotely control the
robot searching the environment. Then, the networks could be learned via deep inverse reinforcement
learning.
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