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Abstract: The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes
may develop into diabetes if early intervention is not performed. In this study, a deep learning
model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a
non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching
for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet
and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our
method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating
characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group.
Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range
test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy
using ECGs, outperforming existing other machine learning methods; this suggests its potential for
application in clinical practice as a non-invasive, prediabetes diagnosis technology.
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1. Introduction

Diabetes is a set of metabolic disorders pertaining to the body’s regulation of protein, fat, water,
and electrolytes, caused by an absolute or relative insulin deficiency and a decreased insulin sensitivity
of target tissue cells. According to the Global Diabetes Map (9th Edition) released by the International
Diabetes Federation (IDF) in October 2019, approximately 463 million people worldwide have diabetes
(8.3% of the global population) and this number is growing rapidly [1]. In the “Definition and diagnosis
of diabetes mellitus and intermediate hyperglycemia”, published by the World Health Organization
(WHO) in 2006, it was pointed out that impaired fasting glucose (IFG) is produced when fasting plasma
glucose is present with a concentration of 6.1–6.9 mmol/L, but 2-h after a glucose load is of <7.8 mmol/L;
impaired glucose tolerance (IGT) occurs when fasting plasma glucose levels are <7.0 mmol/L but
2-h after a glucose load are 7.8–11.1 mmol/L. The above condition is impaired glucose regulation
(IGR), also known as prediabetes. It is worth noting that IGR exhibits no obvious clinical symptoms.
If it remains undetected and unaddressed, 70% of patients will develop diabetes after a 9–12 year
incubation period [2]. Meanwhile, they are also at increasing risk of cardiovascular and cerebrovascular
diseases, diabetic nephropathy, retinopathy, and neuropathy. Fortunately, the prediabetes phase is
reversible. Studies have shown that lifestyle and drug interventions in patients with IGT can reduce
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the risk of type 2 diabetes by 40–60% [3]. Therefore, it is particularly important to detect IGR early and
take timely measures to reduce the incidence of diabetes.

Traditional blood glucose measurement is a minimally invasive test, though it is limited by many
conditions, such as time, space, and materials. Climatic factors, drug use, excessive consumption
of high-fat foods, long-term constipation, and insufficient drinking water can cause fasting plasma
glucose levels to rise, fall, or fluctuate. Repeated measurements also increase the risk of blood loss
and infection. Axelsen et al. found that pre-diabetic rats—in that diabetes was induced by a high-fat
fructose diet—exhibited prolonged ventricular depolarization time, decreased conduction velocity, and
increased arrhythmia during reperfusion; these were reflected in their ECGs [4]. Yang et al. analyzed a
cross-section of 9988 middle-aged and elderly subjects and found that an increase in resting heart rate
(RHR) was related to IGR [5]. A multi-ethnic cohort study in the United States found that when an
unrecognized myocardial infarction was identified by either a pathological Q wave or a mild Q wave
with ST-T abnormalities in a 12-lead ECG, the risk of myocardial infarction was higher than for people
with normal fasting glucose [6]. Gudul et al. conducted routine and tissue Doppler echocardiography
on IFG-afflicted, IGT-afflicted, and healthy subjects, they found that in patients with prediabetes, the
atrial conduction time and P wave dispersion time measured from the ECG were longer; furthermore,
the mechanical function of the left atrium was impaired after the diastolic function worsened [7].

A study using ECGs to evaluate the effects of autonomic nervous system abnormalities on
prediabetes and blood glucose parameter changes on cardiovascular parameters found that the
time-domain parameters of heart-rate variability were significantly reduced in patients with prediabetes.
The short-term heart-rate variability parameters and blood glucose indexes also showed a significant
negative correlation, indicating that parasympathetic activity of the cardiac autonomic nerve function
was reduced, and that cardiac autonomic nerve dysfunction (CAND) might occur in prediabetics [8].
Moreover, some researchers have employed ECGs to conduct prospective studies of IFG, diabetes, and
the development of IFG into diabetes; they found that long-term IFG can lead to accelerated RHR, ST-T
changes, and arrhythmias. Among them, arrhythmia was predominately a premature atrial contraction,
followed by ventricular premature contraction; thus, it is believed that heart rate measurements can
be used to identify individuals with a higher risk of diabetes in the future [9]. All the above reports
suggest that blood glucose levels are significantly increased in the IGR stage and that complications
such as cardiovascular and diabetic microvascular diseases are already present; however, this is not
typically obvious. Therefore, the recognition of small changes in the ECG can result in a preliminary
diagnosis and screening of prediabetics in asymptomatic but high-risk populations, such as those who
smoke or lead unhealthy lifestyles, or those with a family history of diabetes. We can thereby facilitate
timely lifestyle and drug interventions and reduce these individuals’ risk of developing diabetes.

With the evolution of artificial intelligence (AI), machine learning is becoming more widely used
in precision medicine [10–13]. In a study of ECGs, [14] used deep learning algorithms to classify the
heart rates of patients, achieving encouraging results. A cohort study was conducted in [15], and the
ejection fraction was predicted using 12-lead ECGs and a combination of deep learning algorithms;
the specificity, sensitivity, and accuracy of their system were 86.8%, 82.5%, and 86.5%, respectively,
and this method could effectively detect left ventricular systolic dysfunction. Meanwhile, machine
learning can also be used to extract physiological signals of the human body from ECGs. Sun et al.
trained a convolutional neural network (CNN) to accurately classify sleep patterns from ECGs and
respiratory signals [16]. Simjanoska et al. predicted blood pressure using ECG signals and machine
learning algorithms [17]. It is worth noting that there are currently a few studies on the use of machine
learning to detect diabetes through ECGs or heart rate signals [18–21], which provides a novel idea for
the future promotion of non-invasive diagnostic techniques. However, as of now, we have not found
any report of IGR diagnosis with this method. In the future, with the growing popularity of wearable
ECG-monitoring devices [22,23], disease diagnosis and physiological examinations using machine
learning will become quicker and more convenient; this will be conducive to people’s timely access to
health information and allow for the early detection and treatment of diseases.
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This paper proposes IGRNet, a deep learning model that can automatically diagnose prediabetes
using a 12-lead ECG. The model is a CNN with four convolutional layers and two pooling layers.
To enhance the efficacy of the neural network model, we introduced and compared four activation
functions (rectified linear unit (ReLU), LeakyReLU, exponential linear unit (ELU), and ClippedReLU).
In our experiment, we compared IGRNet against two mainstream models commonly used in ECG
research (AlexNet and GoogLeNet) and three classical machine learning algorithms (support vector
machine (SVM), random forest (RF), and k-nearest neighbors (k-NN)), to highlight the excellent
performance of IGRNet in this task. Next, we further classified the datasets according to the age,
gender, and weight of the subjects, then performed 5-fold cross-validation using sub-datasets of the
same category, to reduce the interference of irrelevant variables on the IGR diagnosis and thus improve
the model. Finally, independent test sets were employed to test the capability of IGRNet, comparing
other models. To our knowledge, this is the first study in which deep learning has been used to
diagnose prediabetes from ECGs.

2. Materials and Methods

2.1. Acquisition and Partitioning of Datasets

The 12-lead ECGs (of 5 s duration) and the corresponding disease information belonging to
electronic health records involved in this project were collected from three designated hospitals in
Beijing, China, between 2017 and 2019. After rigorous verification of the accuracy and excluding
data with incomplete variables, we obtained a total of 2251 complete case data as training sets and
663 complete case data as independent test sets, which were mainly from middle-aged and aged groups
with high-risk (family history of diabetes, smoking habits, and poor eating habits, etc.). We confirmed
that these samples had no clear diagnosis of cardiovascular diseases such as coronary heart disease,
heart failure, severe valvular disease, etc. According to the definition of IFG and IGT in the “Definition
and diagnosis of diabetes mellitus and intermediate hyperglycemia” published by the WHO (IFG:
fasting plasma glucose is present with a concentration of 6.1–6.9 mmol/L but 2 h after a glucose load
of < 7.8 mmol/L; IGT: fasting plasma glucose levels are < 7.0 mmol/L but 2 h after a glucose load are
7.8–11.1 mmol/L) and combining the diagnosis results of the hospital reports (We confirmed that each
sample received an ECG test within a short period of time after taking the blood glucose measurement
during medical examination.), we categorized the cases into those with normal blood glucose and
those diagnosed with IGR (i.e., prediabetes). Previous studies have shown that factors such as weight,
gender, and age may affect ECGs [24–26]. Therefore, according to the individual conditions of patients,
the data were further categorized according to body mass index (BMI ≥ 25.0 or < 25.0), sex (male or
female), and age (under 60 years old or over 60 years old); based on the above partitioning method,
we divided the overall training data into seven datasets, which were named dataset_1, dataset_2,
dataset_3, dataset_4, dataset_5, dataset_6, and dataset_7, respectively (where dataset_1 is the total
dataset, as shown in Table 1) and overall test data into eight independent test sets, which were named
test set_0, test set_1, test set_2, test set_3, test set_4, test set_5, test set_6, and test set_7, respectively
(where test set_0 is the total test set and test set_1 is the mixed test set selected randomly from the
total test data, as shown in Table 2). It must be emphasized that no human subjects were involved in
this study. We only used licensed historical registration data in our analysis, and no members of the
team were able to obtain the private information of patients when analyzing the data. This study has
been approved by the Human Research Ethics Committee in China Agricultural University (approval
number: CAUHR-2020003).
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Table 1. The composition of the training sets in this paper.

Dataset Name Prerequisite Number of Samples (Normal) Number of Samples (IGR)

dataset_1 Total 1750 501
dataset_2 BMI ≥ 25 643 282
dataset_3 BMI < 25 1107 219
dataset_4 Men 1043 361
dataset_5 Women 707 140
dataset_6 Age < 60 1673 433
dataset_7 Age ≥ 60 77 68

Notes: Because the dataset_7 data volume is too small to support subsequent experiments, this study used the
remaining datasets.

Table 2. The composition of the independent test sets.

Dataset Name Prerequisite Number of Samples (Normal) Number of Samples (IGR)

test set_0 Total 503 160
test set_1 Mixed 250 100
test set_2 BMI ≥ 25 228 73
test set_3 BMI < 25 275 87
test set_4 Men 269 89
test set_5 Women 234 71
test set_6 Age < 60 442 101
test set_7 Age ≥ 60 61 59

Notes: 1. In order to ensure that the total number of positive and negative samples in comparative experiments was
approximately the same, some ECG samples were randomly selected from the overall independent test set to form
test set_1. 2. Because this research did not consider the experiment on dataset_7, the test set_7 was not adopted.

2.2. Electrocardiogram Preprocessing

Preprocessing is an indispensable step in the field of computer vision. It converts initial data into
a form that is suitable for computation. Existing ECG preprocessing techniques mainly involve wavelet
transforms—to reduce noise, eliminate baseline drift, and data segmentation [27], which is a complex
procedure. Studies have been published in which the original ECGs did not undergo a significant
amount of preprocessing; instead, after performing random cropping operations, they were directly
inputted into two-dimensional CNNs (2D-CNNs) in the form of grayscale images for training; this
resulted in an average accuracy and sensitivity of 0.991 and 0.979, respectively [28]. Our experiment
did not use traditional processing methods but instead performed data augmentation on the ECGs
according to [28] (the raw data were 2-dimensional images, as shown in Figure 1A,B), eventually
achieving excellent results.

There was a large imbalance between the numbers of positive and negative samples in this
experiment, which could have led to poor results; thus, we introduced data augmentation technology
in training sets to resolve the problem. Data augmentation is a popular method for dealing with
insufficient sample sizes and sample imbalances in data mining [27,29]. For dataset_1, the unified
image size was initially 500 × 300; then, the ECG images were augmented using different cropping
methods (left top (Figure 1C,D), right bottom (Figure 1E,F), and center (Figure 1G,H), etc.), resulting in
a fixed image size, that is 375 × 225. After that, cropped images were resized to 500 × 300. Otherwise,
considering the influence of data volume on the model, we augmented dataset_2, dataset_3, dataset_4,
dataset_5, and dataset_6 again after data balancing, so as to approximate the data size of dataset_1;
this was convenient for subsequent comparisons (the expanded sample size is shown in Table 3). It is
worth noting that the independent test sets did not be performed data augmentation operation.
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Figure 1. Steps of electrocardiogram (ECG) preprocessing: (A) ECG of a normal person; (B) ECG of a
patient with prediabetes; (C,E,G) are the images after performing the left top, right bottom, and center
cropping operations using (A), respectively; (D,F,H) are the images after performing the left top, right
bottom, and center cropping operations using (B), respectively.

Table 3. The composition of the training sets after data augmentation in this paper.

Dataset Name Prerequisite Number of Samples (Normal) Number of Samples (IGR)

dataset_1 Total 1750 1503
dataset_2 BMI ≥ 25 1929 1692
dataset_3 BMI < 25 1660 1533
dataset_4 Men 1564 1444
dataset_5 Women 1414 1400
dataset_6 Age < 60 1673 1299

2.3. Model Architectures

The initial form of the input for this study was that of 12-lead ECG images with a duration of
5 s. Therefore, we considered a 2D-CNN in the deep learning models, and in the traditional machine
learning models we considered using a histogram of oriented gradient (HOG) to extract ECG image
features and identify them using baseline classification algorithms. CNNs are widely used in ECG
intelligent diagnoses because of their layer-by-layer feature extraction and their end-to-end recognition.
In this study, a new CNN architecture—referred to as IGRNet—was designed. This was compared
against mainstream deep CNN models (AlexNet and GoogLeNet). Three baseline algorithms (SVM,
RF, and K-NN) were also employed in this research. The entire experimental process is as shown in
Figure 2.
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Figure 2. The workflow of prediabetes diagnosis.

2.3.1. IGRNet

The characteristics of 12-lead ECG images are not as rich as medical images and relatively uniform
in texture and color; after various attempts, the overall IGRNet architecture presented in this paper
included four convolutional layers, two pooling layers, one fully connected layer, and one output layer.
We set the input layer size to 128 × 128 × 3 to improve the model efficiency.

The convolution kernel is a learnable parameter in the convolution operation. In our experiments,
the size of the convolution kernel was set to 5 × 5, whilst the stride of the convolution parameter
was set to 1 and the padding to 2. After several verification experiments, the final number of feature
maps in each convolutional layer was set as 6, 16, 120, and 250, respectively. The pooling layer
is predominately used for feature dimensionality reduction, compression of data and parameters,
prevention of overfitting, and improvement of the model’s robustness. We used max pooling layers
when constructing the IGRNet model, placing them after convolution layers 2 and 4; then, we used a
2 × 2 sampling window to control the shrinking speed of the feature graph. The fully connected layer
purifies the features learned by the convolutional layers and maps the learned “distributed feature
representation” to the sample marker space. In this study, a fully connected layer was added after
the final pooling layer. The softmax function was introduced into the output layer of the model, and
the output value was converted to a relative probability. To summarize, the overall architecture of
our IGRNet proceeds as follows: input layer – convolution layer – convolution layer – pooling layer –
convolution layer – convolution layer – pooling layer – fully connected layer – output layer.

2.3.2. Nonlinear Activation Function in IGRNet

Nonlinear activation functions can change the linear combination of the network, allowing it
to approximate any nonlinear function arbitrarily. To determine the optimal activation function in
the present study, we compared four activation functions widely used in deep learning fields: ReLU,
LeakyReLU, ELU, and Clipped ReLU. Here, the ReLU function is expressed as

f (x) = max(0, x) (1)

This function maps the input into two segments. If the input value is less than zero, the original
value is mapped to zero; if the input value is greater than zero, the original value is retained. That is,
when calculating forward, a large number of features will be lost. As can be seen from the derivative,
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the gradient is preserved when calculating backwards. Thus, when the input is a positive number, no
gradient saturation problems occur. However, when the input is negative, ReLU is completely inactive;
thus, once a negative number is entered, ReLU will cease to function. In contrast, LeakyReLU assigns a
non-zero slope to all negative values. The corresponding mathematical expression is:

f (x) =
{

x, x > 0
leak ∗ x, x ≤ 0

(2)

The unique feature of this function is that the negative axis maintains a small constant leak, such
that when the input information is less than zero, the information is not completely lost but is retained
accordingly. That is, ReLU features no gradient in the regions below zero, whereas LeakyReLU features
a very small gradient in this region. In this experiment, we repeatedly evaluated the leak and found
that when it as set to 0.0001, that the model achieved optimal performance. The ELU function was also
used in this study. Its expression is:

f (x) =
{

x, x ≥ 0
α(ex

− 1), x < 0
(3)

where α is a constant. It can be seen that the left-hand side (the regions below zero) of the function
exhibits soft saturation, whereas the right-hand side (the regions above zero) has no saturation. The
linear term on the right-hand side means that the ELU mitigates the disappearance of the gradient,
and the soft saturation feature on the left-hand side makes it more robust to input changes or noise.
ClippedReLU is an improvement of ReLU, in which an upper limit ceiling has been added. The
corresponding function formula is:

f (x) =


0, x < 0
x, 0 ≤ x < ceiling
ceiling, x ≥ ceiling

(4)

Here, the activation range of ReLU is limited to encourage the model to learn sparse features
earlier. If left unrestricted, the increase in activation value may cause precision loss. Our repeated tests
showed that IGRNet performed best when ceiling was set as 6.

2.3.3. Batch Normalization (BN) in IGRNet

To improve the neural network efficacy, we introduced a BN layer after each convolutional
layer. The BN algorithm [30] has been shown to accelerate the training speed of models and improve
their generalizability, owing to its powerful functions. Using that, our model can recover the feature
distribution to be learned by the original network, this is useful for parameter adjustments.

2.3.4. Dropout in IGRNet

Traditional CNNs have weak generalizability and are prone to overfitting when insufficient data
are provided. In view of the small number of ECGs in this experiment, a dropout layer was introduced
after the fully connected layers to prevent overfitting. In our experiment, the best value was 0.5.
Therefore, the model architecture of IGRNet is as shown in Figure 3.
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2.4. Mainstream Convolutional Neural Networks

To assess the performance of the IGRNet mentioned above, we introduced two mainstream CNNs
(AlexNet and GoogLeNet) commonly used in the field of ECG recognition. It must be emphasized
that both CNNs had been pre-trained with 1000 classification databases in ImageNet, and this study
performed transfer learning on both.

AlexNet [31] has been widely used in the field of image recognition, having been successfully
employed many times in the diagnostic study of ECGs [32,33]. In this study, the number of neurons in
the output layer was changed to two, and the final layer was updated based on the initialization model.

GoogLeNet has been exploited in the field of medical image recognition [34,35] due to its excellent
performance. Our experiments used an improved Inception module unit, which was stacked with
nine Inception modules (we adopted the GoogLeNet V1 structure); furthermore, we replaced the last
three layers of the network and added the new layers “Fully connected layer”, “softmax layer”, and
“classification output layer” to the hierarchy, based on the pre-trained model. Meanwhile, in order to
ensure that the new layer learned faster than the transport layer, we increased the learning factor of the
fully connected layer and then connected the last transport layer (pool5-drop_7x7_s1) in the network
to the new layer, to complete the architecture of the transfer model.

2.5. Baseline Algorithms

The HOG feature was first adopted for static pedestrian detection [36]; then, Rathikarani et al. [37]
used it to extract image features from ECGs, and classified three heart diseases: arrhythmia, myocardial
infarction, and conduction block. SVM, RF, and K-NN, as classical machine learning algorithms, were
also used in early studies of ECGs [38–40]. In the baseline method of this study, we employed the HOG
algorithm to extract the image features from the 12-lead ECG and trained the aforementioned three
classifiers for IGR diagnosis. We modified the image size to 200 × 200 and set the cell to 32 × 32 pixels,
with each block containing 2 × 2 cell units. Thus, 900-dimension feature vectors were extracted from
each ECG, and all the vectors were input into the classifier for training.
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3. Experiment

3.1. Experimental Setup

The operating system used in this study was Windows 10, and the computer was configured
with an Intel Core I7-6700HQ 3.5 GHz central processing unit, and 4 GB of memory. This experiment
adopted MATLAB R2018a and Python 3.8 to complete the tasks in this paper. In this study, a 5-fold
cross-validation was performed on all six training sets; that is, each dataset was evenly divided into five
sub-datasets, from which we randomly selected four as the training set, and the remaining one as the
validation set. In addition, the IGRNet, AlexNet, GoogLeNet, and baseline algorithms were optimized
during the training process. An Adam optimization algorithm was used. After cross-validation, the
performing models were adopted to test on the independent test sets to verify their capabilities.

3.2. Experimental Process

Our experimental work included the following five sections:

1. Experiment #1 For dataset_1, experiments were conducted on the four aforementioned activation
functions for IGRNet, so as to find the activation function with the optimal performance and thus
improve the generalizability of the model. The four activation functions were optimized in the
preliminary experiments. Additionally, the InitialLearnRate was set to 0.0001, the L2Regularization
was set to 0.001 during training.

2. Experiment #2 To verify the superiority of the IGRNet architecture in the task of ECG prediabetes
diagnoses, we compared it with two mainstream CNN models (AlexNet and GoogLeNet) on
dataset_1. All models were optimized during training.

3. Experiment #3 The adjusted SVM, RF, and K-NN models were also compared against IGRNet, to
verify the superiority of the 2D-CNN proposed in this paper.

4. Experiment #4 To reduce the interference of other factors on the ECG diagnosis and further
improve the performance of the model, IGRNet was used to perform cross-validation on dataset_2,
dataset_3, dataset_4, dataset_5, and dataset_6.

5. Experiment #5 In order to verify the true performance of IGRNet in IGR diagnosis, we employed
the model trained by the former (dataset_1-6) to test independent test set_0-6 respectively.
In addition, in order to more strictly prove the superiority of the model proposed in this paper,
we also tested other models and different activation functions on the total independent test set.

3.3. Experimental Evaluation

In our experiment, the average values and the corresponding 95% confidence intervals (CIs)
of 5-fold cross-validation were adopted to pick out the best models from the methods mentioned
above. We considered accuracy (Acc), sensitivity (Sens), specificity (Spec), and precision (Prec) as the
evaluation criteria. The corresponding calculation formulas are as follows. Meanwhile, the area under
the receiver operating characteristic curve (AUC) and training or testing time was also considered.

Acc =
TN + TP

TN + TP + FN + FP
(5)

Sens =
TP

TP + FN
(6)

Spec =
TN

TN + FP
(7)

Prec =
TP

TP + FP
(8)

TP (positive) refers to the proportion of correct classifications for positive samples, FP (false
positive) refers to the proportion of incorrect classifications indicating that a sample belongs to a
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specific category, TN (negative) refers to the proportion of correct classifications of negative samples,
and FN (false negative) refers to the proportion of incorrect classifications indicating that a sample
does not belong to a specific category.

4. Results and Discussion

4.1. Selection of Activation Functions

The choice of nonlinear activation function is crucial to the performance of the model. At present,
there is no definitive conclusion on the performance of the activation functions in the field of deep
learning. The applicability of different activation functions to different datasets requires further
investigation. In this study, we performed experiments using ReLU, LeakyReLU, ELU, and Clipped
ReLU on dataset_1, with leaky set to 0.0001 and ceiling set to 6. The model stabilized after 4380 iterations
of IGRNet. At this point, the training was stopped and verified. The change in model loss during
training is shown in Figure 4.

It can be seen that LeakyReLU’s loss change is the most notable and that the final loss value is
smallest (0.227), thus this function achieves excellent performance in this study. We also evaluated the
models using various activation functions for 5-fold cross-validation, as shown in Table 4.

Table 4. Evaluation of IGRNet using various activation functions. The values represent the average
values of the verification results and their 95% CIs.

Activation Function Acc Sens Spec Prec

ReLU 0.795
(0.785–0.805)

0.763
(0.759–0.768)

0.849
(0.843–0.854)

0.887
(0.877–0.896)

LeakyReLU 0.854
(0.839–0.870)

0.862
(0.853–0.871)

0.865
(0.857–0.874)

0.895
(0.882–0.907)

ELU 0.839
(0.830–0.847)

0.842
(0.839–0.846)

0.854
(0.846–0.862)

0.882
(0.874–0.890)

ClippedReLU 0.819
(0.803–0.835)

0.795
(0.770–0.820)

0.898
(0.887–0.909)

0.925
(0.911–0.939)
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ReLU function, (B) is the loss change of the LeakyReLU function, (C) is the loss change of the ELU
function, and (D) is the loss change of the ClippedReLU function.

The average accuracy of IGRNet using LeakyReLU is 0.854, its sensitivity is 0.862, its specificity
is 0.865, and its precision is 0.895; thus, it is seen to relatively outperform the other three activation
functions. Figure 5 shows the receiver operating characteristic (ROC) curves and corresponding AUC
values of the model using each activation function. The average AUC of the model using LeakyReLU
is 0.809, which is still higher than is seen using ReLU (0.768), ELU (0.776), and ClippedReLU (0.770).
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4.2. Comparison with Deep Convolutional Neural Networks

In addition to IGRNet, our experiment also considered the 5-fold cross-validation of AlexNet and
GoogLeNet under the same number of iterations. The training processes of the three CNN models
are shown in Figure 6. Although AlexNet and GoogLeNet have complex architectures and deeper
network layers, their performance on dataset_1 is inferior to that of IGRNet.

We calculated the evaluation indicators of mainstream CNN models after training and compared
them with IGRNet (see Table 5). Each training time of CNNs was also calculated to evaluate their work
efficiency. The average diagnostic accuracies of AlexNet and GoogLeNet (0.807 and 0.820) are inferior
to that of our proposed model. The AUC values of the two mainstream models and IGRNet also differ
(the corresponding ROC curves as shown in Figure 7). On the other hand, IGRNet’s training cost is
less than mainstream CNNs due to its architecture.
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Table 5. The results of comparison with deep CNNs. The values represent the average values of the
results and their 95% CIs.

CNN Model Acc Sens Spec Prec AUC Training Time
(s)

IGRNet 0.854
(0.839–0.870)

0.862
(0.853–0.871)

0.865
(0.857–0.874)

0.895
(0.882–0.907)

0.809
(0.799–0.818)

940.6
(901.1–980.1)

AlexNet 0.807
(0.792–0.822)

0.780
(0.753–0.807)

0.904
(0.886–0.922)

0.921
(0.890–0.952)

0.787
(0.777–0.797)

6477.2
(6341.8–6612.6)

GoogLeNet 0.820
(0.802–0.838)

0.752
(0.719–0.786)

0.924
(0.907–0.941)

0.906
(0.891–0.921)

0.716
(0.698–0.733)

8948.5
(8761.4–9135.6)
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4.3. Comparison with Baseline Algorithms

After the HOG feature extraction, the baseline algorithms of SVM, RF, and K-NN were used
to classify ECG images and thus evaluate our model. From the perspective of accuracy, sensitivity,
specificity, precision, and AUC (corresponding results are shown in Table 6 and Figure 8), K-NN
performs best of the baseline algorithms, achieving average value of 0.824, 0.718, 0.904, 0.891, and 0.775,
respectively. However, it still lags behind IGRNet. From the perspective of training time, traditional
machine learning algorithms take less time than IGRNet, so training costs are lower.

Table 6. The results of comparison with baseline algorithms. The values represent the average values
of the results and their 95% CIs.

Classification
Method Acc Sens Spec Prec AUC Training

Time (s)

IGRNet 0.854
(0.839–0.870)

0.862
(0.853–0.871)

0.865
(0.857–0.874)

0.895
(0.882–0.907)

0.809
(0.799–0.818)

940.6
(901.1–980.1)

HOG+SVM 0.809
(0.795–0.822)

0.720
(0.703–0.737)

0.867
(0.836–0.899)

0.836
(0.803–0.868)

0.772
(0.764–0.780)

95.7
(87.5–103.9)

HOG+RF 0.800
(0.774–0.827)

0.687
(0.670–0.704)

0.836
(0.794–0.878)

0.842
(0.826–0.859)

0.764
(0.749–0.780)

98.3
(93.8–102.8)

HOG+K-NN 0.824
(0.805–0.844)

0.718
(0.698–0.739)

0.904
(0.878–0.929)

0.891
(0.867–0.915)

0.775
(0.768–0.782)

84.8
(77.1–92.5)
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4.4. Further Improvement

According to previous studies, the ECGs of patients are affected by personal factors, including
weight, gender, and age, which may influence the model efficacy in the diagnosis of prediabetes.
Therefore, we employed IGRNet to conduct further experiments on training sets that had been grouped
according to weight, gender, and age. The results are shown in Table 7. From the verification results
for different datasets, it can be seen that the performances of categorized models are improved to
a certain extent compared to that of the unclassified model. Among these categorized models, the
IGR diagnosis of dataset_2 and dataset_3 for the same weight range is clearest. When the datasets
contain only normal-weight people (BMI < 25.0), the average validation accuracy is 7.30% higher
than the initial level, and the AUC is 5.20% higher. When all the datasets contain overweight subjects
(BMI ≥ 25.0), the average validation accuracy increases by 6.00% and the AUC increases by 4.50%.

Table 7. Experimental results on different datasets. The values represent the average values of the
results and their 95% CIs.

Dataset Acc Sens Spec Prec AUC

dataset_2 0.914
(0.891–0.937)

0.918
(0.899–0.937)

0.895
(0.875–0.915)

0.911
(0.895–0.927)

0.854
(0.845–0.863)

dataset_3 0.927
(0.916–0.938)

0.882
(0.853–0.911)

0.967
(0.962–0.972)

0.960
(0.949–0.971)

0.861
(0.838–0.884)

dataset_4 0.869
(0.848–0.890)

0.785
(0.780–0.790)

0.916
(0.904–0.928)

0.920
(0.902–0.938)

0.844
(0.829–0.859)

dataset_5 0.878
(0.865–0.891)

0.814
(0.800–0.828)

0.961
(0.955–0.967)

0.956
(0.934–0.978)

0.851
(0.831–0.871)

dataset_6 0.888
(0.869–0.907)

0.755
(0.752–0.758)

0.980
(0.974–0.986)

0.959
(0.950–0.968)

0.858
(0.834–0.882)

4.5. Test Performance on Independent Test Sets

It is undeniable that cross-validation after data augmentation may divide the augmented images
from the same raw image into the training set and the validation set at the same time, making
the model catch the specific pattern in similar images. This may cause artificially inflate model
performance. Therefore, we must test them on independent test sets to reflect the true strength of
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IGRNet. In the experiment, IGRNet trained with dataset_1–6 were employed to test independent test
set_0-6 (the model trained on dataset_1 was adopted to test test set_0–1), respectively, and the results
are shown in Table 8. We found that IGRNet’s test performance has a certain decrease compared to the
cross-validation results. However, undoubtedly, the performance on the classified test set is still better
than the mixed test set that is similar to the total test set. Among them, when the test set contains only
normal-weight people (BMI < 25.0), the diagnostic accuracy is 0.856 and the AUC is 0.825. When the
test set contains only overweight subjects (BMI ≥ 25.0), the diagnostic accuracy is 0.850 and the AUC is
0.808. Moreover, IGRNet’s recognition time of each ECG image is about 0.160–0.190 s with the help of
existing equipment, which is expected to realize its advantages of real-time diagnosis.

Table 8. Experimental results using IGRNet on the independent test sets.

Dataset Acc Sens Spec Prec AUC Test Time (s)

test set_0 0.778 0.808 0.775 0.852 0.773 101.2
test set_1 0.781 0.798 0.789 0.846 0.777 57.7
test set_2 0.850 0.834 0.820 0.879 0.808 56.4
test set_3 0.856 0.839 0.902 0.887 0.825 58.3
test set_4 0.821 0.760 0.925 0.901 0.801 58.4
test set_5 0.833 0.800 0.907 0.888 0.794 57.2
test set_6 0.829 0.697 0.892 0.874 0.788 85.9

To rigorously prove that IGRNet using leakyReLU possesses the best performance compared
to other activation functions, the experiment employed the model with various activation functions
(ReLU, LeakyReLU, ELU, and ClippedReLU) to test the total independent test set and the results are
shown in Table 9. It is not difficult to find that the conclusion obtained from these results is consistent
with the previous validation experiment. Additionally, the aforementioned mainstream CNNs and
traditional machine learning models are also employed on the total independent test set to compare
the performance of IGRNet in the condition of real data. The corresponding results are shown in
Table 10. Consistent with the cross-validation conclusion, the results on the independent test set show
the excellent performance of IGRNet.

Table 9. Experimental results using IGRNet with various activation functions on the total independent
test set.

Activation Function Acc Sens Spec Prec AUC

ReLU 0.739 0.687 0.765 0.819 0.742
LeakyReLU 0.778 0.808 0.775 0.852 0.773

ELU 0.765 0.784 0.809 0.822 0.764
ClippedReLU 0.756 0.799 0.780 0.834 0.761

Table 10. Experimental results using different machine learning models on the total independent
test set.

Model Acc Sens Spec Prec AUC Test Time (s)

IGRNet 0.778 0.808 0.775 0.852 0.773 101.2
AlexNet 0.749 0.770 0.821 0.862 0.755 117.6

GoogLeNet 0.754 0.693 0.837 0.846 0.689 125.1
HOG+SVM 0.736 0.698 0.768 0.840 0.757 13.5
HOG+RF 0.741 0.685 0.755 0.853 0.752 18.8

HOG+K-NN 0.760 0.705 0.799 0.837 0.761 11.7

4.6. Discussion

In this paper, for the first time, it was found that 2D-CNN can be used to diagnose IGR
non-invasively and in real-time, by using 5-s 12-lead ECGs. After training, validation, comparison, and
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testing, our proposed IGRNet was seen to effectively identify the corresponding ECGs of prediabetic
patients, providing a new method for clinical diagnosis of this disease in the future.

In this study, we conducted 5-fold cross-validation on ECG images after performing data
augmentation operations. It is worth emphasizing that the purpose of the validation experiment in this
paper is mainly three, one is to compare the relative performance of IGRNet using various activation
functions to select the superior activation function, the second is to compare the relative performance
among mainstream CNNs, conventional machine learning algorithms, and IGRNet, and the third is to
provide experimental support for improved models. Considering that the validation set does not have
sufficient generalized representativeness due to the generation of derived data in the above process,
we introduced 663 independent samples as the test sets to strictly test the real performance of each
model. The results show that the conclusions obtained from independent testing are consistent with
cross-validation, which indicates that the validation experiment provides evidence for model selection
and the test experiment evaluates the true strength of the models.

The nonlinear activation function has a large impact on the performances of the deep learning
models. Appropriate activation functions can effectively improve the performance of the model.
However, no conclusion has yet been made on the performance of mainstream activation functions, and
further experimental research is required. Zhong et al. [41] used CNN to detect fetal QRS complexes
through non-invasive fetal electrocardiograms, they found that the ReLU function performed best
in this task after comparing multiple activation functions. Zha et al. [33] found that Swish and ELU
functions performed better in ECG classification using one one-dimensional CNN (1D-CNN). In our
experiment, after comparing ReLU, LeakyReLU (leak = 0.0001), ELU, and ClippedReLU (ceiling = 6) in
IGRNet, LeakyReLU was found to be optimal, this may be related to the small slope of the output
under a negative input. Because the derivative was never zero, the occurrence of silent neurons was
reduced, and gradient-based learning was facilitated. Therefore, the problem of neurons being unable
to learn after the ReLU function enters a negative interval was solved.

Furthermore, by comparing the deep transfer learning models of AlexNet and GoogLeNet, as
well as the SVM, RF, and K-NN algorithms after HOG feature engineering, we found that IGRNet
using only four convolutional layers obtained optimal recognition for the task in this study. In terms of
the key analysis of image features extracted by CNN, we suspect that the texture features of the 12-lead
ECG were relatively uniform, and the features extracted by the deep mainstream CNNs were too deep,
resulting in over-fitting. The architecture of IGRNet was more suitable for this task. In terms of training
cost, the training time of IGRNet is shorter than mainstream CNNs, which is convenient for further
development in the future. On the other hand, traditional machine learning has the disadvantage
of manual feature extraction, which cannot fully reflect the details of ECG features, resulting in a
diagnosis efficacy inferior to that of IGRNet.

Considering weight, gender, and age to be potential factors affecting the ECG, we classified
the data, and the model evaluation values of the final improved method on the validation sets and
independent test sets were relatively improved compared to those of the original model, indicating
that weight, gender, and age affect the judgment of IGR patients by AI. On the other hand, our results
were consistent with previous conclusions that the above factors influence the ECG changes to a
certain extent. It is worth noting that Alpert et al. [25] found that overweight or obese subjects can
exhibit a variety of ECG changes, including a left shift of the p-wave, QRS, and t-wave axes. In our
study, IGRNet showed the most significant improvement for people with the same body weight range
(BMI ≥ 25.0 or BMI < 25.0), which suggests that body weight has a larger influence on ECG than the
other two. Thus, the model of controlling for weight factors can be employed to diagnose prediabetes
with improved accuracy.

It must be emphasized that the current study highlights a certain difference between prediabetic
and normal people in ECGs; however, this difference is usually ignored in clinical practice. Among them,
Balcıoğlu et al. found that IGR patients exhibited different degrees of CAND, by recording the heart rate
variability and heart rate turbulence indexes of 24-h dynamic ECGs [42]. Yu et al. adopted dual-source
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computed tomography to evaluate the relationship between coronary atherosclerosis (CAA) and blood
glucose levels; they found that the prevalence of CAA in the prediabetic group was slightly higher
than that of the normoglycemic group but lower than that of the diabetic group, which indicates that
prediabetic patients have an increased risk of CAA. However, it is difficult to distinguish clinical
symptoms from those of normal blood glucose [43]. We developed a deep learning model, IGRNet,
based on the results of previous studies. The results of the independent test sets show that the highest
detection accuracy of this model reaches 0.856, and the average recognition time of an ECG image
is only 0.160–0.190 s. Therefore, this AI model is expected to carry out highly accurate, convenient,
non-invasive, and real-time diagnoses of prediabetes by identifying the ECG characteristics of IGR
patients. Our research differed from previous studies, which used ECG signals to directly identify
different types of heart disease; instead, it represents a new attempt to diagnose IGR by extracting ECG
changes that are characteristic of prediabetes.

In recent years, a number of studies have been conducted on non-invasive blood glucose
monitoring, for which the ideal technology to use is near-infrared spectroscopy for non-invasive blood
glucose detection [44,45]. Even so, there is still no non-invasive blood glucose detection method that
meets the clinical detection accuracy. In terms of spectral analysis: First, effective spectral signals are
weak owing to the low blood sugar content of the human body; furthermore, they are susceptible to
interference from other signals and have a low signal-to-noise ratio. Second, temperature, humidity,
and other conditions of the measurement site directly affect the transmission of light and reduce the
detection accuracy. Moreover, the environment of the human body is complex and diverse, and the
absorption of other physiological components overlaps with that of glucose; thus, the influence of
its concentration on the light intensity is even larger than the influence of changes in the glucose
concentration. Instead, the ECG, which reflects physiological changes in the body in real-time, is
unaffected by external factors, providing a novel detection method. This research can be used for
portable ECG-monitoring equipment, creating the possibility for highly accurate clinical detection in
the future.

However, it should be noted that our research also contains some defects. First of all,
cross-validation after data augmentation on the total training set may lead to artificial accuracy
improvement, because part of the derived data may be divided into validation sets, which need to
enhance the reliability of validation results in the future work. Next, this study adopted retrospective
data, which has an inherent flaw, that is, the assurance may not reach the ideal situation. The ECG is
not affected by external interference, but is affected by subjects’ personal factors. In this paper, due to
limited sample information, we only considered weight, gender, and age; however, there are more
factors affecting the ECG. Meanwhile, the above factors cannot be jointly constrained due to insufficient
sample size. Furthermore, our method is limited by the population, which meets the condition of
having “no history of cardiovascular diseases.” Additionally, the 5-s 12-lead ECG may not truly reflect
the ECG status of the human body, which may lead to misdiagnosis and missed diagnoses. Moreover,
our study only focused on the clinical diagnosis of IGR, and thus could not monitor blood glucose
concentration. In future, the datasets should be expanded to classify a range of blood glucose types in
the human body at a wider range of levels. Additionally, the characteristics of “black box” to deep
learning make IGRNet’s work not transparent enough.

5. Conclusions

In view of the characteristics of prediabetes, which presents no obvious clinical symptoms and
is easy to neglect, this paper proposed the use of deep learning for diagnoses from human ECGs;
this requires only a 5-second 12-lead ECG and is characterized as a highly accurate, non-invasive,
and real-time procedure. By comparing with mainstream CNNs and traditional machine learning
techniques, it was found that the IGRNet model designed in our study obtained an optimal diagnostic
performance, with a maximum accuracy of 0.856, a sensitivity of 0.839, a specificity of 0.902, a precision
of 0.887, and an AUC of 0.825. To our knowledge, this is the first study to report that AI can efficiently
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identify prediabetes from ECGs. It has the potential to be clinically promoted in the future due to its
outstanding performance in this task.
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