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Abstract: With the rapid development in sensing technology, data mining, and machine learning fields
for human health monitoring, it became possible to enable monitoring of personal motion and vital
signs in a manner that minimizes the disruption of an individual’s daily routine and assist individuals
with difficulties to live independently at home. A primary difficulty that researchers confront is
acquiring an adequate amount of labeled data for model training and validation purposes. Therefore,
activity discovery handles the problem that activity labels are not available using approaches based on
sequence mining and clustering. In this paper, we introduce an unsupervised method for discovering
activities from a network of motion detectors in a smart home setting. First, we present an intra-day
clustering algorithm to find frequent sequential patterns within a day. As a second step, we present
an inter-day clustering algorithm to find the common frequent patterns between days. Furthermore,
we refine the patterns to have more compressed and defined cluster characterizations. Finally, we track
the occurrences of various regular routines to monitor the functional health in an individual’s patterns
and lifestyle. We evaluate our methods on two public data sets captured in real-life settings from two
apartments during seven-month and three-month periods.

Keywords: human activity discovery; smart homes; health monitoring; clustering; unsupervised
learning; sequence mining; frequent patterns

1. Introduction

The steady increase in our older adult population, coupled with older adults living longer and the
requirement for more assistance, is driving caregiver demand. According to the United Nations’ World
Population Prospects report, the number of people over the age of 60 is expected to be more than
doubled by 2050 and more than tripled by 2100. Further, all major areas of the world will have nearly
a quarter or more of their populations be 60 or over [1]. This puts burdens on formal and informal
caregivers to provide care for an average of 20 h per week [2] for a chronically ill, disabled or aging
family member or friend. Besides the demands of care-giving, there is pressure on the economic side
to support the healthcare sector; the EU countries spend on average a quarter of their GDP on social
protection [3]. This highlights the needs for effective solutions to tackle the demographic and economic
challenges towards a better health and social care of the older population.

Ambient assisted living (AAL) provides one of the most promising solutions with which to
support the older people who wish to keep their independence as long as possible, trying to fend for
themselves by having fulfilling lives in terms of everyday activities and leisure. With the introduction
of new low-cost sensors, low-power wireless protocols, cloud computing, and Internet of Things (IoT)
technologies, the ability to deploy tools in our daily lives has never been more available. Assisted-care
and health-monitoring became more available in order to contentiously observe and keep an eye on
the behaviors of the senior adults. Activities of daily living (ADLs) is a term used to represent the

Sensors 2020, 20, 2513; doi:10.3390/s20092513 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://dx.doi.org/10.3390/s20092513
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/9/2513?type=check_update&version=2


Sensors 2020, 20, 2513 2 of 48

set of common tasks that comprise a person’s everyday requirements that influence the self-support
of a senior adult in day-to-day routines. The essential list of ADLs include but are not limited to
relaxing, meal preparation, eating, and sleeping. The power to perform ADLs without assistance from
the others and in a constant manner provides a necessary assessment of the functional condition of
the senior adult and the power to live without support at home. In a recent survey [4], formal and
informal caregivers showed an increasing interest in an accurate activity recognition and tracking.

In this paper, we use a smart environment infrastructure to observe the routines of senior
adults [5–9]. A smart environment is equipped with various kinds of sensors, such as infrared
motion sensors (PIR), for monitoring the motions of the occupant at home. Such sensors can
collect many representative details about the surroundings and its occupants. There are several
potential applications for a smart environment, such as recommendation in office environments,
energy preservation, home automation, surveillance, and of course assisted care of senior adults [10,11].
Activity learning and tracking are some of the core components of any smart environment for ADL
monitoring. The purpose of an activity learning component is to identify the inhabitant activities from
the low-level sensor data. The various proposed approaches in the literature include a number of
large differences with respect to the primary sensing technology, the artificial intelligence approaches,
and the practicality of the smart homes in which activity information is captured.

However, modeling all human activities in a supervised-based approach faces a number of
challenges and obstacles. First, a large amount of sensor data must be available. The sensor data should
be labeled with the actual activities (the “ground truth” labels). In real-world in-home monitoring
systems, such prelabeled data are very difficult to obtain. Second, the time that is spent on activities,
which are easy to annotate (e.g., sleep times), is only a fraction of an individual’s total behavioral routine.
Beside that, modeling and tracking only preselected activities ignores the important insights that other
activities can provide on the routine behavior and the activity context of the individual. Finally, it is
very challenging to build an unintrusive sensing system to collect the data from real individuals,
annotate the data with the ground truth label for training and testing purposes, and develop efficient
methods to learn and accurately detect the activities. Therefore, activity discovery handles the problem
of activity labels not being available using approaches based on sequence mining and clustering.
Not only that, activity discovery methods can work better with mining human activities from real-life
data, given its natural sequence, the continuation of disarranged patterns, and the different forms of
the same pattern [5].

The work in this paper regards activity learning on discrete, binary motion sensor data collected
from real-world environments. We are mainly interested in answering questions related to the use of
motion sensors. “Can the activities be automatically discovered (learned) by looking for interesting
patterns in the data from the motion sensors without relying on supervised methods?” Data annotation
is a very time consuming and laborious task. It is very difficult to obtain labels for all the activities in
the data set. Even with the assumption of consistent predefined activities, not all individuals perform
them the same way due to the complex structure of activities. Therefore, supervised methods are not
practical to use. We introduce an unsupervised activity discovery algorithm that does not depend on
any activity annotations in the data set.

Our framework consists of three processing steps; namely, low-level, intermediate-level,
and high-level units. In the low-level processing step, the raw sensor data is preprocessed to be
sampled periodically at a constant time interval. In the intermediate-level step, we use a time-based
windowing approach to divide the sensor data into time intervals using two different time interval
lengths. First, we use a small time interval length to extract the time duration within the detection area
of each sensor. Next, we use a large time interval length to extract the time duration within the detection
of each location. The small and large time intervals are processed to extract meaningful features.

In the high-level step, we introduce several clustering algorithms and approaches to form clusters
based on the statistical features encapsulated in the different time intervals. First, we perform an
intra-day pattern discovery where we group similar time intervals to form the clusters within the
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same day using an exponential function as a similarity measure between the different time intervals.
Next, we perform an inter-day pattern discovery, where we group similar clusters across all days to
ensure the uniqueness of the clusters using the Earth mover’s distance (EMD) as a similarity measure
between the clusters. Furthermore, the clusters are refined to have more compressed and defined
characterizations. Finally, the clusters are given semantic labels in order to track the occurrences of the
future activities.

We discuss two approaches for recognizing activities using the final set of the clusters, where they
are used to recognize the occurrences of the future activities from a window of sensor events. The first
approach uses a model to classify the labels, while the second approach measures the similarity
between the clusters’ centroids, and the test time interval within which to determine the cluster with
the best similarity value, where the semantic label of that cluster is assigned. Our method handles
other real-life difficulties, such as major various sensor event occurrences in different areas of the home.
It completely removes the requirement to set most of the system values by the occupant, yielding to
a more system-driven approach. This framework is evaluated on two public data sets captured in
real-life settings from two apartments during a seven-month and a three-month periods. The data
sets we use reflect the challenges of unrestricted real-life data, measured when the user is functioning
in their natural home and performing their day-to-day activities with no directions or orders from
the scientists.

This paper is organized as follows. Section 2 describes the related work. In Section 3, we introduce
our proposed framework. In Section 4, we illustrate the steps taken to preprocess the raw sensor
data. In Section 5, we discuss our approach to extract meaningful features from the raw sensor data.
In Section 6, we introduce different clustering approaches and algorithms to form clusters based on the
statistical features encapsulated in the different time intervals of the sensor events. Activity recognition
is presented in Section 7. We present and discuss the experimental results in Section 8. Finally, Section 9
draws conclusions.

2. Related Work

A large number of works chose event-like sensors as their primary sensing technologies for
data capturing, because they are computationally inexpensive, easy to install, cheap, privacy-friendly
in nature, long in battery life, do not have to be carried or worn, and require minimal supervision
and maintenance. This led to generating many public data sets based on event-like sensors for long
duration measurements with rich information. There are still some challenges in the use of event-like
sensors, such as passive infrared (PIR) sensors. First, PIR sensors produce highly bursty output,
which limits PIR systems to single-person scenarios, and self-triggering due to sudden changes in
environmental conditions, such as heating, ventilating, and air conditioning. Furthermore, PIR sensors
may not be able to sense all motions if an obstacle is between the sensor and the moving person.
Moreover, a movement can be sensed by a PIR sensor from any object that emits heat, even if the
movement comes from an inorganic source. As a result, events may be generated by the motion sensor,
when a printer starts printing documents in large quantities in the vicinity or if a close by baseboard
heater suddenly switches on.

There are many proposed approaches toward recognizing the activities of daily living in a home
setting with PIR sensors, which can be broadly categorized into two major categories: supervised and
unsupervised approaches [12–15].

Among these two categories, supervised approaches are much more prevalent than unsupervised,
since the task of recognizing activities of daily living can be easily formatted into a classification
problem, which can be solved by a lot of mature classification algorithms. By using the sequence of
PIR sensor events with their corresponding time and location information as input features, and the
activity labels as ground truth, many popular machine learning algorithms, such as the naive Bayesian
classifier [16,17], decision trees [18], a support vector machine (SVM) [19], and a neural network [20],
can be directly applied to activity recognition tasks [21]. Additionally, kernel fusion is a favorable
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approach with which to obtain accurate results. A kernel fusion approach based on an SVM classifier
is proposed in [22], wherein the authors used four individual SVM kernel functions, wherein each
kernel was designed to learn the activities in parallel. Additionally, the use of XAI models [23] can
contribute further to explaining the machine learning model results, and provide conclusions on these
model behaviors and decisions about the human activity recognition problem.

Moreover, template matching methods such as k-nearest neighbors, which can be either based
on Euclidean distance using location information in the sensor data or rely on edit distance with
sequence details of the sensor activation events, have also been proposed for the activity recognition
problem [18,24]. In [25], the authors proposed a modified machine learning algorithm based on
k-nearest neighbors (MkRENN) for activity recognition. In addition, because of the sequential nature
of the PIR sensor data, the hidden Markov model (HMM), hierarchical hidden semi-Markov models,
dynamic Bayesian networks, and many other popular graphical models have been used to model the
activity transition sequence for activity recognition purposes [24,26–31].

In [32], the author explored the use of a semi-supervised machine learning algorithm to teach
generalized setting activity models. The author constructed an ensemble classifier wherein the naive
Bayes classifier, HMM, and conditional random field (CRF) models were the base classifiers of this
ensemble, and a boosted decision tree was a top classifier. Then, a semi-supervised learning method
was used to teach the final model. The final model was trained on 11 data sets. In [33], the authors
followed a similar approach, in which they constructed a neural network ensemble. A method for
activity recognition is proposed in [34] by optimizing the output of multiple classifiers with the genetic
algorithm (GA). The different measurement level outputs of different classifiers, such as HMM, SVM,
and CRF, were combined to form the ensemble.

Even though the majority of the surveyed activity recognition approaches are supervised methods,
most of them share the same limitation: (1) the requirement for sufficient amount of labeled data
in order to work well; and (2) accurate activity labels for PIR sensor data sets. For almost all of
the current smart home test-beds with PIR sensors, the data collection and data labeling are two
separate processes, among which the activity labeling for the collected PIR sensor data is extremely
time consuming and laborious because it is usually based on direct video coding and manually
labeling. Clearly, this limitation prevents the supervised approaches from being easily generalized to a
real-world situation, wherein activity labels are usually not available for a huge amount of sensor data.

Intuitively, activities of daily living are mostly the occupant’s daily or weekly routines.
They usually follow some similar sequences and repeat a lot, which means the interleaving connectivity
and periodic or frequent patterns within the raw PIR sensor data themselves can be very useful for
activity discovery and recognition purposes. Therefore, a number of unsupervised approaches have
been proposed to handle the problem of activity labels not being available. Many of them are based
on sequence mining algorithms, such as frequent sequence mining approaches that use different
sliding windows to find frequent patterns [35–37]; and the emerging pattern mining also known as
contrast pattern-mining [38–40] that uses significant changes and differences in the data set as features
to differentiate between different activities [41–43]. Gu et al. [41] used the notion of emerging patterns
to look for common sensor sequences that can be linked to each activity as a support for recognition.

In [44], the author analyzed the sensor data at the location level only, and constructed a feature
vector of one dimension with time series information. Xie et al. [45] proposed a hybrid system that
used an inertial sensor and a barometer to learn static activities and detect locomotion. The authors
in [46] proposed an approach based on zero-shot learning to learn human activities. Hamad et al. [47]
proposed a fuzzy windowing approach to extract temporal features for human activity recognition.
Müller et al. [48] studied several unsupervised learning methods using sensor data streams from
multiple residents. Fang et al. [49] proposed a method that depends on the integration of several
hierarchical mixture models of directional statistical models with active learning strategies to build an
online and active learning system for activity learning. The authors in [50] presented a method that
can track activities and detect deviations from long-term behavioral routines using binary sensors.
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Some of the recent sequence mining approaches are presented in [5,51], wherein the authors
proposed two methods; namely, discontinuous varied-order sequence mining (DVSM) and continuous
varied order (COM) which can automatically discover discontinuous patterns with different event
orders across their instances. In the first approach, DVSM worked best when using data collected under
controlled conditions and in artificial settings. It faced difficulty mining real-life data. The DVSM
method was able to discover only five activities out of ten predefined activities. In the second approach,
COM was an improved version of DVSM. COM was also able to better handle real-life data by dealing
with the different frequencies problem. Additionally, it was able to find a higher percentage of the
frequent patterns, thereby achieving a higher recognition accuracy rate. The COM method was
successfully able to discover only seven activities out of ten predefined activities. It can be noted that
both methods were not able to discover all predefined activities. These methods were not able to deal
with some similar activities and might mistake them with one another. Some other activities such as
housekeeping were not discovered in the first place.

Other approaches include the graph-based pattern discovery method, which discovers possible
activities by searching for sequence patterns that best compress the input unlabeled data [52,53];
activity learning and recognition based on multiple eigenspaces [54]; activity episode mining
that identifies significant episodes in sequential data by evaluating the significance values of the
candidates [14,55]; and the hierarchical modeling method which models the occupant’s activity at
different levels, such as activity, movements, and motion from top to bottom, so that level by level
clustering and classification can be applied to reduce the difficulty of the overall activity discovery and
recognition [10]. In addition, techniques based on graph analysis have also been proposed to analyze
and discover the occupant’s activity using PIR sensor network data sets [15,56–58].

The surveyed approaches consider a more simple case of the problem by not fully analyzing the
real-world nature of data, such as their order or sequence, the probable interruptions (e.g., a toilet
visit during a sleep time), or the differences between the same patterns. Moreover, not all the labeled
activities were discovered and recognized. Differently from the standard sequence mining methods,
the diverse activity patterns are expected to be detected from a continuous stream of binary data
with no explicit partitioning between two following activities. As a consequence, the sensor data that
represent an activity pattern can have high variations in their lengths. These problems present major
challenges in discovering human activities from binary sensor data, where the sequence of the binary
data can be stopped or interrupted by minor events, and can have different forms with regard to the
order of the sequence, its length, its time duration, and its occurrence in specific locations.

Our method attempts to find general recurring patterns as well as pattern variations taking
into consideration the erratic nature and varying order of the human activities. Our method has
several advantages over the other methods. First, we use several time interval lengths in order to
capture several cues and important features in the sensor data. This enables our method to handle
varying frequencies for activities performed in different locations by keeping only relevant variations
of patterns, and pruning other irrelevant variations. Second, we use the location as a cue in our
clustering algorithms. Many of the aforementioned methods do not use this cue. The location as a cue
significantly boosts the accuracy in our methods, and it has shown promising results in human activity
discovery [5]. Third, we rely on several cluster properties to measure the similarity between clusters,
and this ensures a better cluster quality. Finally, our clustering algorithms eliminate the need for the
user to configure the number of clusters. This results in a more automated approach overall.

3. Our Proposed Framework

The architecture of the proposed framework can be seen in Figure 1. The first component consists
of one “low-level processing” unit and one “intermediate-level processing” unit. In the “low-level
processing” unit, we assign a location label that corresponds to a room. Then, we extract useful features
from the raw sensor data. Some sensors, such as motion and door sensors, generate discrete-valued
messages indicating their states (e.g., on or off, open or closed). These sensors usually only generate
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events when there is a change in their state, typically as a result of the direct interaction with the
occupant. The discrete features used in the feature vector describe the time and the location where the
events occur in the home.

Figure 1. Main components of our proposed framework.

In the “intermediate-level processing” step, we use a time-based windowing approach with a
fixed time interval length. First, we use a small time interval length to extract the time duration within
the detection area of each sensor. We will refer to it as a sensor time-based window. Each index
inside the window represents a particular sensor that is installed in an environment. The value of
each position in the window is the time duration of a particular sensor. The time duration in a sensor
time-based window is defined as the amount of time a person spends around the detection area of a
sensor. Figure 2a shows an example of a sensor time-based window. Each window has a fixed number
of entries N, where N is the number of the sensors installed in an environment, and ψs is the time
interval length. Each entry in the window has a time duration that a person spent within the detection
area of a sensor.

Figure 2. Illustration of the time-based windows. The sensor time-based window is of length ψs,
and the time duration is computed for each sensor. The location time-based window is of length
ψl , and the time duration is computed for each location: (a) sensor time-based window; (b) location
time-based window.

Secondly, we use a large time interval length to extract the time duration within the detection
of each location. We will refer to it as a location time-based window. Each index inside the window
represents a particular location that exists in an environment. The value of each position in the window
is the time duration of a particular location. The time duration in a location time-based window is
defined as the amount of time a person spent around the detection area of a location. Figure 2b shows
an example of a location time-based window. Each window has a fixed number of entries M, where M
is the number of the locations in an environment, and ψl is the time interval length. Each entry in the
window has a time duration that a person spent in a location.

The high-level processing component includes three discovery steps; namely, “intra-day pattern
discovery”, “inter-day pattern discovery”, and “clustering refinement”. In the “intra-day pattern
discovery” step, we want to cluster similar time intervals within the same day, where each group of
similar time intervals will represent a particular pattern. First, we compare the location time-based
windows. Two location time-based windows are considered similar if the overall time duration
difference between the locations is small (e.g., zero or less than a certain threshold). According to this
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criterion, the windows are clustered accordingly. Next, a mapping step is performed in order to group
the sensor time-based windows according to the clusters of the location time-based windows.

Furthermore, the sensor time-based windows are clustered, so that we can compare the durations
of all sensors. Using the same criterion, two sensor time-based windows are considered similar if the
overall time duration difference between the sensors is small (e.g., zero or less than a certain threshold).
Finally, the sensor time-based windows are clustered within a day. Each cluster will contain a group of
sensor time-based windows, where all the windows share similar time durations. The similar group of
windows will represent a specific pattern of behavior (e.g., sleeping, eating). Finally, a single day is
segmented into several clusters, where each cluster represents a group of sensor time-based windows.
We will refer to a cluster here as a pattern.

There could be similar patterns between two days or more. The discovered patterns are unique
within a day but they are not unique between days. The “inter-day pattern discovery” step aims
at finding the common patterns between two or more days and clusters them, and retains only the
general frequent patterns and their variations across all days. We use the Earth mover’s distance
(EMD) as a similarity measure for evaluating the patterns between days. In order to provide more
compressed and defined characterizations of the common frequent patterns across all days, we apply
an aggregate hierarchical clustering algorithm in the third step. Finally in the last component, the
clusters are then used to track and recognize the occupant’s activities.

4. Low-Level Processing

The data sets used in this work consist of a series of PIR motion sensor activation events.
They represent times in which an occupant or a guest moved within the detection area of one of
the PIRs used in the deployment. Figure 3 shows an example of several labeled sensor readings from
one of the data sets. Each sensor event is described by several elements, such as a date, time of the
occurrence, sensor identifier, sensor status, and associated activity label. Sensors’ identifiers starting
with M represent motion sensors, and those starting with D represent door sensors. Some of the events
are part of a labeled activity and others have no activity labels. The goal of an activity recognition
algorithm is to predict the label of a sensor event or a sequence of sensor events.

Figure 3. Sample raw and activity annotated sensor data. Sensors’ IDs starting with M represent
motion sensors while IDs starting with D represent door sensors [32].

As a first step in forming the time-based features that we will later use for the pattern discovery,
we assign to each sensor event a label that corresponds to a location where the occupant is currently
located. The location labeling approach was used previously in [5,57–59] to hypothesize that activities
in a home are closely related to specific locations of a home; for example, cooking mostly occurs in
the kitchen, and sleeping occurs mostly in the bedroom. Figure 4 shows the different locations
as different colored boxes overlain on the deployment map for apartment 1 and apartment 2.
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The two apartments are code-named “Milan” [32] and “Aruba” [60]. The location labels include:
kitchen, dining area, living room, bedroom, guest bedroom, office, hallway, and outside. Table 1 lists
the location identifiers used. The outside of apartment is extracted using opened/closed door sensor
events. Our approach of detecting outside of apartment will be explained in Section 5.2.

(a) Aruba

(b) Milan

Figure 4. Sensor layout and location maps of apartment 1 and apartment 2. (a) Apartment 1 with
location overlay [60]; (b) apartment 2 with location overlay [32].



Sensors 2020, 20, 2513 9 of 48

Table 1. List of location labels used for processing.

Identifier Location Description

0 Hallway
1 Kitchen
2 Dining area
3 Living room
4 Main bedroom
5 Guest bedroom
6 Bathroom
7 Office
8 Outside of apartment

In “Milan” and “Aruba” data sets, the state of the sensor data is not sampled at a constant time
interval. A sensor reports an on state, when there is a motion within its detection area. Otherwise,
it reports an off state. The sensors were not configured to report their states at constant time intervals.
Our method relies on a time-based segmentation approach. In this approach, it is essential for every
time interval to have a constant amount of time duration data. In Figure 5a, there are two sensors,
“M019” and “M014”. The “M019” sensor triggers an event at time “150”, and the “M014” sensor
triggers an event at time “155”. The “M019” sensor does not report its state at a constant time interval
till “M014” triggers an event. Therefore, we need to process the time interval between “M019” and
“M014”. In order to do that, we sample the interval between “M019” and “M014” at a constant time
of 1 s. Figure 5b shows the processed time interval between “M019” at time 150 and “M014” at time
155, where four “M019” events are sampled at a time interval of 1 s. The “*” sign indicates that a
sensor event is sampled at a time interval of 1 s. The sensor data in “Milan” and “Aruba” data sets are
processed to be sampled at a constant time interval of 1 s. Special care has to be taken for edge cases
when two sensor events occur at times that are less than 1 s. For such a case, no sampling is performed.
For instance, the time interval between “M014” at time 155, and “M015” at 155.80 was not sampled,
as shown in Figure 5b.

(a) (b)

Figure 5. Illustration of the processing of the raw sensor events. The various binary sensor events
are identified by the colored straight upward lines. The color shows the kind and the position of the
sensor that was activated. The sensor data are processed to be sampled at a constant time interval
of 1 s. The “*” sign indicates a sampled sensor event at a time interval of 1 s: (a) raw sensor events;
(b) processed sensor events.

Given a sampled event at a constant time interval~ei = (ηi, si, li, di) where ηi denotes the timestamp
in milliseconds, si denotes the sensor ID, li denotes the location ID, and di denotes the duration in
milliseconds between two sensor events, and it is computed as follows:

di = ti+1 − ti (1)

We define a day instance as a sequence of r sampled sensor events (~e1,~e2, . . .~er). Figure 6 shows
examples of sensor event definitions for several sensor event outputs. The first five sensor events are
activated in the kitchen, followed by the activation of the sensor events in the bathroom. It can be
noted that these sensor events are sampled at a constant time interval of 1 s.
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Figure 6. Illustration of the sensor event definition. Each sensor event contains four pieces of
information: timestamp, sensor ID, location, and duration.

5. Intermediate-Level Processing

5.1. Feature Extraction

We use a time-based windowing approach to divide the entire sequence of the sampled sensor
events into equal size time intervals. It is challenging to choose the ideal length of time interval.
An interval that is too small will incorporate noise of the signal, while an interval that is too large
will smooth out important details of the signal. Therefore, we use two time interval lengths. The first
time interval length is small in order to capture the movement of a human being. We would like the
discretization of such movement to correspond closely to the action primitives that are performed.
Discretizing with a small interval might pick up any relevant activity information given the small
pauses in the movement of a human being around the detection areas of the sensors. On the other
hand, discretizing with a large interval length might capture long-term activity, such as relaxation
or sleep that contains large pauses in the movement of a human being around the detection areas of
the locations.

In the case of activity discovery using motion sensor data, no existing work presents any empirical
or theoretical standing to select any time interval length. Some preprocessing steps are often employed
in order to convert the raw time series data into a different representation, which makes the discovery
of the patterns easier. For motion sensor data, there is no known conversion that provides better results
in activity discovery, than using the raw sensor data. We define a time interval as grouping the sensor
events into intervals of seconds, minutes, and hours. A longer length of time can be divided into a
number of shorter periods of time, all of the same length.

We define two different time intervals lengths ψs and ψl , such that ψs ≤ ψl . The time interval
length ψs is referred to a sensor time interval length, and this is indicated by the subscript s in the
symbol ψs. The time interval length ψl is referred to a location time interval length, and this is indicated
by the subscript l in the symbol ψl . The subscripts s and l will be used in our notation to indicate
whether a feature vector belongs to a sensor or a location time interval.

Formally, the sequence of the sampled sensor events (~e1,~e2, . . .~er) is divided using ψs into
windows of equal time intervals (∆s

1, ∆s
2, . . . ∆s

n), and the ∆s
p window is represented by the sequence[

~ej−ψs ,~ej
]
. The value of the variable ψs changes based on the experimental setting. It is obtained

through an experiential procedure by examining the impacts of the various outcomes of ψs on the
performance of the classification system. The exact value of ψs will be discussed in Section 8.

Once the sensor time interval ∆s
p is defined, the next step is to change this time interval into a

feature vector that encapsulates its statistical figures. We execute this step by forming a constant length
feature vector ~f s

p, explicitly encapsulating the time durations of the different sensors within the time

interval. With N sensors installed in a smart home, the dimension of the vector ~f s
p will be N. A time

duration is defined as the amount of time a person spends around the detection area of a sensor or
a location. The sum of all time durations serves as a signal of how much motion and information
flow are happening (or not happening) around the detection area of a sensor or a location within a
time interval.

Let dsû
p be the sum of all time durations for a sensor sû in ~f s

p from a time interval ∆s
p, and it can be

computed as follows:
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dsû
p = ∑

~ej∈Cs(∆s
p ,sû)

dj (2)

where Cs(∆s
p, sû) = {~ej = (ηj, sj, lj, dj) : (~ej ∈ ∆s

p) ∧ (sj = sû)}. Finally, for each sensor time interval

∆s
p, we will have a corresponding sensor feature vector ~f s

p = (ds1
p , ds2

p , . . . dsN
p ), where the sum of all

time duration for each sensor is computed within a time interval ∆s
p. Figure 7a shows an example of

dividing the sequence of the sampled sensor events into sensor time intervals. For each sensor time
interval, the sum of all time durations of each sensor is computed from the sensor events within its
sensor time interval to construct a sensor feature vector ~f s

p, as shown in Figure 7b.

(a)

(b)

Figure 7. Illustration of dividing the sequence of the sensor events using a sensor time interval ψs in
order to form the sensor feature vectors: (a) sensor time interval; (b) sensor feature vector.

Similarly, we use the location time interval length to divide the sequence of the sampled sensor
events (~e1,~e2, . . .~er) into windows of an equal time intervals (∆l

1, ∆l
2, . . . ∆l

m), and the ∆l
q window is

represented by the sequence
[
~ej−ψl ,~ej

]
. The value of the variable ψl changes based on the experimental

setting. It is obtained through an experiential procedure by examining the impacts of the various
outcomes of ψl on the performance of the classification system. The exact value of ψl will be discussed
in Section 8.

Once the location time interval ∆l
q is defined, the next step is to change this time interval into

a feature vector that encapsulates its statistical figures. We execute this step by forming a constant
length feature vector ~f l

q, explicitly encapsulating the time durations of the different locations within

the time interval. With M locations in a smart home, the dimension of the vector ~f l
q will be M. Let dlê

q

be the sum of all time durations for location lê in ~f l
q from a time interval ∆l

q, and it can be computed
as follows:

dlê
q = ∑

~ej∈Cl(∆l
q ,lê)

dj (3)

where Cl(∆l
q, lê) = {~ej = (ηj, sj, lj, dj) : (~ej ∈ ∆l

q) ∧ (lj = lê)}. Finally, for each location time interval

∆l
q, we will have a corresponding location feature vector ~f l

q = (dl1
q , dl2

q , . . . dlM
q ), where the sum of all

time durations for each location is computed within a time interval ∆l
q. Figure 8a shows an example of

dividing the sequence of the sampled sensor events into location time intervals. For each location time
interval, the sum of all time durations of each location is computed from the sensor events within its
location time interval to construct a location feature vector ~f l

q, as shown in Figure 8b.
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(a)

(b)

Figure 8. Illustration of dividing the sequence of the sensor events using a location time interval ψl in
order to form location feature vectors: (a) location time interval; (b) location feature vector.

Our objective in the following sections is to use the sensor feature vectors and the location
feature vectors to discover the activity patterns. We introduce three levels of clustering; i.e., intra-day
clustering in order to discover patterns within the same day, inter-day clustering in order to discover
more general frequent patterns between days, and finally, aggregate hierarchical clustering is used
to provide a more compact and precise representation of the discovered activity patterns. In the
following section, we extend the definition of the sensor feature vector and the location feature vector
by adding two additional feature values that represent whether an entrance to the home or exit from
the home occurred.

5.2. Outside Apartment Feature Representation

In order to avoid sensor events that are far apart in time, we resorted to sampling the sensor
events at a constant time interval of 1 s. As a result of the sampling, labels were assigned to all locations
in the smart homes. The exit doors are located in different places in the home. There could be exit
doors in the hallway, or in the kitchen, as shown in Figure 8. Therefore, a location label is assigned to
the door when it is opened or closed according to its place in the smart home.

It is important to distinguish between two activities: LEAVE_HOME and ENTER_HOME.
Using the door sensor events to detect the times when a user leaves or enters a home did not yield
accurate results. The door sensors may not report their state correctly and accurately when the door is
opened or closed. During the closing and opening of the door multiple times, many motion sensor
events could be triggered and mixed with the door sensor events in the same window, and this makes
it difficult to distinguish between the two activities using a specific order of the triggered sensors in
the window. Additionally, the start and the end label markers sometimes are not set correctly to the
sensor event of interest (e.g., door sensor events).

We need to extend our feature vector definition to indicate when a user leaves and enters a home.
Figure 9a shows an example of the door sensor events before sampling the events. There is a gap of
one and a half hours without any sensor events being reported. Figure 9b shows an example of the
door sensor events after sampling the events. The sensor events are reported periodically at a constant
time interval of 1 s.

We extend the sensor feature vector ~f s
p by defining two additional feature values. The dimension

of the vector ~f s
p will be N + 2. Let dsN+1

p be the N + 1 feature value, and it will be the feature value
that represents the ENTER_HOME activity. Let dsN+2

p be the N + 2 feature value, and it will be the
feature value that represents the LEAVE_HOME activity. The default values of dsN+1

p and dsN+2
p are

0. This means the user did not perform any ENTER_HOME or LEAVE_HOME activities during a
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time interval ∆s
p. Similarly, we extend the location feature vector ~f l

q by defining two additional feature

values. The dimension of the vector ~f l
q will be M + 2. Let dlM+1

q be the M + 1 feature value, and it will

be the feature value that represents the ENTER_HOME activity. Let dlM+2
q be the M + 2 feature value,

and it will be the feature value that represents the LEAVE_HOME activity. The default values of dlM+1
q

and dlM+2
q are 0. This means the user did not perform any ENTER_HOME or LEAVE_HOME activities

during a time interval ∆l
q.

(a)

(b)

Figure 9. Illustration of the sensor events for LEAVE_HOME and ENTER_HOME activities. There is a
gap of one and a half hours. The sensor events are sampled at a constant time interval of 1 s. A location
label is assigned to each sampled sensor event: (a) sensor events before sampling; (b) sensor events
after sampling.

Figure 10 shows our proposed approach to update the newly introduced feature values that will
represent the LEAVE_HOME and ENTER_HOME activities. First, the frequency of the motion sensor
event counts bs

p is computed for a time interval ∆s
p as follows:

bs
p =

∑~ej∈Db(∆s
p)

1

|∆s
p|

(4)

where Db(∆s
p) = {~ej = (ηj, sj, lj, dj) : (~ej ∈ ∆s

p) ∧ (sjis motion sensor)}. Similarly, the frequency of the
door sensor event counts hs

p for a time interval ∆s
p is computed as follows:

hs
p =

∑~ej∈Dh(∆s
p)

1

|∆s
p|

(5)

where Dh(∆s
p) = {~ej = (ηj, sj, lj, dj) : (~ej ∈ ∆s

p) ∧ (sjis door sensor)}. Next, the values of dsN+1
p and

dsN+2
p are updated according to the defined conditions in Table 2 to indicate whether a sensor feature
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vector ~f s
p represents the ENTER_HOME or LEAVE_HOME activities. Each condition in Table 2 depends

on the following information:

• The values of dsN+1
p−1 and dsN+2

p−1 from the previous time interval ∆s
p−1.

• The frequency of the motion sensor events bs
p, and the frequency of the door sensor events hs

p
from the current time interval ∆s

p.

Figure 10. Illustration of our approach for updating the sensor features values of dsN+1
p and dsN+2

p in
order to represent the ENTER_HOME and LEAVE_HOME activities.

Table 2. List of the transitions and the conditions to update dsN+1
p and dsN+2

p , where these sensor feature
values will represent the ENTER_HOME and LEAVE_HOME activities.

Transition Condition Update

T1 bs
p ≥ hs

p ∧ dsN+1
p−1 = 0∧ dsN+2

p−1 = 0
dsN+1

p = 0
dsN+2

p = 0

T2 bs
p ≥ hs

p ∧ dsN+1
p−1 = 0∧ dsN+2

p−1 = 2ψs
dsN+1

p = 0
dsN+2

p = 0

T3 hs
p ≥ bs

p ∧ dsN+1
p−1 = 0∧ dsN+2

p−1 = 0
dsN+1

p = 0
dsN+2

p = 2ψs

T4 hs
p ≥ bs

p ∧ dsN+1
p−1 = 0∧ dsN+2

p−1 = 2ψs
dsN+1

p = 0
dsN+2

p = 2ψs

T5 bs
p ≥ hs

p ∧ dsN+1
p−1 = 0∧ dsN+2

p−1 = 2ψs
dsN+1

p = 2ψs

dsN+2
p = 0

T6 hs
p ≥ bs

p ∧ dsN+1
p−1 = 2ψs ∧ dsN+2

p−1 = 0
dsN+1

p = 0
dsN+2

p = 2ψs

T7 bs
p ≥ hs

p ∧ dsN+1
p−1 = 2ψs ∧ dsN+2

p−1 = 0
dsN+1

p = 0
dsN+2

p = 0

The transitions in the graphical representation of Figure 11 are based on the defined conditions
in Table 2. The nodes represent the ENTER_HOME and LEAVE_HOME activities. The third node
represents the times of no detection of the ENTER_HOME and LEAVE_HOME activities; we will
refer to this node as NO_LEAVE_NO_ENTER (inside home). The values given to dsN+1

p and dsN+2
p

are shown below each node. The default values of dsN+1
p and dsN+2

p are always zero unless one of the
defined conditions is met; then they are updated accordingly to the given values in order to represent
a corresponding ENTER_HOME activity or LEAVE_HOME activity for a sensor feature vector ~f s

p.

When a sensor feature vector ~f s
p contains zero values for dsN+1

p and dsN+2
p , that means this feature

vector represents a different activity than ENTER_HOME or LEAVE_HOME. A value of 2ψs is assigned
to dsN+1

p , and a value of zero is assigned to dsN+2
p in order to represent ENTER_HOME activity. On the

other hand, a value of zero is assigned to dsN+1
p , and a value of 2ψs is assigned to dsN+2

p in order to
represent LEAVE_HOME activity.
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A location feature vector ~f l
q will represent the ENTER_HOME activity or LEAVE_HOME activity

by following the same approach to compute the values of dlM+1
q and dlM+2

q as in the sensor feature
vector case.

Figure 11. A graphical representation of the state transitions to extend the sensor feature values in
order to represent the ENTER_HOME and LEAVE_HOME activities.

6. High-Level Processing

6.1. Intra-Day Pattern Discovery

As previously mentioned, with a fixed length time interval over the sensor events, it is possible
for two sensors to be in two different time intervals, but both of them have the same time duration.
In order to group similar time intervals together into clusters, where each cluster will represent a
specific pattern, we measure the similarity between the different sensors’ time intervals and the
locations time intervals using the duration information encoded in their time intervals. For that, we use
an exponential function to compute the similarity between the time intervals.

We define ~Fs
k = (~f s

1 , ~f s
2 , . . . ~f s

n) to represent all the sensor feature vectors for a day k, where n is
the number of the sensor feature vectors in a day k. We define~cs

k = (os
1, os

2, . . . os
n) to be the cluster IDs

that are assigned to each sensor feature vector in ~Fs
k for a day k. We will refer to them as the sensor

clusters. Similarly, we define ~Fl
k = (~f l

1, ~f l
2, . . . ~f l

m) to represent all the location feature vectors for a day
k, where m is the number of location feature vectors in a day k. We define~cl

k = (ol
1, ol

2, . . . ol
m) to be the

cluster IDs that are assigned to each location feature vector in ~Fl
k for a day k. We will refer to them as

the location clusters.
Figure 12 shows an overview of the intra-day pattern discovery approach. First, we find the

location clusters~cl
k for the location feature vectors ~Fl

k. Next, we assign the location cluster IDs~cl
k to the

sensor cluster IDs~cs
k. Finally, we find the sensor clusters~cs

k for the sensor feature vectors ~Fs
k .
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Figure 12. An overview of the intra-day discovery patterns algorithm.

6.1.1. Finding the Location Clusters

Humans and animals are living beings; their lives are centered around habits. As a consequence,
many of our daily routines center around certain hours. For instance, occupants normally go to bed
at night, are active in the morning, and consume food at evenly fixed time intervals during their
waking hours. Because users have basically the same kinds of routines, the concept of a clock let us to
harmonize group routines, such as gatherings and physical activity events around the clock, week,
month, and year units such as an hour in a day, a day in a week, a week in a month, and a month in a
year. Let ψh be an hourly time interval length (e.g., from 14:00 to 15:00), where ψs < ψl < ψh. We use
the hourly time interval length ψh to divide the sequence of sampled sensor events into windows of an
equal time intervals (∆h

1, ∆h
2, . . . ∆h

ĥ
), where ĥ is the number of the hourly time intervals, and the ∆h

a
window is represented by the sequence [ej−ψh , ej].

We use an exponential decay model to measure the similarity between the two location feature
vectors as follows:

Yl(i, j) = exp(−λl ŷl(i,j)) (6)

where ŷl(i, j) is computed as follows:

ŷl(i, j) =
M+2

∑
c=1

∆l
i⊆∆h

a
∆l

j⊆∆h
a

|dlc
i − dlc

j | (7)

The ith time interval ∆l
i and the jth time interval ∆l

j should be part of the hourly time interval ∆h
a

in order to group the feature vectors around specific times. The value of λl determines the degree
of the similarity between the two location feature vectors. Figure 13 shows an illustration of the
parameter λ’s effect on the degree of the similarity. If λ > 1, then only the time duration differences in
the ith feature vector are temporally very close to the time duration differences in the jth feature vector.
With 0 < λ < 1, the degree of the similarity allows for a wider range of the time duration difference.
When λ = 0, the degree of the similarity has no influence, and the time duration differences in both
feature vectors are identical.

Algorithm 1 shows how the location feature vectors are grouped into clusters. First ~cl
k is

initialized to zero; that means all the location feature vectors belong to a single cluster (same cluster).
The similarity between each pair of the location feature vectors is computed using Equation (6).
The similarity value is evaluated to determine whether the two location feature vectors belong to
the same cluster or not. We use the area under the curve of the exponential decay model as an
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evaluation criterion. Figure 14a shows an exponential decay model with λl = 2−8. When the similarity
value Yl(i, j) falls within the first half of the area under the curve—1− Yl(i, j) < 0.5 (red shaded
area), then the two location feature vectors are considered similar, and assigned to the same cluster.
Otherwise, they do not belong to the same cluster (blue shaded area).
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Figure 13. Effect of λ on the degree of the similarity.

Algorithm 1 findLocationClusters.

Input: ~Fl
k, λl , (∆h

1, ∆h
2, . . . ∆h

ĥ
), (∆l

1, ∆l
2, . . . ∆l

m) Output: ~cl
k,~̂cl

k

1: ~cl
k ←~0

2: clusterID = 1
3: ôl

clusterID = clusterID
4: for i← 1 to m do
5: updateCluster = f alse
6: if ol

i = 0 then
7: for j← 1 to m do
8: for a← 1 to ĥ do
9: compute Yl(i, j) as in Equation (6)

10: if (1−Yl(i, j) < 0.5∧ ol
j = 0) then

11: ol
j = clusterID //assign i and j to the same cluster

12: updateCluster = true
13: end if
14: end for
15: end for
16: if (updateCluster) then
17: clusterID = clusterID + 1
18: ôl

clusterID = clusterID
19: end if
20: end if
21: end for
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Figure 14. The exponential decay model dentition. The red shaded area represents the first half of
the area under the curve, in which two feature vectors are considered similar, while the blue shaded
represents the second half of the area under the curve, in which two feature vectors are considered
dissimilar: (a) exponential decay model for the location feature vectors with ψl = 900 s and λl = 2−8;
(b) exponential decay model for sensor feature vectors with ψs = 60 s and λs = 2−5.

We define ~̂cl
k = (ôl

1, ôl
2, . . . ôl

m̂) to be the set of distinct location cluster IDs in ~cl
k; then m̂ is the

number of distinct location cluster IDs occurring in~cl
k. The location clusters contain mainly a small
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number of clusters. These clusters represent the long-term frequent patterns, such as relaxing, sleeping,
and working that do not require active movements between the locations.

6.1.2. Mapping Clusters

After grouping the location feature vectors ~Fl
k to their corresponding location clusters ~cl

k,
we initially group the sensor feature vectors ~Fs

k into clusters using the location cluster IDs~cl
k. This is

done by assigning the location cluster IDs ~cl
k to the sensor cluster IDs ~cs

k, as shown in Algorithm 2.
The cluster mapping between~cl

k and~cs
k is subject to the following constraint:

ψl mod ψs ≡ 0 (8)

Algorithm 2 mapClusters.

Input: ~cl
k,~̂cl

k, ψs, ψl Output: ~cs
k

1: ~cs
k ←~0

2: for i← 1 to m̂ do
3: for j← 1 to m do
4: if ôl

i = ol
j then

5: x = ψl ·j
ψs

6: y = ψl ·(j+1)
ψs

7: for x ← 1 to y do
8: os

x = ôl
i

9: end for
10: end if
11: end for
12: end for

In the following section, we will evaluate the similarity between the sensor feature vectors in
order to group the similar sensor feature vectors into clusters, where each cluster will represent a
specific pattern.

6.1.3. Finding the Sensor Clusters

Similarly to finding the location clusters, we use an exponential decay model to measure the
similarity between two sensor feature vectors as follows:

Ys(i, j) = exp(−λs ŷs(i,j)) (9)

where ŷs(i, j) is computed as follows:

ŷs(i, j) =
N+2

∑
c=1

∆s
i⊆∆h

a
∆s

j⊆∆h
a

|dsc
i − dsc

j | (10)

The ith time interval ∆s
i and jth time interval ∆s

j should be part of the hourly time interval ∆h
a in

order to group the feature vectors around specific times. The value of λs determines the degree of the
similarity between the two sensor feature vectors. Algorithm 3 shows how the sensor feature vectors
are grouped into clusters. The similarity between each pair of sensor feature vectors is computed using
Equation (9). The similarity value is evaluated to determine whether the two sensor feature vectors
belong to the same cluster or not. We use the area under the curve of the exponential decay model as an
evaluation criterion. Figure 14b shows an exponential decay model with λs = 2−5. When the similarity
value Ys(i, j) falls within the first half of the area under the curve: 1−Ys(i, j) < 0.5 (red shaded area),
then the two sensor feature vectors are considered similar, and assigned to the same cluster. Otherwise,
they do not belong to the same cluster (blue shaded area).
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Algorithm 3 findSensorClusters.

Input: ~Fs
k ,~cs

k, λs, (∆h
1, ∆h

2, . . . ∆h
ĥ
), (∆s

1, ∆s
2, . . . ∆s

n) Output: ~cs
k,~̂cs

k

1: clusterID = max(~cs
k) + 1

2: ôs
clusterID = clusterID

3: for i← 1 to n do
4: updateCluster = f alse
5: if os

i = 0 then
6: for j← 1 to n do
7: for a← 1 to ĥ do
8: compute Ys(i, j) as in Equation (9)
9: if (1−Ys(i, j) < 0.5∧ os

j = 0) then
10: os

j = clusterID //assign i and j to the same cluster
11: updateCluster = true
12: end if
13: end for
14: end for
15: if (updateCluster) then
16: clusterID = clusterID + 1
17: ôs

clusterID = clusterID
18: end if
19: end if
20: end for

In this section, we perform a clustering within the same day, where the sensor feature vectors ~Fs
k

are grouped into clusters~cs
k; each cluster represents a specific pattern in a day k. Let ~̂cs

k = (ôs
1, ôs

2, . . . ôs
n̂)

be the set of distinct sensor cluster IDs in ~cs
k; then n̂ is the number of distinct sensor cluster IDs

occurring in ~cs
k. We define a pattern ~ps

w = (~f s
1 , ~f s

2 , . . . ~f s
aw) to be the group of sensor feature vectors

that belongs to a cluster ôs
w, where aw is the number of the sensor feature vectors that belongs to a

pattern ~ps
w, and w ∈ {1, 2, . . . n̂}. In other words, ~ps

w is the cluster data for a cluster ôs
w. We define

~Ps
k = (~ps

1,~ps
2, . . .~ps

n̂) to be the cluster data for ~̂cs
k in a day k.

For each sensor feature vector ~f s
i , we assign a time reference ωs

i in the following format: “h.m”,
where “h” is the time in hours, and “m” is the time in minutes. We define~ts

k = (ωs
1, ωs

2, . . . ωs
n) to

represent all the assigned time references to the sensor feature vectors ~Fs
k for a day k. Algorithm 4 shows

the time reference computation and assignment. Let ~us
w = (ωs

1, ωs
2, . . . ωs

aw) be the time references for
the cluster data ~ps

w that belong to a cluster ôs
w. Let ~Ts

k = (~us
1,~us

2, . . .~us
n̂) be the time references for the

cluster data ~Ps
k that belong to clusters ~̂cs

k in a day k.

Algorithm 4 assignTimeRef.

Input: n, ψs, ψh Output:~ts
k

1: ~ts
k ←~0

2: step = ψh
ψs

3: h = 0
4: increment = step
5: for i← 1; i < n; i = i + step do
6: m = h
7: for j← i; j < increment ∧ j < n; j = j + 1 do
8: ts

j = m
9: m = m + 0.01

10: end for
11: increment = increment + step
12: h = h + 1
13: end for
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Algorithm 5 summarizes the algorithms of the intra-day pattern discovery approach. In the
following section, we will use the Earth mover’s distance (EMD) to perform a clustering between days.
This is a pruning stage process; it intends to considerably reduce the number of the clusters discovered
within the same day, and find more general patterns across all days.

Algorithm 5 computeIntraClusters

Input: ~Fl
k,~Fs

k , ψh, ψl , ψs, λl , λs, (∆h
1, . . . ∆h

ĥ
), (∆s

1, . . . ∆s
n), (∆l

1, . . . ∆l
m) Output: ~cs

k,~̂cs
k,~ts

k

1: ~cl
k,~̂cl

k = f indLocationClusters(~Fl
k, λl , (∆h

1, . . . ∆h
ĥ
), (∆l

1, . . . ∆l
m)) //Algorithm 1

2: ~cs
k = mapClusters(~cl

k,~̂cl
k, ψl , ψs) //Algorithm 2

3: ~cs
k,~̂cs

k = f indSensorClusters(~Fs
k ,~cs

k, λs, (∆h
1, . . . ∆h

ĥ
), (∆s

1, . . . ∆s
n)) //Algorithm 3

4: ~ts
k = assignTimeRe f (|~Fs

k |, ψs, ψh) //Algorithm 4

6.2. Inter-Day Pattern Discovery

The sensor feature vectors ~Fs
k for a day k are grouped into clusters ~̂cs

k, where each cluster ôs
w

represents a specific pattern ~ps
w. The identified patterns are frequent and repeatable between all days.

In order to retain only interesting patterns, and group repeatable and frequent variations of patterns
across all days, we use the Earth mover’s distance (EMD) [61] to evaluate the similarity between the
patterns across all days. The EMD is also known as the Wasserstein distance, where it is a family of
metrics used to compare the distributions based on the optimal transport problem.

Figure 15 shows an overview of the inter-day pattern discovery approach. First, the clusters
centroids are computed for the sensor feature vectors and the time references of each day, and z is
the number of days in the data set. Next, we use the EMD to measure the similarity between the
clusters of the different days. According to the similarity scores of the clusters, the clusters are sorted.
Furthermore, the clusters are merged according to the sorted similarity scores. The centroids of the
merged clusters are updated. We keep processing more clusters from the different days till all the
clusters are merged, and no further clusters merge. The clusters of all days will be merged into
the first day. Therefore, ~̂cs

1 will contain all the merged clusters between days, ~Ps
1 will contain all the

sensor feature vectors of all the merged clusters between days, and ~Ts
1 will contain all the sensor time

references of all the merged clusters between days.

Figure 15. An overview of the inter-day discovery patterns algorithm.
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6.2.1. Cluster Centroids’ Computation

We compute the cluster centroid for ôs
w using its data ~ps

w. A centroid is a vector that contains
one number for each variable, where each number is the mean of a variable for the observations in
that cluster. We define ~̂ps

w to be the cluster centroid for a cluster ôs
w. In our approach, we compute the

mean duration for N sensors, and for the last two feature values we compute the mode. The mode of a
sensor feature is the value that occurs most frequently in the collection. As explained in Section 5.2,
the last two feature values represent whether a person left or entered the apartment. They are given
constant values of 2ψs. Otherwise, they are given values of zeroes. We do not want to manipulate
their values by computing the mean; we want to keep their values constant across our calculations.
Therefore, the mode operation is used:

~̂ps
w = (

∑aw
c=1 ds1

c

aw
, . . .

∑aw
c=1 dsN

c

aw
, mode(dsN+1

1 , . . . dsN+1
aw ), mode(dsN+2

1 , . . . dsN+2
aw )) (11)

We define ~̂Ps
k = (~̂ps

1, ~̂ps
2 . . . ~̂ps

n̂) to be the cluster centroid data for ~̂cs
k in a day k. Let t̂s

w = mode(~us
w)

be the most frequent time reference for a cluster ôs
w in ~us

w. We define ~̂Ts
k = (t̂s

1, t̂s
2, . . . t̂s

n̂) to be the time
reference centroid points for ~̂cs

k in a day k.

Next, we use ~̂Ps
k and ~̂Ts

k to compute the similarity between the clusters from the different days
using EMD.

6.2.2. Similarity Measure Computation

The EMD assesses the variation between two probability distribution domains in some
dimensional attribute space, where a distance measure between individual attributes is referred to as
the ground measure. The EMD moves the ground measure from single attributes to full probability
distribution domains. Instinctively, given two probability distribution domains, the first probability
distribution can be seen as a sand pile appropriately spread in a domain; the second probability
distribution can be seen as a group of ground holes in the same domain of the first probability
distribution. Then, the EMD evaluates the minimum number of moves required to fill the holes with
sand. A unit of effort is defined here as moving a unit of sand by a unit of ground measure. As a special
case, ~̂ps

w is a one-dimensional vector of values, the EMD can be efficiently computed by scanning the
vector and keeping track of how much dirt needs to be transported between consecutive values.

Figure 16 shows an overview of measuring the similarity between the clusters from the different
days using EMD. First, we compute the EMD value between ~̂ps

x from a day i, and ~̂ps
y from a day

j. Then the EMD value is normalized using a normalization constant. The normalized EMD value
is evaluated against a threshold; if the normalized EMD value is greater than the threshold, then
the EMD score is stored, and clusters x and y are marked as potential clusters to merge. Otherwise,
a constant value score is assigned and stored, and the two clusters are not considered as potential
clusters to merge.

The similarity between two clusters is computed using EMD, as shown in Algorithm 6. Let v̂ be
the similarity value between cluster ~̂ps

x and cluster ~̂ps
y. We define r̂ to be the normalization constant,

and the computation of r̂ is shown in Algorithm 7. Then, v̂ is normalized using r̂ as follows:

emd = 1− v̂
r̂

(12)

Based on the emd value, the two clusters are marked as potential clusters to merge, if the score is
greater than a threshold β, and the score is stored for later use in our approach. Otherwise, the two

clusters are not considered as potential clusters to merge. We define ~̂S to be the similarity matrix that

will hold the normalized EMD similarity scores between the clusters of days i and j. We define ~̂Z to be

the matrix that will hold the cluster IDs for the potential clusters to merge. The similarity matrix ~̂S is
initialized with values of –1, and that means no potential clusters are considered for merging. Similarly,
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~̂Z is initialized with values of –1 in order to indicate no potential clusters to merge. The numbers

of rows and columns for ~̂S and ~̂Z depend on the numbers of clusters in days i and j. The similarity

measure computation between days i and j is shown in Algorithm 8. We define |~̂Ps
i | to be the number

of clusters for a day i. Similarly, we define |~̂Ps
j | to be the number of clusters for a day j. Next, we will

sort the potential clusters to merge in ~̂Z using ~̂S.

Algorithm 6 computeEMD.

Input: ~̂ps
x, ~̂ps

y Output: v̂

1: v̂ = 0, total_sum = 0, tmp_sum = 0
2: for c← 1 to N + 2 do
3: tmp_sum = dsc

x + tmp_sum− dsc
y

4: total_sum = total_sum + tmp_sum
5: end for
6: v̂ = |total_sum|

Algorithm 7 computeNormConstant.
Input: Ts, N + 2 Output: r̂

1: r̂ = 0
2: for c← 1 to N + 2 do
3: âc = 0, b̂c = 0
4: end for
5: â1 = Ts
6: b̂N+2 = 2Ts
7: computeEMD(~̂a,~̂b, r̂) //Algorithm 6

Figure 16. An overview of computing the similarity score using Earth mover’s distance (EMD).
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Algorithm 8 computeSimilarity.

Input: ~̂Ps
i ,~̂cs

j , ~̂P
s
j , ~̂Ts

i , ~̂Ts
j , Ts, N + 2 Output: ~̂S, ~̂Z

1: r̂ = computeNormConstant(Ts, N + 2) //Algorithm 7
2: for h← 1 to |~̂Ps

i | do
3: for g← 1 to |~̂Ps

j | do
4: Ŝ(h,g) = −1
5: Ẑ(h,g) = −1
6: end for
7: end for
8: for h← 1 to |~̂Ps

i | do
9: for g← 1 to |~̂Ps

j | do
10: if t̂s

h 6= t̂s
g then

11: break
12: end if
13: v̂ = computeEMD(~̂ps

h, ~̂ps
g) //Algorithm 6

14: emd = 1− v̂
r̂15: if emd > β then

16: Ŝ(h,g) = emd
17: Ẑ(h,g) = ôs

g18: end if
19: end for
20: end for

6.2.3. Cluster Sorting

Each row in ~̂S and ~̂Z represents a cluster in a day i, and each column represents a cluster in a day
j. Therefore, a single row represents all the potential clusters that can be merged in a day j with a given
cluster in a day i. Figure 17 shows an overview of the cluster sorting approach. First, the average emd
similarity score for each row is computed in ~̂S. Next, the rows in ~̂Z are sorted in a descending order

according to the average emd similarity score per row. A column value from ~̂Z should only belong

to the row with the best average emd similarity score in ~̂Z. This is the current state of ~̂Z, because a
column value could belong to multiple rows. In this case, the duplicate entries should be removed,
and only the row with the best average emd similarity score should keep the column value.

Figure 17. An overview of the cluster sorting approach.

We define~̂k = (k̂1, k̂2, . . . k̂|~̂Ps
i |
) to be the average emd similarity scores per row for ~̂S. Algorithm 9

shows how ~̂k is computed. The row entries in ~̂Z are sorted in a descending order according to the

average emd similarity scores in~̂k, as shown in Algorithm 10. Finally, the duplicate entries are removed

from all rows in ~̂Z, and only one instance is kept for the rows with the best average emd similarity score.

Let ~̂l = (l̂1, l̂2, . . . l̂|~̂Ps
i |×|~̂P

s
j |
) be a temporary vector holder for the column values for a given row in ~̂Z.

Each row in ~̂Z is scanned, and the duplicate entries are marked with values of –1 if the column values
already belong to a row with the best average emd similarity score. Otherwise, the column values
are considered unique, and they should belong to the row that is being scanned. This is illustrated in
Algorithm 11.

Next, the clusters between days i and j are merged according to ~̂Z.
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Algorithm 9 computeAverageRow.

Input: ~̂S Output: ~̂k

1: for c← 1 to |~̂Ps
i | do

2: k̂c = 0
3: end for
4: for h← 1 to |~̂Ps

i | do
5: avg = 0, size = 0
6: for g← 1 to |~̂Ps

j | do
7: if Ŝ(h,g) 6= −1 then
8: avg = avg + Ŝ(h,g)
9: size = size + 1

10: end if
11: end for
12: k̂h = avg

size
13: end for

Algorithm 10 sortClusters.

Input: ~̂Z,~̂cs
i ,~̂k Output: ~̂Z,~̂cs

i

1: score = 0, index = 0, ~row, f lag = 1
2: for h← 1 to |~̂Ps

i | do
3: f lag = 0
4: for g← 2; g < |~̂Ps

i | ∧ f lag; g← g + 1 do
5: if k̂g < k̂g−1 then
6: index = ôs

g−1 //swap elements
7: ôs

g−1 = ôs
g

8: ôs
g = index

9: ~row = ~̂Z(g−1,∗) //swap elements
10: ~̂Z(g−1,∗) = ~̂Z(g,∗)
11: ~̂Z(g,∗) = ~row
12: f lag = 1 // indicates that a swap occurred.
13: end if
14: end for
15: end for
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Algorithm 11 removeDuplicateEntries.

Input: ~̂Z Output: ~̂Z

1: for g← 1 to |~̂Ps
i | × |~̂Ps

j | do
2: l̂g = −1
3: end for
4: for h← 1 to |~̂Ps

i | do
5: for g← 1 to |~̂Ps

j | do
6: f lag = 0
7: for c← 1 to |~̂Ps

i | × |~̂Ps
j | do

8: if l̂c = Ẑ(h,g) ∧ l̂c 6= −1 then //column value is not unique
9: Ẑ(h,g) = −1

10: f lag = 1
11: end if
12: end for
13: if f lag = 0 then // column value is unique
14: l̂g = Ẑ(h,g)
15: end if
16: end for
17: end for

6.2.4. Cluster Merging

The information of the potential clusters to be merged between days i and j is encoded in ~̂Z.
First, we merge the potential cluster data, such as the sensor feature vectors and the sensor time
references from day j with day(s) i. There could be some clusters that are not considered as potential
clusters to merge from day j to day(s) i. In this case, the cluster data from day j is appended to
day(s) i. We define b̂ to be the number of clusters in a day j that are not considered to be merged
with any of the clusters in day(s) i. The size of the sensor feature vectors of day(s) i is expanded as
follows. ~Ps

i = (~ps
1,~ps

2, . . .~ps
n̂+b̂

), where n̂ is the number of clusters. Similarly, the size of the sensor time

references of day(s) i is expanded as follows. ~Ts
k = (~us

1,~us
2, . . .~us

n̂+b̂
). The clusters’ IDs are expanded

as follows: ~̂cs
k = (ôs

1, ôs
2, . . . ôs

n̂+b̂
). We use _ notation to refer to the concatenation of two sequences.

Algorithm 12 illustrates the cluster merging approach.
Algorithm 13 summarizes the algorithms of the inter-day pattern discovery approach. The clusters

of all days are merged into the first day. Therefore, ~̂cs
1 will contain all the merged clusters across all

days, ~Ps
1 will contain all the sensor feature vectors of all the merged clusters across all days, and ~Ts

1
will contain all the sensor time references of all the merged clusters across all days. Let N̂ be the size of
~̂cs

1, ~Ps
1 , and ~Ts

1 after merging the clusters across all days.
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Algorithm 12 mergeClusters.

Input: ~̂Z, ~Ps
i ,~Ts

i ,~̂cs
i , ~Ps

j ,~Ts
j ,~̂cs

j Output: ~Ps
i ,~Ts

i ,~̂cs
i

1: for h← 1 to |~̂Ps
i | do

2: for g← 1 to |~̂Ps
j | do

3: if Ẑ(h,g) = ôs
g ∧ Ẑ(h,g) 6= −1 then //merge cluster data from day j to day i

4: ~ps
h = ~ps

h _ ~ps
g

5: ~us
h = ~us

h _ ~us
g

6: ôs
g = −1 //mark cluster in a day j as merged

7: end if
8: end for
9: end for

10: h = |~̂Ps
i |+ 1

11: for g← 1 to |~̂Ps
j | do

12: if ôs
g 6= −1 then // cluster not merged

13: ôs
h = ôs

g // add cluster data from day j to day i
14: ~ps

h = ~ps
g

15: ~us
h = ~us

g
16: h = h + 1
17: end if
18: end for

Algorithm 13 computeInterClusters.

Input: (~Ps
1 , . . . ~Ps

z ), (~Ts
1 , . . .~Ts

z ), (~̂cs
1, . . .~̂cs

z) Output: ~Ps
1 ,~Ts

1 ,~̂cs
1

1: for a← 1 to z do
2: compute cluster centroids for ~Ps

a and ~Ts
a as in Equation (11)

3: end for
4: for a← 2 to z do
5: ~̂S, ~̂Z = computeSimilarity(~Ps

1 ,~Ts
1 ,~̂cs

1, ~Ps
a ,~Ts

a ,~̂cs
a, Ts, N + 2) // Algorithm 8

6: ~̂k = computeAverageRow(~̂S) //Algorithm 9
7: ~̂Z,~̂cs

1 = sortClusters(~̂Z,~̂cs
1,~̂k) //Algorithm 10

8: ~̂Z = removeDuplicateEntries(~̂Z) //Algorithm 11
9: ~Ps

1 ,~Ts
1 ,~̂cs

1 = mergeClusters(~̂Z, ~Ps
1 ,~Ts

1 ,~̂cs
1, ~Ps

a ,~Ts
a ,~̂cs

a) //Algorithm 12
10: compute merged cluster centroids for ~Ps

1 and ~Ts
1 as in Equation (11)

11: end for

6.3. Cluster Refinement

After grouping the general frequent clusters across all days, we refine the clusters in order to
get a more compressed representation. Though we grouped the redundant cluster variations in
order to retain interesting ones in the previous step, their categorization is still merely based on
sensors’ time durations and time references. Two similar clusters with a small degree of trajectory
differences may trigger various kinds of sensors, and they can be treated as different clusters even
if the clusters show high similarity in time references, and sensors’ time durations. In order to
solve this problem, we introduce a cluster refinement algorithm as an extra step to our framework.
The cluster refinement algorithm groups the clusters using three properties: (1) sensors’ structure,
(2) time references, and (3) sensors’ time duration. The cluster refinement also tackles the situation
when too many clusters have been discovered, where a large number of clusters makes it challenging
to examine the true number of important clusters.

Our cluster refinement approach is equivalent to the standard hierarchical clustering methods [62],
although it does not build a total hierarchy. There are two ways to build up the hierarchy in this
clustering algorithm. The “bottom-up” way: each pattern is considered in its own cluster, and two
patterns are merged into one cluster and then gradually keep merging the rest of the patterns until
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all patterns are merged into one cluster. This technique is referred to “agglomerative”. In the
“top-down” way: all patterns are considered in one cluster, and a cluster division is done through
a repeated approach until all patterns are divided into a certain predefined number of clusters.
This technique is referred to “divisive”. Our cluster refinement approach is of agglomerative type.
In our approach, we do not proceed until all the patterns are merged into one cluster; rather, the cluster
refinement proceeds until the similarity value between the two closest clusters falls under a threshold
τ. This provides us with a group of clusters at the top level of the hierarchy. Using such a clustering
refinement method, the individual is no longer required to choose the number of clusters beforehand.

Figure 18 shows an overview of the cluster refinement approach. First, the clusters centroids
are computed. Next, the similarity matrix of the clusters is computed using a similarity measure.
The maximum similarity value is extracted from the similarity matrix along the two potential clusters
to merge. The maximum similarity value between the two potential clusters is evaluated against
a threshold; if the value is larger than the threshold, then the two potential clusters are merged.
Otherwise, the algorithm stops merging further clusters.

Figure 18. An overview of the cluster refinement approach.

6.3.1. Extended Cluster Centroid Computation

In the inter-day discovery patterns approach, we used only the sensors’ time duration to compute
the clusters’ centroids. In the cluster refinement algorithm, we use three properties; namely, the sensors’
time duration, the time references, and the sensors’ structure to compute the clusters’ centroids for the
refinement. The sensors’ structure is defined as the key triggered sensors during the user’s activity or
movement within a time interval ∆s

i .

We define ~̂Ps
1 = (~̂ps

1, ~̂ps
2, . . . ~̂ps

N̂
) to be the first property in the cluster centroids data for clusters ~̂cc

1.

We refer to ~̂Ps
1 as the sensors’ time duration property, and it is computed as explained in Section 6.2.1.

We define ~̂Ts
1 = (t̂s

1, t̂s
2, . . . t̂s

N̂
) to be the second property in the cluster centroids’ data for clusters ~̂cs

1.

We refer to ~̂Ts
1 as the time references property; it is computed as explained in Section 6.2.1.

Using ~̂Ps
1 , we compute the sensors’ structure. Let ~̂ys

i = (α1
i , α2

i , . . . α
q̂i
i ) be the sensors’ structure for

a time interval ∆s
i , where q̂i is the number of key triggered sensors’ in ~̂ys

i , and αm
i is an index of the

sensor ID. Algorithm 14 shows how the sensor structure is computed. Each value in ~̂ps
i is checked;

if the value is larger than zero, then the index of the sensor ID is added to ~̂ys
i . Otherwise, no value is

added. A non-zero value means that a sensor was activated for a time duration of dsc
i .

We define ~̂zs
w = (~̂ys

1, ~̂ys
2, . . . ~̂ys

ĵw
) to be the group of sensors’ structure that belongs to a cluster ôs

w,

where ĵw is the number of the sensors’ structure that belongs to ~̂zs
w and w ∈ {1, 2, . . . N̂}. We define
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~Hs
1 = (~̂zs

1,~̂zs
2, . . .~̂zs

N̂
) to be the third property in the cluster centroids’ data for clusters ~̂cs

1. We refer to ~Hs
1

as the sensors’ structure property.

Algorithm 14 computeSensorsStructure.

Input: ~̂ps
i Output: ~̂ys

i

1: index = 0
2: for m← 1 to N do
3: if dsm

i > 0 then
4: αindex

i = m
5: index = index + 1
6: end if
7: end for

6.3.2. Similarity Matrix Computation

A cluster centroid is represented by three properties: (1) the time reference t̂s
i ; (2) the sensor time

duration dsû
i ; and (3) the sensor structure ~̂ys

i . We use a group-average link method [62] to compute the
similarity matrix. Figure 19 shows an overview of computing the similarity matrix. First, the time
references similarity between cluster ôs

i and cluster ôs
j is computed. The sensors’ time duration

similarity between cluster ôs
i and cluster ôs

j is computed. The sensors’ structure similarity between
cluster ôs

i and cluster ôs
j is computed. Finally, the average similarity values of the three properties is

computed and assigned to the similarity matrix.

Figure 19. An overview of the similarity matrix computation.

Let ~Z be the similarity matrix with a size of N̂ × N̂, where N̂ is the number of clusters across
all days. We define γs(i, j) to be the time reference similarity value between cluster ôs

i and cluster ôs
j .

The time reference t̂s
i of cluster ôs

i is represented in an angular measure unit φs
i computed using the

radian measure unit as an alternative to the linear representation. This enables the differences in time
to appear accurately (1:00 AM will be nearer to 22:00 PM than 18:00 PM). The angular time of the time
reference t̂s

i for cluster ôs
i is computed as follows:

φs
i = (

t̂s
i

24
× 360)(

π

180
) (13)

Similarly, the time reference t̂s
j of cluster ôs

i is represented in an angular form φs
j . The time reference

attribute can help us to differentiate between certain routines, such as late breakfast versus late lunch.
The time reference similarity value is computed as follows:

γs(i, j) = 1−
|φs

i − φs
j |

2π
, (14)

We define τs(i, j) to be the sensor time duration similarity value between cluster ôs
i and cluster ôs

j .
It is computed as follows:



Sensors 2020, 20, 2513 30 of 48

τs(i, j) = max
dsc

i ∈~̂f
s
i

dsc
j ∈~̂f

s
j

(
|dsc

i − dsc
j |

max(dsc
i , dsc

j )
) (15)

We define $s(i, j) to be the sensor structure similarity value between cluster ôs
i and cluster

ôs
j . The sensor structure similarity is calculated as in Equation (16) using the Jaccard similarity

measure [62]:

$s(i, j) =
~̂yi ∩ ~̂yj

~̂yi ∪ ~̂yj
. (16)

Finally, the average similarity value between cluster ôs
i and cluster ôs

j is computed as follows:

Z(i,j) =
γs(i, j) + τs(i, j) + $s(i, j)

3
(17)

where we normalize Z(i,j) by 3 in order to fall within the range [0, . . . , 1]. Next, we find the two best
matching clusters to merge.

6.3.3. Finding Potential Clusters

We are interested in finding the two best clusters to merge according to the best similarity value
between clusters in ~Z. Our approach intends to find a global similarity value in ~Z between two clusters.
Algorithm 15 shows how the two best matching clusters to merge are found.

Algorithm 15 findPotentialClusters.

Input: ~Z Output: η, r∗, c∗

1: ~̂dr ← 0, ~̂dc ← 0, ~̂ds ← 0
2: r∗ = 0, c∗ = 0, b∗ = 0, η = 0
3: for i← 1 to N̂ do
4: d̂r

i = i
5: d̂s

i = max(~Z(i, ∗))
6: d̂c

i = i∗
7: end for
8: η = max(~̂ds)
9: r∗ = d̂r

b∗
10: c∗ = d̂c

b∗

We define ~̂dr = (d̂r
1, d̂r

2, . . . d̂r
N̂
) to hold the rows positions in ~Z. We define ~̂dc = (d̂c

1, d̂c
2, . . . d̂c

N̂
) to

hold the positions of the maximum similarity values of the rows in ~Z. We define ~̂ds = (d̂s
1, d̂s

2, . . . d̂s
N̂
)

to hold the maximum similarity values of the rows in ~Z. Next, each row in ~Z is scanned to extract
the maximum similarity value, and the position of the maximum similarity value as well. Let i∗ be
the position of the maximum similarity value for a given row i in ~Z. The row position, the maximum

similarity value position, and the maximum similarity value are kept in ~̂dr, ~̂dc, and ~̂ds respectively.

Let η be a global similarity value, and it can be found by scanning ~̂ds. Let b∗ be the corresponding
position of the global similarity value of η. Then b∗ can be used to extract the positions of the two

best matching clusters to merge from ~̂dr, and ~̂dc. We define r∗ and c∗ to be the positions of the two
best matching clusters to merge. Next, we will merge the two best matching clusters according to the
global similarity value η.
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6.3.4. Potential Cluster Merging

After having found the global similarity value, and the two best matching positions of the
clusters to merge, the global similarity value η is evaluated against the cluster refinement threshold
ζ. If η is larger than ζ, then the two best matching clusters os

r∗ and os
c∗ are merged. Otherwise,

no further cluster refinement. Algorithm 16 shows how the two best matching clusters are merged.
First, the sensor feature vectors ~ps

r∗ of cluster os
r∗ are merged with the sensor feature vectors ~ps

c∗ of
cluster os

c∗ . Next, the time references ~us
r∗ of cluster os

r∗ are merged with the time references ~us
c∗ of cluster

os
c∗ . The sensors’ structure ~zs

r∗ of cluster os
r∗ is merged with the sensors’ structure ~zs

c∗ of cluster os
c∗ .

Finally, os
c∗ is removed from ~̂cs

1, and the number of clusters is decreased by N̂ = N̂ − 1.

Algorithm 16 mergePotentialClusters.

Input: η, ζ, r∗, c∗, ~Ps
1 ,~Ts

1 , ~Hs
1,~̂cs

1 Output: ~Ps
1 ,~Ts

1 , ~Hs
1,~̂cs

1

1: if η > ζ then
2: ~ps

r∗ = ~ps
r∗ _ ~ps

c∗
3: ~us

r∗ = ~us
r∗ _ ~us

c∗
4: ~zs

r∗ = ~zs
r∗ _~zs

c∗
5: remove ôs

c∗ from ~̂cs
1

6: update N̂ = N̂ − 1
7: end if

We get a more compact and a more compressed representation of each cluster, after merging all
the potential clusters using the cluster refinement approach. We will refer to each cluster in ~̂cs

1 as a
pattern by itself. The sensors’ time duration ~Ps

1 , the time references ~Ts
1 , and the sensors’ structure ~Hs

1
represent the cluster data of the patterns (clusters) ~̂cs

1.

7. Activity Recognition

We want to use the set of clusters to recognize the future executions of the discovered pattern.
This will allow the smart environment to track each discovered pattern and determine if an individual’s
routine is being maintained. In the high-level processing step, our approaches identified the key
patterns data that likely belong together and appear with enough frequency and regularity to comprise
a discovered pattern that can be tracked and analyzed. We want to assign descriptive, human-readable
labels for the clusters. In order to do that, we use the externally provided annotations of the data sets
to assign meaningful class labels to each cluster. We define ξs

i to be the label that is being assigned to
one of the points of the cluster data, where a cluster data point is the sensor feature vector ~f s

i , the time
reference t̂s

i , and the sensor structure ~̂ys
i . Let Ξs

m = (ξs
1, ξs

2, . . . ξs
ĝm
) be the group of labels that are being

assigned to a cluster ôs
m, where ĝm is the number of labels in ξ̂s

m, and the cluster data points are the
sensor feature vectors ~ps

m, the time references ~us
m, and the sensors’ structure ~̂zs

m. A semantic label ξ̂s
m is

given to a cluster ôs
m by selecting the label that appears most frequently in Ξs

m as follows:

ξ̂s
m = mode(Ξs

m) (18)

We define Ξ̂s
1 = (ξ̂s

1, ξ̂s
2, . . . ξ̂s

N̂
) to be the most frequent labels that are being assigned to clusters ~̂cs

1,

where the cluster data points are the sensor vector features ~Ps
1 , the time references ~Ts

1 , and the sensors’
structure ~Hs

1. A cluster is considered as a good representation of its labels and data when all the labels
are from the same class. Figure 20 shows an illustration of examples of semantic labels that are being
assigned to clusters. The resulting set of cluster centroids represents the activities that we will model,
recognize, and track.
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Figure 20. Illustration example to assign class labels to clusters. The most occurring class label inside
a cluster is chosen as the semantic label for that cluster.

8. Experiments

8.1. Data Set

We evaluated the performances of our methods on two public data sets captured in real-life
settings from two apartments during seven-month and three-month periods. The data sets were
collected in the CASAS smart home, a project of Washington State University, with full-time
residents [32,60]. The two data sets are code-named “Milan” and “Aruba”. In case of “Milan”,
31 motion sensors and one door sensor were deployed at various locations and 15 activities were
performed for 81 days. The residents in the home were a woman and a dog. For “Aruba”, 31 motion
sensors and three door sensors were deployed and 12 activities were performed for 220 days.
The resident in the home was a woman. The floor plan and sensor layout for the two apartments are
shown in Figure 4. These data are all represented as a sequence of time-stamped sensor data, as shown
in Figure 3. A detailed description of the data sets and annotation method can be found in [32,60].

In order to be capable of evaluating the outcomes of our methods, each of the data sets was labeled
with predefined routines of interest for the corresponding occupants and apartments. Those routines
are representative activities used in the validation of smart home monitoring systems. Table 3 shows
the characteristics of “Aruba” and “Milan” data sets.

Table 3. Characteristics of the annotated activities of CASAS smart home data sets.

Apartment 1 Apartment 2

Id Activity # of Sensor Events Activity Count Id Activity # of Sensor Events Activity Count

1 Meal Preparation 299,300 1606 1 Bed to Toilet 1255 89
2 Bed to Toilet 1483 157 2 Sleeping 22,172 96
3 Relax 387,851 2919 3 Leave Home 4946 214
4 Sleeping 63,792 401 4 Watch TV 23,688 114
5 Eating 19,568 257 5 Chores 7587 23
6 Enter Home 2041 431 6 Desk Activity 7628 54
7 Housekeeping 11,010 33 7 Dining Rm Act 4295 22
8 Leave Home 1954 431 8 Evening Medicines 250 19
9 Respirate 571 6 9 Guest Bathroom 10,601 330
10 Wash Dishes 10,682 65 10 Kitchen Activity 128,942 554
11 Work 17,637 171 11 Master Bathroom 15,071 306
12 Other Activity 903,669 - 12 Master Bedroom 27,337 117

13 Meditate 1315 17
14 Morning Medicines 1023 41
15 Read 50,281 314
16 Other Activity 21,774 -

Most of the existing activity learning methods exclude the sensor data that are not in agreement
with any of the known routine classes. To elaborate more, training activity models on certain routines
such as “sleep”, “relax”, and “work” could lead to evaluating data that are consistent only with these
three routines. However this does not reflect the real-life setting of an environment, where data can be
correlated with other clear routines such as “cook” or “eat”, or switching between different routines.
Normally, data from “other activity” show a tendency to impact on the real-life setting data, as shown
by the great number of sensor events relating to the “other activity” class in Table 3. Current activity
learning methods regularly exclude the existence of these “other activity” classes while validating the
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effectiveness of the methods. In this paper, we include the sensor events from these “other activity”
classes also in order to define the utmost naturalistic activity learning performance.

8.2. Setup

We used the whole data sets for the evaluation. We split the data sets using the “leave-one-day-out”
strategy; therefore, the sensor readings of one day are used for testing and the remaining days are used
to form the clusters with their corresponding semantic labels. For classifying the label of a test time
interval of sensor events, we use two approaches: (1) classification by cluster; and (2) classification
by model.

In the first approach, for a testing day, we use a sensor time interval length of 60 s to divide the
entire sensor event sequence into an equal size of time intervals. This time interval length is long
enough to be discriminative and short enough to provide high accuracy labeling results. Each time
interval is considered as a cluster by its own. For each time interval, we compute three properties
that represent the cluster centroid of the test time interval: (1) the sensor feature vector; (2) the time
reference; (3) the sensor structure. The sensor feature vector is computed as described in Section 5.
The time reference is computed using Algorithm 4. Finally, the sensor structure is computed using
Algorithm 14, but the input will be the sensor feature vector ~f s

i .
In order to classify the time interval in the testing day to one of the corresponding clusters of

the training days, we compute the times’ reference similarity as in Equation (14), the sensors’ time
duration similarity as in Equation (15), and the sensors’ structure similarity as in Equation (16). Finally,
the group-average link is computed as in Equation (17) between the test time interval and one of
the clusters in the training set. This process is repeated between the test time interval, and all the
clusters in the training set. The test time interval is classified to the cluster with the best similarity
value. The cluster label will be the label to be assigned to the test time interval. We will refer to this
approach as classification by cluster. Table 4 summarizes the tuned parameters of our framework.
The parameters values were found to be acceptable based on several runs of our experiments.

Table 4. Tuned parameters of the proposed framework.

Parameters Values

Sensor time interval length ψs 60 s
Location time interval length ψl 120 s
Degree of location similarity λl 2−6

Degree of sensor similarity λs 2−5

EMD similarity threshold β 0.99
Cluster refinement threshold ζ 0.99

In the second approach, we use the cluster data points and the semantic label associated with each
cluster to build a model, in order to classify the label of the test time interval. Each data point has three
properties: the sensor feature vector, the time reference, and the sensor structure. These properties
are used as inputs to train a model, and the semantic label of each data point is used as the output
of the model. We chose the perceptron classifier to build the model. Other classifiers were tested,
but the perceptron classifier gave the best performance among them. We will refer to this approach as
classification by model.

8.3. Evaluation Criteria

We are mainly interested in evaluating the performances of our methods on the routines including
and excluding the “other activity” class. Therefore, we calculated the classification accuracy and
the F-score as measures for the validation. The predefined activity classification accuracy shows the
percentage of correctly classified instances:
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Accuracy =
|ξs |

∑
i=1

TPξs
i

Nξs
i

, (19)

where ξs
i is the classified activity, Nξs

i
is the total number of the time intervals associated with a

classified activity ξs
i (such as “sleep”), TPξs

i
is the number of correctly classified windows for this

predefined activity, and |ξs| is the total number of predefined activities. The F-score for activity ξs
i is

computed as follows:

F− score = 2× P× R
P + R

, (20)

where P and R represent the precision and the recall for activity ξs
i . The F-score is favored over

accuracy when we have an imbalanced data set due to its inherent capacity to measure a recognition
method performance on a multi-class classification problem, and because it is adapted for the class
distributions of the ground truth and the classified activity labels. Additionally, it is commonly
used as an evaluation measure in smart home settings for evaluating the performances of human
activity recognition methods as in [46,63,64]. Therefore, we follow a similar approach by using the
F-score measure.

8.4. Results and Discussion

We conducted four sets of experiments to evaluate the effectiveness of the methods presented
in this paper. In the first experiment, we evaluated the pattern discovery of our clustering methods
in Section 6. In the second experiment, we evaluated our framework using the sensor data while
excluding the “other activity” class. In the third experiment, the “other activity” class was incorporated
during the evaluation of our framework. In the last experiment, we evaluated and compared our
framework against other state-of-the-art methods.

8.4.1. Pattern Discovery Evaluation

First, we analyze the high-level processing step, which is composed of “intra-day pattern
discovery”, “inter-day pattern discovery”, and “cluster refinement”. The high-level processing step
was varied, and capable of detecting most of the predefined routines of interest. On the “Milan” data
set, it discovered 16 out of 16 activities. On the “Aruba” data set, it was able to discover all of the
12 activities. Some of the patterns that were not detected instantly are in fact very challenging to find
and in several situations less recurrent. For example, the “Eve_Meds” is not linked to any particular
unique sensor. Not only that, several similar patterns are combined with each other, as they employ
the exact same group of sensors, such as “Morning_Meds” and “Kitchen_Activity” on the “Milan”
data set. Moreover, some of the routines are detected more than once in the format of varied patterns,
as the routine can be carried out in different ways, activating various sensors. Figure 21a,b shows the
number of unique detected activities by the high-level processing step. One can clearly see that the
high-level processing step is capable of detecting a large number of unique activities. These figures
present the size of data for reaching a particular level of accuracy as well.

Figure 22a,b shows the number of detected patterns occurrences for the high-level processing step,
while Figure 23a,b shows the number of trimmed occurrences. In some cases the high-level processing
step produces more pattern occurrences and in general more patterns; it also trims pattern occurrences,
while still detecting more unique patterns (activities).
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(a) Milan

(b) Aruba

Figure 21. Number of the unique activities detected vs. the size of data.

(a) Milan

(b) Aruba

Figure 22. Number of pattern occurrences vs. the size of data.
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(a) Milan

(b) Aruba

Figure 23. Number of trimmed patterns vs. the size of data.

The clusters were further refined using our cluster refinement approach described in Section 6.
By using the externally provided labels, the purity of the clusters were measured with respect to the
coherence and cohesion of their differences using Equation (21). The cluster purity is defined as the
percentage of the total number of data points that were classified correctly, in the unit range [0 . . . 1].
The purity is computed as follows:

Purity =
1

N∗

|~̂cs
1|

∑
i=1

maxj|ôs
i ∩ ξs

j |, (21)

where N∗ is the number of data points, |~̂cs
1| is the number of clusters, ôs

i is a cluster in ~̂cs
1, and ξs

j is
the classification that has the max count for cluster ôs

i . We use the ground truth classification of those
objects as the measure of assignment correctness, however to do so we must know, which cluster
ôs

i maps to which ground truth classification ξs
i . If it was 100% accurate, then each ôs

o would map
to exactly 1, but in reality our cluster ôs

i contains some points whose ground truths classified them
as several other classifications. Naturally then we can see that the highest clustering quality will
be obtained by using the ôs

i to ξs
i mapping, which has the highest number of correct classifications;

i.e., ôs
i ∩ ξs

i . That is where the max comes from in the equation. To calculate purity, a confusion matrix
is created. This can be done by looping through each cluster ôs

i and counting how many objects were
classified as each class ξs

i .
The purity of the “Milan” data set was 0.882 in our experiments, while purity for the “Aruba”

data set was 0.948. By paying a closer look at the data and analyzing it, we found that the patterns in
the “Milan” data set were considerably infrequent. For that reason, the most similar patterns were
merged together into one cluster; e.g., taking medication and kitchen activity, which normally occur at
around the same hour and the same place (in this occasion, the kitchen). Our clustering methods are
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able to achieve an average purity level of 0.915. On the other hand, the COM [5] method achieved an
average purity level of 0.830 on two private data sets. This reveals that our clustering methods can
better identify and group similar patterns to the same clusters than the COM [5] method.

8.4.2. Excluding “Other Activity” Class Evaluation

After forming the clusters, and assigning a semantic label for each cluster, we used two approaches;
namely, classification by cluster and classification by model to classify the time intervals of a test day
to the predefined activities. In the second experiment, the framework was trained on data without
considering the “other activity” class. This class is included in the third experiment to evaluate the
framework. Table 5 shows the accuracy and F-score of the two classification approaches without
considering the “other activity” class using the “Aruba” and “Milan” data sets. The classification by
model approach achieved an average accuracy and F-score of 95.53% and 95.78%. The classification
by cluster approach achieved an average accuracy and F-score of 96.59% and 96.48%. On average,
the classification by cluster has an increased performance of 1% over the classification by model.

Table 5. Results of the two classification approaches without considering “other activity” class.

Approaches Aruba Milan

Accuracy F-Score Accuracy F-Score

Classification by Cluster 98.66% 98.64% 94.52% 94.32%
Classification by Model 98.00% 98.28% 93.05% 93.27%

Furthermore, Figures 24a and 25a show the F-scores of the individual activities for “Aruba” and
“Milan” data sets as obtained by the different classification approaches. It can be noted from these
figures that due to larger recurrence in “Aruba” data set, it is easier to track and recognize activities.
From the “Aruba” and “Milan” data sets, there are some activities like “sleep”, “relax”, “read”,
“Watch_TV”, and “Leave_Home” that are classified comparatively better than the other activities.
These activities are executed in clear places and/or fixed time through the day. For example, the activity
“work” takes place in the evening in the office location of the “Aruba” data set. Each data set has a
certain sensor that tracks the motion in the office location, and thus, behaves as a strong indicator for
the activity.

(a) Other activity excluded

Figure 24. Cont.
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(b) Other activity included

Figure 24. F-scores for each activity for Aruba data set as achieved by the different classification methods.

(a) Other activity excluded

(b) Other activity included

Figure 25. F-scores for each activity for the Milan data set as achieved by the different classification methods.
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In Figure 24a, some of the activities such as “eating”, “Wash_Dishes”, “Bed_to_Toilet”,
and “housekeeping” are detected with low accuracy, because there is some confusion between similar
activities such as “Meal_Preparation” and “Wash_Dishes”, which occur at exact hours and exact
places. Additionally, the “housekeeping” activity occurs in very rare occasions in comparison to other
activities; and even if it has enough frequency in the data, because of its unorganized nature and the
fact that it takes place all over the apartment, it is very hard to detect. Therefore, it is mistaken with
other activities, such as “relax” or “work”. The “housekeeping” activity happens every 2–4 weeks in
the “Aruba” data set, and it is not associated with any specific sensor. The “housekeeping” activity
required the person to move around different locations, and activate many sensors. Therefore, it is
hard to capture this activity using PIR sensors only. Sensorizing “housekeeping” tools such as broom,
duster, and dustpan will definitely yield better results in terms of detecting this activity accurately.
Because the “housekeeping” activity will have its own sensor data pattern and signature. This will
enable our methods to find distinct clusters for it. The “housekeeping” activity was not discovered in
the first place in DVSM [51] and COM [5] methods, while our method was able to discover this activity
given the previously mentioned challenges. The rest of activities are detected with a high accuracy.
It can be noted that the classification by cluster outperforms the classification by model in detecting
these activities.

On “Milan” data set, both approaches achieve a lower accuracy as shown in Figure 25a.
This can be attributed to the fact that some activities such as “Kitchen_Activity”, “Morning_Meds”,
and “Eve_Meds” occur at similar location as in the kitchen. Detecting “Morning_Meds” and
“Eve_Meds” activities can be further improved by equipping the kitchen cabinet containing a medicine
dispenser with vibration sensors, accelerometers, and RFID sensors. These activities will have their
own sensor activation patterns. Our methods can then group them accurately into separate clusters,
and not with the same clusters of “Kitchen_Activity”. Other activities such as “Bed_to_Toilet” might
be mistaken with another activity such as “sleep” because these activities are less present in the data
set. Figure 26 shows the confusion matrix of the classification by cluster approach for the two data sets
without considering the “other activity” class.
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Figure 26. Confusion Matrix for Aruba and Milan data sets as obtained by the classification by cluster
approach without considering “other activity” class.

8.4.3. Containing “Other Activity” Class Evaluation

In this experiment, the “other activity” class is included. The results are summarized in Table 6.
By comparing the results obtained in the first experiment (Table 5) with the one obtained by this
experiment (Table 6), the average classification accuracy and F-score of the classification by model
approach drop about 21% and 22%. Similarly, the average accuracy and F-score of the classification
by cluster approach drop about 16% and 17%. To further analysis this significant drop, we plotted
the individual F-score for each activity; that is summarized in Figures 24b and 25b. From Figure 24b,
“Wash_Dishes” has the most significant drop with an F-score of 7%, while several activities such
as “resperate” and “Enter_Home”, have the second most significant drop with an F-score of 13%.
The remaining activities did not have a significant decrease in their F-scores. Similar observations can
be concluded from Figure 25b; several activities such as “sleep”, “read”, “Watch_TV”, “meditate”,
“Enter_Home”, and “Leave_Home” did not have significant drops in their F-scores, while we can see a
noticeable drop in the F-scores of the remaining activities.

Table 6. Results of the two classification approaches considering “other activity” class.

Approaches Aruba Milan

Accuracy F-Score Accuracy F-Score

Classification by Cluster 89.48% 89.33% 71.88% 70.68%
Classification by Model 87.64% 87.88% 60.76% 59.19%

As the graphs and tables illustrate, the accuracy performance degrades when the non-labeled
data is included in the analysis. There are two reasons for this change in performance. First, the “other
activity” class dominates the data; thus many data points that belong to predefined activities
are misclassified as “other activity” class (this can be seen in the confusion matrix graphs in
Figures 26 and 27). Second, the “other activity” class itself represents a number of different activities,
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transitions, and movement patterns. As a result, it is difficult to characterize this complex class and
difficult to separate it from the other activity classes.
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Figure 27. Confusion Matrix for Aruba and Milan data sets as obtained by the classification by cluster
approach considering “other activity” class.
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8.4.4. Comparison to Other Methods

Finally, we compare our approach against other four approaches on “Aruba” and “Milan” data
sets using F-score as shown in Table 7. The “GA” [34], “semi-supervised” [32], and kernel fusion [22]
approaches did not include the “other activity” class in their experiments and analysis, but the
“MkRENN” approach did [25]; the authors performed their experiments two times by excluding and
including the “other activity” class. From Table 7, our approach achieves the best performance on
“Aruba” data set in comparison to the other approaches when the “other activity” class is excluded.
MkRENN [25] achieved an F-score of 53.78% when the “other activity” class was included, and our
approach achieved an F-score of 89.33%. Our approach still outperforms the MkRENN approach even
when the “other activity” class is included. On the “Milan” data set, our approach scored an F-score of
94.32%, which is slightly better than the result of the “Kernel Fusion” approach [22] with an F-score
of 94.11%.

Table 7. F-score comparisons to other approaches on Aruba and Milan data sets.

Approaches Aruba Milan

Ours 98.64% 94.32%
MkRENN [25] 66.26% -

GA [34] - 85.73%
Semi-Supervised [32] - 78.24%

Kernel Fusion [22] 92.70% 94.11%

We provide a more detailed comparison in Figure 28 between our two classification approaches
and the listed approaches in Table 7 on “Aruba” and “Milan” data sets. We show the F-score measure
of each activity obtained by each method. “Semi-supervised [32]” method is excluded from this
comparison since the authors did not report the F-score measures of each activity in their work.
In Figure 28a, our two proposed recognition methods: “classification by model”, and “classification by
cluster” perform better than “MkRENN” and “kernel fusion” methods on detecting: “relax”, “eating”,
“work”, “sleeping”, “Leave_Home”, and “Enter_Home” activities. While, our methods deliver close
F-score results to the other methods on detecting: “Meal_Preparation”, and “Bed_to_Toilet” activities.
The good performance of our methods is attributed to: (1) the use of multiple time interval lengths
to extract the time duration features around the detection areas of sensors and locations; (2) our
clustering algorithms use several data point properties such as the sensor structure, the time of the
sensor feature, and the time duration to measure the similarity between clusters; (3) our novel approach
of extracting “Leave_Home” and “Enter_Home” features helped our clustering algorithms to group
these activities accurately with distinct data point properties; (4) the introduction of several clustering
steps in the high-level processing stage, where different similarity measures such as exponential decay
model and EMD are used in order to refine the patterns into a more compressed and defined cluster
characterizations; (5) the use of the location as a cue in our feature extraction; and (6) from Table 3,
the aforementioned activities occurred enough times in the “Aruba” data set for a long period of time,
and this gave our methods sufficient data to explore and discover the different pattern variations of
these activities. The “Kernel Fusion” and “MkRENN” methods did not perform well, because these
methods could not capture the underlying variations in these long-term patterns, since the sequence
patterns are disrupted by irrelevant events, and have many variations in terms of step ordering
or duration.

All the methods including ours were not able to detect certain activities with a good accuracy:
“Wash_Dishes”, and “respirate” activities. “MkRENN” and “GA” perform better than our methods
in detecting “housekeeping” activity. This can be attributed to the following: (1) from Table 3,
these activities did not occur enough times in the data set, which made them difficult to be discovered
or recognized; (2) our methods may assign some of these activities to a wrong but similar cluster,
this can be seen in activities such as “Wash_Dishes” and “Meal_Preparation”, because the dish cleaning
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and meal preparation tasks happen in the same location, and trigger the same set of sensors, so in many
cases they were clustered together; and (3) our clustering algorithms considered the “housekeeping”
pattern to be variations of “Relax” and “Meal_Preparation” patterns.

(a) Aruba

(b) Milan

Figure 28. Comparing the F-scores for the individual activities on Aruba and Milan data sets as
obtained by the different approaches.

In Figure 28b, our two proposed recognition methods: “classification by model”,
and “classification by cluster” perform better than “GA” and “kernel fusion” methods on detecting:
“Leave_Home”, “Enter_Home”, “sleep”, and “read”. Additionally, our methods deliver close F-score
results for the other methods on detecting: “Desk’_Activity”, “Kitchen_Activity”, “Bed_to_Toilet”,
“Master_Bathroom”, and “Watch_TV”. The reasons of the good performance of our methods is similar
to the “Aruba” data set. The other methods could not detect some of the activities accurately such as
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“Leave_Home”, and “Enter_Home” due to the poor feature representation, in which they were used to
train these models.

Our methods detected some activities less accurately than the other methods: “meditate”,
and “Guest_Bathroom”. Our methods had challenges in discovering and recognizing several activities
accurately: “chores”, “Dining_Rm_Activity”, “Morning_Meds”, “Eve_Meds”, and “Master_Bedroom”.
This can be attributed to the following: (1) From Table 3, these activities have less frequency
than the other activities; therefore our clustering algorithm considered them as variations
of the other patterns. For example, “Morning_Meds”, and “Eve_Meds” have 19, and 41
occurrences respectively, while “Kitchen_Activity” has 554 occurrences, since “Morning_Meds”,
“Eve_Meds”, and “Kitchen_Activity” occur in the same place, and trigger the same set of sensors,
our clustering algorithms assign “Morning_Meds” and “Eve_Meds” patterns to the dominant cluster
“Kitchen_Activity”. To an extent this highlights the fact that “Morning_Meds” and “Eve_Meds” are
in fact very similar and could possibly be monitored together as a group. The same observation
can be seen in case of “chores”, and “Dining_Rm_Activity” activities. (2) Our methods were able
to detect “Mediate” activity to a certain extent, given the low number of occurrences (17), but some
instances of this activity have been confused with other patterns such as “sleep” due to the similar
sensor structure between “Mediate” and the other activities. This confusion can be noted as well
in “Master_Bedroom” where it resembles similar sensor and location information to “sleep” and
“Master_Bathroom” activities. (3) One major advantage in “Kernel Fusion” and “GA” methods is that
they rely on training different kernel functions and classifiers; then they fuse the individual results on
a decision level. This technique greatly boosts the accuracy of detecting these activities, given their
low number of occurrences.

The one can observe that our methods can perform well and better than the other approaches,
when the activities have enough occurrences and repetitions, and this can be seen in the case of the
“Aruba” data set. Our methods in this case can deal with different variation of the same pattern.
While the other methods fail to learn the relationship between the attributes of the sensors features
for the different variation of the same pattern, and the target class. On the other hand, our methods
struggle with discovering imbalanced activities or the activities with insufficient occurrences and
repetitions. This can be seen in the case of the “Milan” data set. Our methods in this case may group
some instances of these activities to the nearest dominant cluster, where they share similar sensor
structure, time references, and sensors duration. The other methods rely on an ensemble of classifiers to
learn the mapping from the sensor data to the target class. This approach works well with imbalanced
data.

Sensorizing tools, and adding more environmental sensors will definitely help our clustering
algorithms to identify these activities accurately.

9. Conclusions

In this paper, we proposed a framework for activity recognition from the motion sensor data in
smart homes. We used a time-based windowing approach to compute features at different granularity
levels. Then, we introduced an unsupervised method for discovering activities from a network of
motion detectors in a smart home setting without the need for labeled training data. First, we presented
an intra-day clustering algorithm to find frequent sequential patterns within a day. As a second step,
we presented an inter-day clustering algorithm to find the common frequent patterns between days.
Furthermore, we refined the patterns to have a more compressed and defined cluster characterizations.
Finally, the clusters were given semantic labels in order to track the occurrences of the future activities.

We discussed two approaches for recognizing activities using the final set of the clusters,
where they are used to recognize the occurrences of the future activities from a window of sensor
events. The first approach used a model to classify the labels, while the second approach used to
measure the similarity between the clusters centroids, and the test time interval to determine the
cluster with the best similarity value, where the semantic label of that cluster is assigned.
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Our framework was evaluated on two public data sets captured in real-life settings from two
apartments during a seven-month and a three-month periods. Experiments on the two real-world data
sets revealed that the classification by cluster achieved a higher F-score and accuracy. Our experiments
included evaluating the two classification approaches with and without “other activity” class. Finally,
our approach achieved a higher F-score than the other approaches.

When the “other activity” class is included, there was a drop in the F-score of the individual
activities of our approach, this drop was due to identifying the “other activity” class as known activities.
This shows the ability of our framework to discover patterns in the “other activity” class similar to
the predefined activities. One of our future goal work is to evaluate the robustness of the proposed
framework on data being captured from various smart homes with more than one resident.
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