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Abstract: Today, daily life is composed of many computing systems, therefore interacting with
them in a natural way makes the communication process more comfortable. Human–Computer
Interaction (HCI) has been developed to overcome the communication barriers between humans and
computers. One form of HCI is Hand Gesture Recognition (HGR), which predicts the class and the
instant of execution of a given movement of the hand. One possible input for these models is surface
electromyography (EMG), which records the electrical activity of skeletal muscles. EMG signals
contain information about the intention of movement generated by the human brain. This systematic
literature review analyses the state-of-the-art of real-time hand gesture recognition models using EMG
data and machine learning. We selected and assessed 65 primary studies following the Kitchenham
methodology. Based on a common structure of machine learning-based systems, we analyzed
the structure of the proposed models and standardized concepts in regard to the types of models,
data acquisition, segmentation, preprocessing, feature extraction, classification, postprocessing,
real-time processing, types of gestures, and evaluation metrics. Finally, we also identified trends and
gaps that could open new directions of work for future research in the area of gesture recognition
using EMG.

Keywords: human–computer interaction; hand gesture recognition; systematic literature review;
machine learning; electromyography; real-time systems

1. Introduction

The increase in computing power has brought the presence of many computing devices in the
daily life of human beings. A broad spectrum of applications and interfaces have been developed so
that humans can interact with them. The interaction with these systems is easier when they tend to
be performed in a natural way (i.e., just as humans interact with each other using voice or gestures).
Hand Gesture Recognition (HGR) is a significant element of Human–Computer Interaction (HCI),
which studies computer technology designed to interpret commands given by humans.

HGR models are human–computer systems that determine what gesture was performed and
when a person performed the gesture. Currently, these systems are used, for example, in several
applications, such as intelligent prostheses [1–3], sign language recognition [4,5], rehabilitation
devices [6,7], and device control [8].

HGR models acquire data using, for example, gloves [9], vision sensors [10], inertial measurement
units (IMUs) [11], surface electromyography sensors, and combinations of sensors, such as surface
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electromyography sensors and IMUs [12]. Although there are different options for data acquisition,
all of these options have their limitations; for example, gloves and vision sensors cannot be used by
amputees; gloves can constrain normal movement, especially in cases involving the manipulation
of objects; vision sensors can have occlusion problems, and changes of illumination and changes in
the distance between the hands and the sensors; and IMUs and surface electromyography sensors
generate noisy data [13,14]. Even though all these devices collect data related to the execution of a hand
movement, surface electromyography sensors also extract the intention of the movement. This means
that these sensors can also be used with amputees, who cannot execute the movements, but have the
intention to do so [15,16].

Surface electromyography, which we will refer to from now on as EMG, is a technique that records
the electrical activity of skeletal muscles with surface sensors. This electrical activity is produced from
two states of a skeletal muscle. The first state is when a skeletal muscle is at rest, where each of the
muscular cells (i.e., muscle fibers) has an electric potential of approximately –80 mV [15]. The second
state is when a skeletal muscle is contracted to produce the electric potential that occurs in a motor unit
(MU), which is composed of muscle fibers and a motor neuron. These electric potential differences
are produced when a motor neuron activates a neuromuscular junction by sending two intracellular
action potentials in opposite directions. Then, they are propagated by depolarizing and re-polarizing
each one of the muscle fibers [16]. The sum of the intracellular action potentials of all muscle fibers
of a motor unit is called a motor unit action potential (MUAP). Therefore, when a skeletal muscle is
contracted, the EMG is a linear summation between several trains of MUAPs [15].

There are two types of muscle contractions: static and dynamic. In a static contraction, the lengths
of the muscle fibers do not change, and the joints are not in motion, but the muscle fibers still
contract, for example, when someone holds his/her hand still or to make the peace sign. While in a
dynamic contraction, there are changes in the lengths of the muscle fibers, and the joints are in motion,
for example, when someone waves their hand to do the hello gesture [17].

The EMG signals can be modeled as a stochastic process that depends on the two types of
contraction described above. First, the mathematical model for a static contraction (MMSC) is a
stationary process because the mean and covariance remain approximately the same over time, and the
EMG depends solely on muscle force [18]. Consider (1):

EMG(t) =
N

∑
i=1

si(t) ∗ mi(t), (1)

where N is the number of active MUs, si(t) is the train of impulses that indicate the active moments of
each MU, mi(t) are the MUAPs of each MU, and ∗ denotes convolution. However, the MMSC can be
viewed as a non-stationary process when factors, such as muscular fatigue and temperature affect the
EMG [19].

Second, the mathematical model for a dynamic contraction (MMDC) is a non-stationary process,
and its mathematical model is similar to the amplitude’s modulation (AM modulation):

EMG(t) = a(t)w(t) + n(t), (2)

where a(t) is a function that indicates the intensity of the EMG signal (i.e., information signal), w(t) is
a unit-variance Gaussian process representing the stochastic aspect of the EMG (i.e., carrier signal),
and n(t) is the noise from the sensors and biological signal artifacts [17,20].

The mathematical models of EMG are not used in HGR due to the difficulty of parameter
estimation in non-stationary processes. However, machine learning (ML) methods are widely used
because ML can infer a solution for non-stationary processes [21] using several techniques; for example,
covariate shift techniques [21,22], class-balance change [22], and segmentation in short stationary
intervals [23].
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HGR using ML is just one approach to myoelectric control [24], which uses EMG signals to extract
control signals to command external devices [25,26], for example, prostheses [1], drones [8], input
devices for a computer [27], etc. There are other approaches that include conventional amplitude-based
control, and the direct extraction of neural code from EMG signals. In conventional amplitude-based
control, one EMG channel controls one function of a device (e.g., hand open is assigned to one
channel, and hand closed to a second channel). When the amplitude of this EMG exceeds a predefined
threshold, this function is activated [28–31]. The direct extraction of neural code from EMGs is another
approach, in which the motor neuron spike trains are decoded from EMG signals to translate into
commands [32–35].

For many applications, HGR models are required to work in real time. A human–computer
system works in real time when a user performs an action over the system, and this system gives
him/her a response fast enough that it is perceived as instantaneous [25]. Moreover, the response time
in a real-time human–computer system is relative to its application and user perception [36]. For this
reason, the controller delay, which is the response time of an HGR model, has been widely researched.
For instance, a user does not perceive any delay when the controller delay is less than 100 ms in the
control of devices, such as a key or a switch [36,37]. In HGR using EMGs, Hudgins & Parker et al. [38]
stated that the acceptable computational complexity is limited by the controller delay of the system,
which must be kept below 300 ms to reduce the user-perceived lag. This optimal controller delay
was generally agreed upon by many researchers [39,40]. However, there have been several optimal
controller delays reported in the scientific literature, namely 500 ms [41], and 100–125 ms [42] using a
box and blocks test, which is a target achievement test.

Most of the real-time HGR models are evaluated using metrics for machine learning, such
as accuracy, recall, precision, F-score, R2 error, etc. However, this evaluation fails to reflect the
performance exhibited in online scenarios as it does not account for the adaptation of users to
non-stationary signal features [43–47]. For example, Hargrove et al. [48] demonstrated that the
inclusion of transient contractions (i.e., non-stationary signals) in the training data decreases the
accuracy, but improves the user performance in a real-time virtual clothespin task. Therefore,
in order to evaluate the real-life performance, the real-time HGR models can be evaluated using
target achievement tests, such as the box and blocks test [42,49], target achievement control test [50],
and Fitts’ law test [51], which is an international standard in HCI (ISO9341-9).

Currently, there are many primary studies regarding real-time HGR models using EMG and
ML, which, in several cases, do not have standardized concepts, such as types of models, real-time
processing, types of hand gestures, and evaluation metrics. This standardized knowledge is essential
for reproducibility and requires a Systematic Literature Review (SLR) of the current primary studies.
To the best of our knowledge, there is no SLR regarding these HGR models. Therefore, we developed
this SLR to present the state-of-the-art of the real-time HGR models using EMG and ML. Based on
this SLR, we make three contributions to the field of HCI. First, we define a standard structure of
real-time HGR models. Second, we standardize concepts, such as the types of models, data acquisition,
segmentation, preprocessing, feature extraction, classification, postprocessing, real-time processing,
types of gestures recognized, and evaluation metrics. Finally, we discuss future work based on the
research gaps we identified.

Following this introduction, the article is organized as follows: in Section 2 we describe the
methodology used to execute this SLR; in Section 3 we outline the results and the discussion of the
data extracted from the primary studies; and Sections 4 and 5 contain the conclusions and future
work respectively.

2. Methodology

We developed an SLR based on the methodology proposed in [52,53], which is comprised of
five stages: Research Questions (RQs), Search of Primary Studies, Analysis of Primary Studies, Data
Extraction, and Threats to Validity.
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2.1. Research Questions

In this stage, we define the following four research questions according to the research goal, which
is to investigate the state-of-the-art of real-time HGR models that use EMG and ML:

• RQ1. What is the structure of real-time HGR models that use EMG and ML?
• RQ2. What is the controller delay and hardware used by real-time HGR models that use EMG

and ML?
• RQ3. What is the number and type of gestures recognized by real-time HGR models that use

EMG and ML?
• RQ4. What are the results and metrics used to evaluate the real-time HGR models that use EMG

and ML?

2.2. Search of Primary Studies

In this stage, we search for the primary studies that can answer the four RQs stated in the previous
section. This stage has three parts, which were done manually. In the first part, we selected the
literature repositories. In the second part, we extracted the keywords of the RQs, and we developed
the search strings using these keywords. Finally, we searched the primary studies in the literature
repositories using the search strings.

We used four literature repositories: IEEE Xplore, ACM Digital Library, Science Direct,
and Springer. We chose these repositories as they have the most primary studies on real-time HGR
models that use EMG and ML and also because these repositories have peer-reviewed papers.

The extracted keywords from the RQs (see Section 2.1) are electromyography, hand gesture
recognition, real-time, box and blocks, target achievement control, and Fitts’ law. We, then, added
the acronym of electromyography (i.e., “EMG”), and real-time variations: online, real time, on line,
and on-line. Therefore, the 11 keywords used in this SLR are electromyography, EMG, hand gesture
recognition, real time, real-time, online, on line, on-line, box and blocks, target achievement control,
and Fitts’ law. Table 1 shows the 16 Search Strings (SS), which were developed with the combination of
these 11 keywords and the Boolean operator “AND”. We do not use the keyword myoelectric control
because this SLR is focused on HGR using EMG and ML, which is just one segment of the approaches
to myoelectric control (see Section 1).

Table 1. Search strings used to find primary studies.

ID Search String

SS1 “Electromyography” AND “Hand Gesture Recognition” AND “Real Time”
SS2 “Electromyography” AND “Hand Gesture Recognition” AND “Real-Time”
SS3 “Electromyography” AND “Hand Gesture Recognition” AND “Online”
SS4 “Electromyography” AND “Hand Gesture Recognition” AND “On line”
SS5 “Electromyography” AND “Hand Gesture Recognition” AND “On-line”
SS6 “Electromyography” AND “Hand Gesture Recognition” AND “box and blocks”
SS7 “Electromyography” AND “Hand Gesture Recognition” AND “target achievement control”
SS8 “Electromyography” AND “Hand Gesture Recognition” AND “Fitts’ law”
SS9 “EMG” AND “Hand Gesture Recognition” AND “Real Time”

SS10 “EMG” AND “Hand Gesture Recognition” AND “Real-Time”
SS11 “EMG” AND “Hand Gesture Recognition” AND “Online”
SS12 “EMG” AND “Hand Gesture Recognition” AND “On line”
SS13 “EMG” AND “Hand Gesture Recognition” AND “On-line”
SS14 “EMG” AND “Hand Gesture Recognition” AND “box and blocks”
SS15 “EMG” AND “Hand Gesture Recognition” AND “target achievement control”
SS16 “EMG” AND “Hand Gesture Recognition” AND “Fitts’ law”

We looked for the published primary studies from 1 January 2013 to 31 December 2019 (i.e., the last
day of search in the literature repositories) using the 16 search strings shown in the Table 1. Table 2
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shows the 1485 primary studies, which were found in the four literature repositories, IEEE Xplore: 397,
ACM Digital Library: 400, Science Direct: 329, and Springer: 359.

We discarded 1021 duplicated primary studies of the 1485 primary studies (IEEE Xplore: 206,
ACM Digital Library: 273, Science Direct: 276, and Springer: 266). Additionally, we added 23 primary
studies to this SLR using the snowballing techniques, which identify the articles that have cited the
primary studies found in the literature repositories (i.e., forward snowballing), and the articles from
their references (i.e., backward snowballing) [54] (see Table 2). Therefore, we obtained 487 primary
studies in total. Figure 1 shows the resulting primary studies after each action carried out in the two
stages: the search of primary studies and the analysis of primary studies.

Table 2. Number of primary studies for each literature repository and search string.

Literature Repositories
Search Strings (SS)

SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 SS11 SS12 SS13 SS14 SS15 SS16

IEEE Xplore 66 66 7 13 3 50 50 3 6 1 4 5 46 53 12 12
ACM Digital Library 34 34 5 13 13 33 33 1 13 13 25 30 68 81 2 2

Science Direct 34 34 25 25 25 41 41 30 30 30 1 1 3 3 3 3
Springer 52 52 29 7 7 75 75 29 9 9 3 3 2 2 2 2

Figure 1. The resulting primary studies after each action carried out in the two stages: search of
primary studies and analysis of primary studies.

2.3. Analysis of Primary Studies

We filtered the 487 primary studies based on the analysis of the titles, abstracts, and conclusions
using the inclusion and exclusion criteria, and the assessment questions (see Figure 1). We finally
selected 65 primary studies (see Table 3), which were used to answer the four RQs (see Section 2.1).

Table 3. The identifier, title, and reference of the 65 selected primary studies (SPS) used in this SLR.

ID SPS Title Type of Publication

SPS 1 A Bionic Hand Controlled by Hand Gesture Recognition Based on Surface EMG
Signals: A Preliminary Study [1]

Journal

SPS 2 Real-Time Hand Gesture Recognition Based on Electromyographic Signals and
Artificial Neural Networks [55]

Conference

SPS 3 sEMG-Based Continuous Hand Gesture Recognition Using GMM-HMM and
Threshold Model [56]

Conference

SPS 4 Hand Gestures Recognition Using Machine Learning for Control of Multiple
Quadrotors [57]

Symposium

SPS 5 Real-Time Myocontrol of a Human–Computer Interface by Paretic Muscles After
Stroke [58]

Journal
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Table 3. Cont.

ID SPS Title Type of Publication

SPS 6 Decoding of Individual Finger Movements From Surface EMG Signals Using
Vector Autoregressive Hierarchical Hidden Markov Models (VARHHMM) [59]

Conference

SPS 7 User-Independent Real-Time Hand Gesture Recognition Based on Surface
Electromyography [60]

Conference

SPS 8 Hand Gesture Recognition Using Machine Learning and the Myo Armband [61] Conference

SPS 9 Real-Time Hand Gesture Recognition Using the Myo Armband and Muscle
Activity Detection [62]

Conference

SPS 10 A Sub-10 mW Real-Time Implementation for EMG Hand Gesture Recognition
Based on a Multi-Core Biomedical SoC [63]

Workshop

SPS 11 Design and Myoelectric Control of an Anthropomorphic Prosthetic Hand [3] Journal

SPS 12 Wearable Armband for Real Time Hand Gesture Recognition [64] Conference

SPS 13 Simple Space-Domain Features for Low-Resolution sEMG Patternn
Recognition [65]

Conference

SPS 14 A Wireless Surface EMG Acquisition and Gesture Recognition System [66] Congress

SPS 15 Single Channel Surface EMG Control of Advanced Prosthetic Hands: A Simple,
Low Cost and Efficient Approach [2]

Journal

SPS 16 The Virtual Trackpad: an Electromyography-Based, Wireless, Real-Time,
Low-Power, Embedded Hand Gesture Recognition System Using an Event-Driven
Artificial Neural Network [67]

Journal

SPS 17 Muscle-Gesture Robot Hand Control Based on sEMG Signals With Wavelet
Transform Features and Neural Network classifier [68]

Conference

SPS 18 Evaluating Sign Language Recognition Using the Myo Armband [69] Symposium

SPS 19 Spectral Collaborative Representation Based Classification for Hand Gestures
Recognition on Electromyography Signals [70]

Conference

SPS 20 A Convolutional Neural Network for Robotic Arm Guidance Using sEMG Based
Frequency-Features [71]

Conference

SPS 21 EMG Pattern Recognition Using Decomposition Techniques for Constructing
Multiclass Classifier [72]

Conference

SPS 22 SEMG Based Human Computer Interface for Physically Challenged Patients [73] Conference

SPS 23 EMG Feature Set Selection Through Linear Relationship for Grasp Recognition [74] Journal

SPS 24 A Portable Artificial Robotic Hand Controlled by EMG Signal Using ANN
Classifier [75]

Conference

SPS 25 Real-Time American Sign Language Recognition System by Using Surface EMG
Signal [5]

Conference

SPS 26 Hand Motion Recognition From Single Channel Surface EMG Using Wavelet &
Artificial Neural Network [76]

Conference

SPS 27 A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition [77] Journal

SPS 28 Hybrid EMG classifier Based on HMM and SVM for Hand Gesture Recognition in
Prosthetics [78]

Conference

SPS 29 Human–Computer Interaction System Design Based on Surface EMG Signals [79] Conference

SPS 30 Towards EMG Control Interface for Smart Garments [80] Symposium

SPS 31 Identification of Low Level sEMG Signals for Individual Finger Prosthesis [81] Conference

SPS 32 Pattern Recognition of Eight Hand Motions Using Feature Extraction of Forearm
EMG Signal [82]

Journal
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Table 3. Cont.

ID SPS Title Type of Publication

SPS 33 Pattern Recognition of Number Gestures Based on a Wireless Surface EMG
System [83]

Journal

SPS 34 Deep Learning for Electromyographic Hand Gesture Signal Classification Using
Transfer Learning [84]

Journal

SPS 35 Real-Time Hand Gesture Recognition Model Using Deep Learning Techniques
and EMG Signals [85]

Conference

SPS 36 Real-Time Hand Gesture Recognition Based on Artificial Feed-Forward Neural
Networks and EMG [86]

Conference

SPS 37 Pattern Recognition-Based Real Time Myoelectric System for Robotic Hand
Control [87]

Conference

SPS 38 Hand Gesture Recognition and Classification Technique in Real-Time [88] Conference

SPS 39 Forearm Muscle Synergy Reducing Dimension of the Feature Matrix in Hand
Gesture Recognition [89]

Conference

SPS 40 EMG Wrist-Hand Motion Recognition System for Real-Time Embedded
Platform [90]

Conference

SPS 41 Robust Real-Time Embedded EMG Recognition Framework Using Temporal
Convolutional Networks on a Multicore IoT Processor [91]

Journal

SPS 42 A Multi-Gestures Recognition System Based on Less sEMG Sensors [92] Conference

SPS 43 A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging
HD-sEMG & Deep Learning [93]

Journal

SPS 44 Real-time Pattern Recognition for Hand Gesture Based on ANN and Surface
EMG [94]

Conference

SPS 45 Adjacent Features for High-Density EMG Pattern Recognition [95] Conference

SPS 46 Automatic EMG-based Hand Gesture Recognition System Using Time-Domain
Descriptors and Fully-Connected Neural Networks [96]

Conference

SPS 47 Artificial Neural Network to Detect Human Hand Gestures for a Robotic Arm
Control [97]

Conference

SPS 48 Electromyography-Based Hand Gesture Recognition System for Upper Limb
Amputees [98]

Journal

SPS 49 Robust Hand Gesture Recognition With a Double Channel Surface EMG Wearable
Armband and SVM classifier [99]

Journal

SPS 50 Fuzzy Classification of Hand’s Motion [100] Conference

SPS 51 EMG-Based Online Classification of Gestures With Recurrent Neural
Networks [101]

Journal

SPS 52 Teleoperated Robotic Arm Movement Using Electromyography Signal With
Wearable Myo Armband [102]

Journal

SPS 53 Identification of Gesture Based on Combination of Raw sEMG and sEMG Envelope
Using Supervised Learning and Univariate Feature Selection [103]

Journal

SPS 54 Surface EMG Hand Gesture Recognition System Based on PCA and GRNN [104] Journal

SPS 55 Dexterous Hand Gestures Recognition Based on Low-Density sEMG Signals for
Upper-Limb Forearm amputees [105]

Journal

SPS 56 Real-Time Surface EMG Pattern Recognition for Hand Gestures Based on an
Artificial Neural Network [106]

Journal

SPS 57 On the Usability of Intramuscular EMG for Prosthetic Control: A Fitts’ Law
Approach [107]

Journal

SPS 58 Validation of a Selective Ensemble-Based Classification Scheme for Myoelectric
Control Using a Three-Dimensional Fitts’ Law Test [108]

Journal
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Table 3. Cont.

ID SPS Title Type of Publication

SPS 59 Support Vector Regression for Improved Real-Time, Simultaneous Myoelectric
Control [109]

Journal

SPS 60 Real-Time and Simultaneous Control of Artificial Limbs Based on Pattern
Recognition Algorithms [110]

Journal

SPS 61 On the Robustness of Real-Time Myoelectric Control Investigations: A Multiday
Fitts’ Law approach [111]

Journal

SPS 62 Regression Convolutional Neural Network for Improved Simultaneous EMG
Control [112]

Journal

SPS 63 A Comparison of the Real-Time Controllability of Pattern Recognition to
Conventional Myoelectric Control for Discrete and Simultaneous Movements [31]

Journal

SPS 64 A Real-Time Comparison Between Direct Control, Sequential Pattern Recognition
Control and Simultaneous Pattern Recognition Control Using a Fitts’ Law Style
Assessment Procedure [113]

Journal

SPS 65 Evaluation of Computer-Based Target Achievement Tests for Myoelectric
Control [46]

Journal

2.3.1. Inclusion and Exclusion Criteria

We established the Inclusion and Exclusion Criteria based on the RQs (see Section 2.1).
These criteria were used to determine if a primary study contributes to answering the RQs. The Table 4
shows the inclusion and exclusion criteria.

Table 4. Inclusion and exclusion criteria used in this systematic literature review (SLR).

Inclusion Primary studies about the development of the Hand Gesture Recognition (HGR) model.
Criteria Primary studies that use electromyography (EMG) as input of the HGR model.

The full text of the primary study was not available.
Exclusion Primary studies that do not use machine learning (ML) in the HGR model.

Criteria
Primary studies that do not indicate that their models are in real time.
Primary studies that are in another language than English.
Primary studies that are not peer-reviewed.

2.3.2. Quality Assessment

We defined three assessment questions to evaluate the comprehensiveness, reliability,
and applicability of the primary studies. For each question, we established three possible answers
with their scores: “Yes” = 1, “Partly” = 0.5, and “No” = 0. Thus, a primary study was rejected if the
mean of the three answers is less than 2. The three assessment questions are:

• Were the research objectives of the primary studies clear?
• Was the contribution of the primary study clear?
• Was the structure of the HGR model shown?

2.4. Data Extraction

We extracted the data shown in Table 5 from the 65 selected primary studies (SPS), shown in
Table 3. This extraction was performed in order to answer the four RQs (see Section 2.1).
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Table 5. The data extracted from the 65 SPS and their targets.

Extracted Data Target

Publication year Study overview
Primary study type Study overview
Structure of the HGR model RQ1
Controller delay of the HGR model RQ2
Hardware used RQ2
Number of gestures recognized RQ3
Types of gestures recognized RQ3
Metrics and results used to evaluate the HGR models RQ4

2.5. Threats to Validity

We discuss the following possible threats to the validity of this SLR and the mitigation of these
threats: an incomplete selection of the SPS, inaccurate data extraction, and biased quality assessment.

2.5.1. Incomplete Selection of the SPS

There is a possibility that relevant studies have been omitted for two reasons. The literature
repositories may not have had all relevant studies for the four RQs, and the search strings may not
have been appropriate for the four RQs. However, the authors performed the following three actions to
mitigate these two threats: (1) We developed this SLR based on the Kitchenham methodology [52,53],
which was shown in Section 2. (2) In this SLR, the four literature repositories and the ten search strings
were proposed by the first author, and the second and third authors assessed the relevance of these
literature repositories and search strings. The four literature repositories were assessed in accordance
with the criterion that these repositories are the most used in the ML area. The ten search strings were
assessed based on the criterion that the keywords and the structures of the search strings are relevant
to the four RQs. (3) We applied the snowballing techniques [54] to add 14 SPS to the SLR. This task
was performed by the first author, and the third author assessed the relevance of these 14 SPS.

2.5.2. Biased Analysis of Primary Studies

The analysis of the primary studies (see Section 2.3) can be biased for two reasons. The inclusion
and exclusion criteria may not be relevant to the four RQs, and the SPS may not be comprehensive,
reliable, and applicable. To mitigate these two threats, the authors performed the following two
actions: (1) The authors developed formal inclusion and exclusion criteria (see Section 2.3.1) and
quality assessment criteria (see Section 2.3.2). These criteria were proposed by the first author, and they
were assessed by the second and third authors. (2) The first author selected 65 primary studies reading
the title, abstract, and conclusions. However, the first author also read the whole study when the title,
abstract, and conclusions were not clear. Furthermore, these 65 SPS were assessed by the second and
third authors.

2.5.3. Inaccurate Data Extraction

Generally, the data extracted can be inaccurate for two possible problems: unsystematic data
extraction, and the data not being relevant to the RQs. To solve these problems, we extracted the data
using a systematic methodology based on the four RQs (see Section 2.4). Moreover, the authors made
sure that the extracted data answer the four RQs.

3. Results and Discussion

The data extracted from the 65 SPS (see Table 3) are presented and analyzed in five subsections:
the study overview subsection and the other four subsections, one per each RQ (see Section 2.1).
Although some SPS presented more than one HGR model, we selected the models with the best
performance in the evaluation; therefore, we used 65 HGR models for this review.
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3.1. Study Overview

The study overview shows a general vision of the settings used in the SPS. Among other data,
we decided to extract the publication year and the type of publication. Figure 2a shows the number of
SPS per year, which has increased steadily since 2013. Moreover, in Figure 2b, we show that most of
the SPS were presented in conferences, also see Table 3.

Figure 2. Number of the SPS published per (a) year and per (b) type of publication.

3.2. Results of the RQ1 (What Is the Structure of Real-Time HGR Models Using EMG and ML?)

We found that the structures of the 65 real-time HGR models are not regular across the studies.
However, they have some stages in common, such as Data Acquisition (DA), Segmentation (SEGM),
Preprocessing (PREP), Feature Extraction (FE), Classification (CL), and Postprocessing (POSTP). We
present a standard structure, considering the frequent stages after they were assembled, the result is
illustrated in Figure 3. Note that there are SPS that did not use all stages of the standard structure
because Segmentation, Preprocessing, Feature Extraction, and Postprocessing are optional stages
(i.e., without them a model is still feasible). Table 6 shows the stages of the standard structure used by
the SPS.

Figure 3. The six stages of the standard structure of the SPS.

Aside from the structure of the models, we identified two types of models: the individual models
and the general models. Individual models are trained relying on the gestures (data) of a person and
recognize the gestures of that same person. General models are trained with the data of several people
and recognize the gestures of any person. We found 44 SPS that developed individual models (SPS 1,
SPS 2, SPS 3, SPS 5, SPS 6, SPS 8, SPS 9, SPS 10, SPS 13, SPS 15, SPS 16, SPS 24, SPS 25, SPS 27, SPS 28,
SPS 30, SPS 33, SPS 34, SPS 36, SPS 37, SPS 38, SPS 39, SPS 41, SPS 42, SPS 43, SPS 44, SPS 45, SPS 47,
SPS 48, SPS 49, SPS 51, SPS 52, SPS 53, SPS 55, SPS 56, SPS 57, SPS 58, SPS 59, SPS 60, SPS 61, SPS 62,
SPS 63, SPS 64, and SPS 65), and 11 SPS that developed general models (SPS 7, SPS 11, SPS 17, SPS 22,
SPS 23, SPS 26, SPS 31, SPS 32, SPS 35, SPS 40, and SPS 46). The 10 remaining studies do not indicate
any type of HGR model. Out of the 11 general models, SPS 35 is the only general model that was
evaluated using EMG data from people who did not participate in the training phase. The other 10
general models only used EMG data from people who participated in the training; therefore, it is not
possible to conclude that these 10 models are able to recognize gestures of any person.
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Table 6. Standard structure used by the 65 HGR models.

ID SPS
Stages of the Standard Structure

DA SEGM PREP FE CL POSTP

SPS 1 yes yes no yes yes no
SPS 2 yes yes yes yes yes yes
SPS 3 yes yes no yes yes no
SPS 4 yes yes no no yes no
SPS 5 yes yes no yes yes no
SPS 6 yes yes no yes yes no
SPS 7 yes yes no yes yes no
SPS 8 yes yes yes no yes yes
SPS 9 yes yes yes no yes yes

SPS 10 yes yes yes yes yes no
SPS 11 yes yes yes yes yes yes
SPS 12 yes no yes yes yes no
SPS 13 yes yes no yes yes no
SPS 14 yes no yes yes yes no
SPS 15 yes yes yes yes yes no
SPS 16 yes yes yes yes yes no
SPS 17 yes no yes yes yes no
SPS 18 yes no no yes yes no
SPS 19 yes yes no yes yes no
SPS 20 yes yes no yes yes no
SPS 21 yes yes yes yes yes yes
SPS 22 yes no yes yes yes no
SPS 23 yes no yes yes yes no
SPS 24 yes no no yes yes no
SPS 25 yes yes yes yes yes no
SPS 26 yes yes no yes yes no
SPS 27 yes yes yes no yes no
SPS 28 yes no yes no yes no
SPS 29 yes no yes yes yes no
SPS 30 yes yes yes no yes no
SPS 31 yes yes yes yes yes no
SPS 32 yes yes yes yes yes no
SPS 33 yes yes yes yes yes no
SPS 34 yes yes no yes yes no
SPS 35 yes yes yes no yes yes
SPS 36 yes no yes yes yes no
SPS 37 yes yes yes yes yes no
SPS 38 yes no yes yes yes no
SPS 39 yes yes yes yes yes no
SPS 40 yes yes no yes yes no
SPS 41 yes yes yes no yes yes
SPS 42 yes yes yes yes yes yes
SPS 43 yes yes yes yes yes no
SPS 44 yes yes no yes yes no
SPS 45 yes yes no no yes no
SPS 46 yes yes no yes yes no
SPS 47 yes no yes no yes yes
SPS 48 yes yes yes yes yes yes
SPS 49 yes yes no yes yes no
SPS 50 yes yes yes yes yes no



Sensors 2020, 20, 2467 12 of 36

Table 6. Cont.

ID SPS
Stages of the Standard Structure

DA SEGM PREP FE CL POSTP

SPS 51 yes yes yes yes yes no
SPS 52 yes no no yes yes yes
SPS 53 yes yes no yes yes no
SPS 54 yes yes yes yes yes no
SPS 55 yes no no yes yes no
SPS 56 yes yes yes yes yes no
SPS 57 yes yes yes yes yes no
SPS 58 yes yes yes no yes no
SPS 59 yes yes yes yes yes no
SPS 60 yes yes no yes yes yes
SPS 61 yes yes no yes yes no
SPS 62 yes yes yes no yes no
SPS 63 yes yes yes yes yes yes
SPS 64 yes yes yes yes yes yes
SPS 65 yes yes yes yes yes yes

yes: The model used this stage; no: The model did not use this stage; DA: Data Acquisition Stage; SEGM:
Segmentation Stage; PREP: Preprocessing Stage; FE: Feature Extraction Stage; CL: Classification stage; POSTP:
Postprocessing Stage.

3.2.1. Data Acquisition

In the Data Acquisition stage, EMGs are acquired from EMG sensors, which can be part of
homemade or commercial devices. Table 7 shows the number of sensors, the sampling rates, and the
acquisition devices used in the HGR models. We found that 27 HGR models used eight sensors, 21
of them (SPS 2, SPS 3, SPS 4, SPS 7, SPS 8, SPS 9, SPS 13, SPS 17, SPS 18, SPS 19, SPS 20, SPS 34,
SPS 35, SPS 36, SPS 40, SPS 44, SPS 46, SPS 47, SPS 52, SPS 56, and SPS 61) used the commercial
device Myo armband that has eight sensors with a corresponding sampling rate of 200 Hz, and the
other six (SPS 5, SPS 25, SPS 27, SPS 59, SPS 62, and SPS 63) used homemade devices with a similar
design to the Myo armband, their sampling rates are 1000 Hz, 960 Hz, 1000 Hz, 1000 Hz, 1200 Hz,
and 1000 Hz, respectively.

Additionally, the EMG sampling rate of 16 HGR models (SPS 1, SPS 5, SPS 10, SPS 11, SPS 26,
SPS 27, SPS 30, SPS 31, SPS 32, SPS 37, SPS 38, SPS 39, SPS 43, SPS 48, SPS 49, and SPS 55) is 1000 Hz
because these SPS indicate that the sampling rate must be at least twice the highest frequency of the
EMG, according to the Nyquist sampling theory, and approximately 95% of the signal power in the
EMG is below 400–500 Hz [114–116]). Table 7 also shows the use of commercial devices, including the
Myo armband from Thalmic Labs Inc., the MA300 from Motion Lab Systems Inc., the Bio Radio 150
from Cleveland Medical Devices Inc., the ME6000 from Mega Electronics Ltd., the Analog Front End
(ADS1298) from Texas Instruments, the Telemyo 2400T G2 from Noraxon, and the EMG-USB2 from
OT Bioelettronica. Furthermore, two models (SPS 43 and SPS 45) use high-density EMG sensors.
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Table 7. The number of sensors, sampling rate, acquisition devices, segmentation techniques, and
preprocessing techniques used in the 65 HGR models.

ID SPS Number
of Sensors

Sampling
Rate (Hz) Acquisition Device Used Segmentation

Technique Used
Preprocessing
Techinique Used

SPS 1 2 1000 MA300 ASW NI
SPS 2 8 200 Myo armband OSW FL and RE
SPS 3 8 200 Myo armband OSW and GD NI
SPS 4 8 200 Myo armband ASW NI
SPS 5 8 1000 Homemade device OSW NI
SPS 6 16 1600 Homemade device OSW NI
SPS 7 8 200 Myo armband OSW and GD NI
SPS 8 8 200 Myo armband OSW FL andRE
SPS 9 8 200 Myo armband OSW andGD FL and RE
SPS 10 3 1000 Homemade device ASW FL and OC
SPS 11 2 1000 Homemade device ASW PreS
SPS 12 3 NI Homemade device NI FLandRE
SPS 13 8 200 Myo armband OSW NI
SPS 14 3 NI Homemade device NI FL
SPS 15 1 NI Homemade device ASW and GD RE
SPS 16 4 1600 Homemade device ASW and GD RE
SPS 17 8 200 Myo armband NI FL
SPS 18 8 200 Myo armband NI NI
SPS 19 8 200 Myo armband OSW NI
SPS 20 8 200 Myo armband OSW NI
SPS 21 16 1600 Homemade device OSW FL
SPS 22 1 125 Homemade device NI FL
SPS 23 2 NI Homemade device NI FL
SPS 24 3 NI Homemade device NI NI
SPS 25 8 960 Bio Radio 150 ASW FL
SPS 26 1 1000 Homemade device ASW NI
SPS 27 8 1000 Homemade device GD FL
SPS 28 4 500 Homemade device NI FL
SPS 29 4 NI Homemade device NI FL
SPS 30 4 1000 Homemade device OSW and GD FL, OC and RE
SPS 31 4 1000 Homemade device OSW OC
SPS 32 4 1000 Homemade device ASW FL
SPS 33 4 500 Homemade device ASW and GD FL
SPS 34 8 200 Myo armband OSW NI
SPS 35 8 200 Myo armband OSW and GD RE
SPS 36 8 200 Myo armband OSW FL and RE
SPS 37 2 1000 Homemade device OSW and GD FL and AMPL
SPS 38 1 1000 Homemade device OSW FL
SPS 39 6 1000 ME6000 NI FL
SPS 40 8 200 Myo armband OSW NI
SPS 41 8 4000 Analog Front End (ADS1298) OSW NI
SPS 42 2 NI Telemyo 2400T G2 ASW NI
SPS 43 32 1000 Homemade device NI FL, RE and TKEO
SPS 44 8 200 Myo armband ASW FL and RE
SPS 45 128 2048 EMG-USB2 OSW FL
SPS 46 8 200 Myo armband ASW NI
SPS 47 8 200 Myo armband OSW FL and NORM
SPS 48 8 1000 Analog Front End (ADS1298) OSW FL
SPS 49 2 1000 Homemade device NI FL and NORM
SPS 50 4 NI Homemade device GD FL and AMPL
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Table 7. Cont.

ID SPS Number
of Sensors

Sampling
Rate (Hz) Acquisition Device Used Segmentation

Technique Used
Preprocessing
Techinique Used

SPS 51 16 200 Myo armband NI NI
SPS 52 8 200 Myo armband OSW NI
SPS 53 2 2000 Homemade device ASW and GD FL and RE
SPS 54 16 NI Homemade device NI NI
SPS 55 4 1000 Homemade device OSW NI
SPS 56 8 200 Myo armband OSW FL and RE
SPS 57 4 1000 Homemade device OSW FL
SPS 58 6 1000 Homemade device OSW FL
SPS 59 8 1000 Homemade device OSW FL
SPS 60 4 2000 Homemade device OSW NI
SPS 61 8 200 Myo armband OSW NI
SPS 62 8 1200 Homemade device OSW FL
SPS 63 8-12 1000 Homemade device OSW FL
SPS 64 6 1000 Homemade device OSW FL
SPS 65 4 200 Homemade device OSW FL

NI: Not indicated; OSW: Overlapping Sliding Windowing; ASW: Adjacent Sliding Windowing; GD:
Gesture Detection; FL: Filtering; RE: Rectification; OC: Offset Compensation; PreS: Pre-smoothing; AMPL:
Amplification; TKEO: Teager-Kaiser-Energy Operator; NORM: Normalization.

3.2.2. Segmentation

EMGs are partitioned into multiple segments or windows using different techniques, such as
gesture detection and sliding windowing (see Table 7). Gesture detection computes the beginning
and the end of a hand gesture, and returns the EMG that only corresponds to muscle contraction.
Therefore, the segment lengths are variable as they depend on the duration of the hand gestures.
The sliding windowing techniques partition the EMG into fixed adjacent segments (i.e., adjacent
sliding windowing) or fixed overlapping segments (i.e., overlapping sliding windowing) (see Figure 4).
By increasing the window length, up to a certain point, the controller delay increases, and also the
accuracy of the models increase as more data are collected for recognition [25,40].

3.2.3. Preprocessing

HGR models use preprocessing techniques that transform the EMG into an input signal for
Feature Extraction or for the ML algorithm if the structure of the HGR model does not have Feature
Extraction (see Table 6). For example, a common preprocessing technique is the use of a Notch
Filter at 50 or 60 Hz that eliminates the AC frequency of the powerlines (SPS 10). Other examples
include Offset Compensation, Pre-smoothing, Filtering, Rectification, Amplification, and the use of the
Teager–Kaiser-Energy Operator (see Table 7). Offset Compensation is a technique that eliminates noise
through the compensation of the average value of the EMG:

EMGraw = (x1, x2, ..., xn) (3)

mean(EMGraw) = x̄ =
∑n

i=1(xi)

n
(4)

EMGo f f set = ((x1 − x̄), (x2 − x̄), ..., (xn − x̄)) (5)

mean(EMGo f f set) = 0, (6)

where, x1, x2, . . . , xn are the raw EMG values, x̄ is the average value of the signal, and (x1 − x̄), (x2 −
x̄), ..., (xn − x̄) are the EMG values after the use of offset compensation. Pre-smoothing is a technique
that computes the mean of the last m values of the EMG and then sets the mean to the current value xn

of the signal:
EMGraw = (x1, x2, ..., xn) (7)
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xn =
∑n

i=1+n−m(xi)

m
, (8)

where, x1, x2, . . . , xn are the raw EMG values and xn is the current value that is based on the mean of the
m previous values of the raw EMG. Filtering is a technique that removes some unwanted frequencies
or an unwanted frequency band from the raw EMG. Rectification transforms the negative values
into positive values (e.g., absolute value function). The Teager–Kaiser-Energy Operator increases the
signal-to-noise ratio to improve the muscle activity onset detection of a gesture [117]. The most used
preprocessing technique is filtering (see Table 7).

Figure 4. Segmentation of the EMG of a gesture using the three techniques: (a) gesture detection,
(b) adjacent sliding windowing, and (c) overlapping sliding windowing.

3.2.4. Feature Extraction

Feature extraction techniques map the EMG into a feature set. These techniques extract features
in different domains, such as time, frequency, time-frequency, space, and fractal. Table 8 shows the
domains of the feature extraction techniques used by the models. Most of the real-time HGR models
use time-domain features because the controller delay for their computation is less than the controller
delay for the computation of features in other domains (see Table 9). The mean absolute value is the
most used feature in the 65 studies analyzed.
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Table 8. Features according to the domain.

Time-Domain Features

Mean absolute value (MAV), root mean square (RMS), waveform length (WL),
zero crossings (ZC), fourth-order autoregressive coefficients (AR-Coeff), standard
deviation (SD), variance (VAR), slope sign changes (SSC), mean, median,
integrated EMG (iEMG), sample entropy (SampEn), mean absolute value ratio
(MAVR), modified mean absolute value (MMAV), simple square integral (SSI),
Log detector (LOG), average amplitude change (AAC), maximum fractal length
(MFL), minimum (MIN), maximum (MAX), Hjorth parameters (HJP), peak value
(PK), energy ratio (ER), histogram (HISTG), willison amplitude (WAMP), kurtosis
(KURT), skewness (SKEW), non-negative matrix factorization (NMF), natural
logarithm of the variance (ln-VAR), root sum square (RSS), logarithm of the root
mean square (log-RMS), logarithm of the integrated EMG (log-iEMG), logarithm
of the variance (log-VAR), logarithmic band power (LBP), first derivation
(DIFF), detrended fluctuation analysis (DFA), modified mean absolute values
(MAV1-MAV2), V-order, difference absolute standard deviation value (DASDV),
max-min, autoregressive model intercept (Inpt), cardinality (CARD)

Frequency-Domain
Features

Amplitude spectrum (AmpSpec), mean frequency (MNF), median frequency
(MDF), modified median frequency (MMDF), modified mean frequency (MMNF),
mean power (MNP), cepstral coefficients (Cep-Coeff), circulant matrix structure
for eigenvalue decomposition (CMSED), fast Fourier transform (FFT), median
amplitude spectrum (MAS), peak frequency (PKF), total power (TTP), power
spectrum ratio (PSR)

Time-Frequency-Domain
Features

Discrete wavelet transform (DWT), continuous wavelet transform (CWT), mean
of the absolute wavelet coefficients (MOAC), average power of the wavelet
coefficients (APOC), standard deviation of the wavelet coefficients (STDOC),
MOAC-ratio

Space-Domain Features Scaled mean absolute value (SMAV), mean absolute difference of the normalized
values (MADN)

Fractal-Domain Features De-trended fluctuation analysis (DFA), Higuchi fractal dimension (HFD)

Table 9. Features used in the 65 HGR models.

ID SPS Features used

SPS 1 MAV
SPS 2 MAV, RMS, WL, SSC, and HJP
SPS 3 RMS
SPS 4 NI
SPS 5 MAV, WL, ZC, and SSC
SPS 6 MAV
SPS 7 MAV, RMS, ZC, VAR, ER, HISTG, WAMP, AmpSpec, MMDF, and MMNF
SPS 8 NI
SPS 9 NI
SPS 10 RMS
SPS 11 MAV, AR-Coeff, VAR, and SampEn
SPS 12 WL, VAR, iEMG, and PK
SPS 13 SMAV, and MADN
SPS 14 AR-Coeff, and Mean
SPS 15 Mean
SPS 16 MAV
SPS 17 MAV, SD, and DWT
SPS 18 MAV
SPS 19 CMSED
SPS 20 FFT
SPS 21 MAV, WL, ZC, and SSC
SPS 22 RMS, SD, and SampEn
SPS 23 DWT
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Table 9. Cont.

ID SPS Features used

SPS 24 iEMG
SPS 25 MAV, RMS, SD, MMAV, SSI, LOG, AAC, MFL, MIN, and MAX
SPS 26 DWT
SPS 27 NI
SPS 28 NI
SPS 29 AR-Coeff
SPS 30 NI
SPS 31 MAV, RMS, MNP, and DFA
SPS 32 DWT
SPS 33 MAV, WL, ZC, and MAVR
SPS 34 CWT
SPS 35 NI
SPS 36 NI
SPS 37 RMS, WL, WAMP, SampEn, and Cep-Coeff
SPS 38 Mean, VAR, KURT, and SKEW
SPS 39 NMF
SPS 40 iEMG, ln-VAR, and RSS
SPS 41 NI
SPS 42 log-RMS, log-iEMG, log-VAR
SPS 43 NI
SPS 44 MAV, RMS, SSC, WL, and HJP
SPS 45 SMAV, and MADN
SPS 46 MAV, ZC, SSC, SKEW, RMS, HJP, and iEMG
SPS 47 RMS, and Median
SPS 48 RMS, WL, ZC, and SSC
SPS 49 Mean
SPS 50 RMS, LBP, and DIFF
SPS 51 SD
SPS 52 MAV, WL, RMS, AR-Coeff, ZC, and SSC

SPS 53
MAV, MAV1-MAV2, VAR, RMS, SSI, V-order, iEMG, DASDV, AAC, ZC, LOG, SSC, WL, WAMP,
MFL, MAX, MIN, max-min, SKEW, KURT, TTP, MNF, MDF, MNP, PKF, MOAC, APOC, STDOC,
MOAC-ratio, Inpt, AR-Coeff

SPS 54 RMS, WL, MAS and SampEn

SPS 55 MAV, MAV1, MAV2, VAR, RMS, WL, ZC, SSC, AR-Coeff, MNF, MDF, PKF, MNP, TTP, PSR,
DFA, and HFD

SPS 56 MAV, SSC, WL, RMS, and HJP
SPS 57 MAV, WL, ZC, and SSC
SPS 58 NI
SPS 59 MAV, WL, ZC, and SSC
SPS 60 MAV, WL, ZC, and SSC
SPS 61 MAV, WL, ZC, SSC, WAMP, and CARD
SPS 62 NI
SPS 63 MAV, WL, ZC, and SSC
SPS 64 MAV, WL, ZC, and SSC
SPS 65 MAV, WL, ZC, and SSC

3.2.5. Classification

In this stage, classifiers generate class labels (i.e., the gestures recognized) from a feature set of
the EMG. The classifiers used are support vector machines (SPS 7, SPS 10, SPS 14, SPS 15, SPS 18,
SPS 23, SPS 25, SPS 27, SPS 28, SPS 30, SPS 38, SPS 39, SPS 49, SPS 52, SPS 53, SPS 55, and SPS 59),
feedforward neural networks (SPS 2, SPS 16, SPS 17, SPS 22, SPS 24, SPS 26, SPS 29, SPS 32, SPS 35,
SPS 36, SPS 44, SPS 42, SPS 46, SPS 47, SPS 56, SPS 60, and SPS 61), linear discriminant analysis (SPS 5,
SPS 11, SPS 13, SPS 31, SPS 37, SPS 45, SPS 48, SPS 57, SPS 63, SPS 64, and SPS 65), convolutional neural
networks (CNN) (SPS 4, SPS 20, SPS 43, and SPS 62), CNN with transfer learning (SPS 34), radial
basis function networks (SPS 40), temporal convolutional networks (SPS 41), k-nearest neighbors and
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dynamic time warping (SPS 8, and SPS 9), collaborative-representation-based classification (SPS 19),
k-nearest neighbors (SPS 1), k-nearest neighbors and decision trees (SPS 12), binary tree-support
vector machine (SPS 21), vector auto-regressive hierarchical hidden Markov models (SPS 6), Gaussian
mixture models and hidden Markov models (SPS 3), quadratic discriminant analysis (SPS 33), fuzzy
logic (SPS 50), recurrent neural networks (SPS 51), generalized regression neural networks (SPS 54),
and one vs one classifier (58). The most commonly used ML algorithms are support vector machines,
feedforward neural networks, and linear discriminant analysis.

3.2.6. Postprocessing

To improve the accuracy of the HGR models, the postprocessing techniques adapt the output of
the ML algorithm to the final application. Only 15 out of 65 SPS used postprocessing techniques, such
as majority voting (SPS 2, SPS 11, SPS 21, SPS 37 and SPS 43), elimination of consecutive repetitions
(SPS 8, SPS 9, SPS 36, and SPS 51), threshold (SPS 35, and SPS 44), and velocity ramps (SPS 60, SPS 63,
SPS 64, and SPS 65).

Many works perform an analysis of some of the stages shown in Section 3.2 to determine the best
structure to improve the accuracy of the HGR models, for example, data acquisition [39,48,118,119],
optimal window length [120], filtering [121,122], feature extraction [123], and classification [124,125]
stages. However, the results are inconclusive because the structure of the HGR models depend on the
environment in which the models are developed (i.e., the data sets used, the people who participated
in the evaluation, the application of the models, etc.)

3.3. Results of the RQ2 (What Is the Controller Delay and Hardware Used by Real-Time HGR Models Using
EMG and ML?)

3.3.1. Controller Delay of the HGR Models

The controller delay is the sum of two values, which are the data collection time (DCT)
(i.e., window length) and the data analysis time (DAT) [39,42]. In real-time processing, the DCT
and DAT should be as short as possible, but the DCT also should allow the HGR model to collect
enough EMG data to recognize a hand gesture. For instance, in prosthesis control, the optimal DCT
using four EMG sensors with a sampling rate of 1 kHz should be between 150–250 ms [120].

An HGR model using EMG is considered to work in real-time when the response time
(i.e., controller delay) is less than the optimal controller delay. There are several optimal controller
delays reported in the scientific literature, namely 300 ms [39], 500 ms [41], and 100 ms for fast
prosthetic prehensors and 125 ms for slower prosthetic prehensors [42].

In accordance with the Inclusion and Exclusion Criteria (see Section 2.3.1), all 65 HGR models
indicate that they are real-time models. However, there are some SPS that did not report the controller
delay (i.e., DCT and DAT) of their HGR models. Table 10 shows the DCT and DAT of the SPS.

3.3.2. Hardware Used

The controller delay of the HGR models not only depends on their structure but also on the
hardware used to process the models. For example, an HGR model may not work in real-time if the
user perceives delays in the HGR response because the device has limited processing capabilities.
The same HGR model may also be considered to work in real-time in another device with better
processing capabilities. For this reason, when a model is described, it is fundamental to indicate the
hardware characteristics of the devices used for running an HGR model. Table 10 shows the two types
of hardware used, which are personal computers and embedded systems. Ten HGR models were
processed in personal computers, such as laptops, desktops, etc., five HGR models were processed in
embedded systems, and the remaining models did not indicate the hardware used.
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Table 10. Time of data collection and data analysis, and hardware used in the 65 HGR models.

ID SPS DCT(ms) DAT(ms) Hardware Used

SPS 1 250 NI NI
SPS 2 1000 29.38 Personal computer
SPS 3 100 37.9 Personal computer
SPS 4 250 NI NI
SPS 5 250 NI NI
SPS 6 250 NI NI
SPS 7 300 500 NI
SPS 8 1000 250 Personal Computer
SPS 9 1000 193.1 Personal Computer
SPS 10 72 41 Embedded System
SPS 11 250 70 NI
SPS 12 NI NI NI
SPS 13 200 NI NI
SPS 14 NI NI NI
SPS 15 NI 10 NI
SPS 16 250 0.2 Embedded System
SPS 17 NI NI Personal Computer
SPS 18 NI NI NI
SPS 19 500 NI NI
SPS 20 285 15 Personal Computer
SPS 21 250 7.57 Personal Computer
SPS 22 NI NI NI
SPS 23 250 NI NI
SPS 24 NI NI Embedded System
SPS 25 2000 NI NI
SPS 26 NI NI NI
SPS 27 NI NI Embedded System
SPS 28 NI NI Embedded System
SPS 29 NI NI NI
SPS 30 NI 2.5 Personal Computer
SPS 31 250 NI Personal Computer
SPS 32 256 NI NI
SPS 33 64 NI Personal computer
SPS 34 260 NI NI
SPS 35 2000 3 Personal computer
SPS 36 2500 11 Personal computer
SPS 37 200 NI Personal computer
SPS 38 100 NI Personal computer
SPS 39 256 152.71 NI
SPS 40 250 4.5 Embedded System
SPS 41 150 12.8 Embedded System
SPS 42 200 46.4 Personal computer
SPS 43 200 5 Embedded System
SPS 44 NI 233.4 NI
SPS 45 200 NI NI
SPS 46 250 NI NI
SPS 47 NI NI NI
SPS 48 200 NI Embedded System
SPS 49 800 NI NI
SPS 50 400 NI Embedded System
SPS 51 500 NI Personal computer
SPS 52 240 NI Personal computer
SPS 53 32 NI Personal computer
SPS 54 NI 190 NI
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Table 10. Cont.

ID SPS DCT(ms) DAT(ms) Hardware Used

SPS 55 300 NI NI
SPS 56 400 227.76 NI
SPS 57 160 <16 NI
SPS 58 160 <16 NI
SPS 59 200 2 NI
SPS 60 200 50 Personal computer
SPS 61 200 <50 NI
SPS 62 167 6 Personal computer
SPS 63 250 <50 NI
SPS 64 250 <50 NI
SPS 65 200 <50 Personal computer

NI: Not indicated.

3.4. Results of the RQ3 (What Is the Number and Type of Gestures Recognized by Real-Time HGR Models
Using EMG and ML?)

3.4.1. Number of Gestures Recognized

The number of gestures recognized is the number of classes of an HGR model. There are HGR
models that have the same number of gestures, and each model has different gestures. For example,
there are two HGR models that recognize four gestures, but the classes of the first model are thumb up,
okay, wrist valgus, and wrist varus (SPS 14), and the classes of the second model are hand extension,
hand grasp, wrist extension, and thumb flexion (SPS 22). Hence to compare these models, it is
important to consider the difference in the gestures as well.

3.4.2. Type of Gestures Recognized

The hand gestures, according to the type of movement, are classified as static and dynamic. A static
gesture is made when the skeletal muscles are in constant contraction (i.e., there is no movement
during the gesture), and in a dynamic gesture, the skeletal muscles are in contraction, but it is not
constant, which indicates that there is movement during the gesture.

The EMG data generated by a gesture has two states: transient and steady. The EMG data in the
transient state are generated during the transition from one gesture to another, and the EMG data in
the steady state are generated when a gesture is maintained [38]. Moreover, the offline classification of
hand gestures using EMG data in the steady state is more accurate than in the transient state as the
variance of the EMG data in the transient state varies more (i.e., non-stationary process) than in the
steady state over time [40]. However, in the training phase, the inclusion of EMG data in the transient
state improves subject performance in a real-time virtual clothespin task [46,48].

Figure 5 presents the EMG data of a person who made a long-term gesture (i.e., gestures that
lasted a long time) after a relaxed position or rest gesture. In this figure, the EMG data in the transient
state are generated during the transition from the rest gesture to the peace sign, and the EMG data in
the steady state are generated when the peace sign is maintained. The short-term gestures (i.e., gestures
that lasted only a short time) generate more EMG data in the transient state than in the steady state as
most of the time is spent in transitions from one gesture to another (see Figure 6).

The durations of the gestures used by the models are shown in Table 11. This table shows seven
aspects about the gestures recognized by the HGR models reviewed in this SLR, such as the number of
classes, the number of gestures per person in the training set (NGpPT), the number of people who
participated in the training (NPT), the number of gestures per person in the evaluation set (NGpPE),
the type of gestures recognized, the state of the EMG data used, and the duration of the gestures (DG).
NGpPT, NPT, and DG show the EMG data used to train the individual (NGpPT × DG), and general
(NGpPT × NPT × DG) models. We found that 63 out of 65 HGR models recognized static gestures,
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and only one HGR model recognized both dynamic and static gestures (SPS 25); moreover, no HGR
model recognized only dynamic gestures. Additionally, six SPS used EMG data in the steady state, two
SPS used EMG data in the transient state, three SPS used EMG data in the steady and transient states,
and the remaining HGR models did not indicate the state of the EMG data. There were 31 out of the 65
HGR models that considered the rest gesture (i.e., the hand does not make any movement) as a class.

Figure 5. The EMG data of a long-term peace gesture (most of the EMG data are in the steady state).

Figure 6. The EMG data of a short-term peace gesture (most of the EMG data are in the transient state).
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Table 11. The number of gestures recognized (i.e., classes), number of gestures per person in the
training set (NGpPT), the number of people who participated in the training (NPT), the number of
gestures per person in the evaluation set (NGpPE), the type of gestures recognized, the state of the
EMG data used, and the duration of the gestures (DG).

ID SPS Classes NGpPT NPT NGpPE TGR StEMG DG (s)

SPS 1 4 20 13 20 Static NI 5
SPS 2 5 25 10 150 Static NI STG
SPS 3 6 300 1 300 Static Steady and Transient 4
SPS 4 8 * NI NI NI Static NI NI
SPS 5 9 * 90 5 NI Static NI NI
SPS 6 13 * 65 8 65 Static NI 4
SPS 7 5 25 14 25 Static NI NI
SPS 8 5 25 10 150 Static NI STG
SPS 9 5 25 10 150 Static NI STG
SPS 10 3 * 15 1 NI Static NI NI
SPS 11 8 * 80 6 NI Static NI 10
SPS 12 10 NI NI NI Static NI NI
SPS 13 9 NI 17 NI Static NI NI
SPS 14 4 NI NI NI Static NI 1
SPS 15 3 18 3 150 Static NI NI
SPS 16 10 300 4 NI Static Transient STG
SPS 17 17 * 13600 5 1700 Static NI NI
SPS 18 20 NI NI NI Static NI 30
SPS 19 6 NI NI NI Static NI STG
SPS 20 7 * 21 NI NI Static NI 1
SPS 21 13 * 65 8 65 Static NI 4-6
SPS 22 4 NI 20 NI Static NI NI
SPS 23 6 NI 80 NI Static NI NI
SPS 24 6 300 1 300 Static NI NI
SPS 25 26 1040 1 520 Static and Dynamic NI 2
SPS 26 3 NI 4 NI Static NI NI
SPS 27 7 * NI 4 NI Static NI NI
SPS 28 6 * 18 9 42 Static Steady 3
SPS 29 4 NI NI NI Static NI NI
SPS 30 3 * NI 1 NI Static NI NI
SPS 31 6 * 54 5 36 Static NI 5-6
SPS 32 8 NI 10 NI Static NI 5
SPS 33 10 500 6 1800 Static NI STG
SPS 34 7 * 28 19 84 Static NI 0.95
SPS 35 5 250 50 250 Static NI STG
SPS 36 6 * 30 10 150 Static NI STG
SPS 37 5 * 20 6 10 Static NI 5
SPS 38 2 * NI 5 NI Static NI NI
SPS 39 5 40 5 160 Static NI 4
SPS 40 9 * 90 10 90 Static Steady 5
SPS 41 9 * 540 3 540 Static Steady 3
SPS 42 6 NI 8 NI Static NI 5
SPS 43 8 NI NI NI Static Steady and Transient 5
SPS 44 6 * 180 1 150 Static NI NI
SPS 45 47 94 5 47 NI Steady 6
SPS 46 7 * NI 17 NI Static NI 20
SPS 47 9 NI 1 NI Static NI 10
SPS 48 6 * NI 4 150 Static Transient STG
SPS 49 4 40 7 100 Static NI NI
SPS 50 5 510 NI NI Static NI NI
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Table 11. Cont.

ID SPS Classes NGpPT NPT NGpPE TGR StEMG DG (s)

SPS 51 8 * 528 1 176 Static NI 2
SPS 52 7 * 56 6 48 Static NI 5
SPS 53 9 450 20 450 Static NI 1
SPS 54 9 * 250 NI 60 Static NI 5
SPS 55 13 NI 10 NI Static Steady 6
SPS 56 5 25 12 150 Static NI 2 (training), and 5 (testing)
SPS 57 5 * 10 9 48 Static NI 3
SPS 58 7 * 28 10 144 Static NI 2
SPS 59 14 56 10 84 Static NI 7
SPS 60 11 * 33 10 6 Static NI 3
SPS 61 5 * 75 10 72 Static Steady 4
SPS 62 9 * 32 10 48 Static NI 12
SPS 63 8 32 4 40 Static NI 3
SPS 64 5 * 40 11 270 Static ni 3
SPS 65 7 * 21 11 48 Static Steady and Transient 3

NI: Not indicated; *: Including the rest gesture; NGpPT: Number of Gestures per Person in the Training set;
NPT: Number of People Who Participated in the Evaluation; NGpPE: Number of Gestures per Person in the
Evaluation set; TGR: Type of Gestures Recognized; StEMG: State of the EMG; DG: Duration of the Gestures;
STG: Short-Term Gesture.

Finally, 5 out of the 65 HGR models (SPS 59, SPS 60, SPS 62, SPS 63, and SPS 64) recognized
static gestures simultaneously to control multiple degrees of freedom of a prosthesis, which replicates
simultaneous movements, such as wrist rotation and grasp to turn a doorknob. The remaining HGR
models recognized gestures sequentially.

3.5. Results of the RQ4 (What Are the Metrics Used to Evaluate Real-Time HGR Models Using EMG and ML?)

According to the type of evaluation (see Section 1), we divide the SPS into two groups. HGR
models evaluated using metrics for machine learning (56 models), and target achievement tests
(nine models).

3.5.1. HGR Models Evaluated Using Metrics for Machine Learning (from SPS 1 to SPS 56)

These 56 HGR models used 13 evaluation metrics (see Table 12), such as accuracy (9), recall (10),
precision (11), accuracy per user (12), recall per user (13), precision per user (14), median of the accuracy
per user (15), standard deviation of the accuracy per user (16), standard deviation of the accuracy per
class (17), standard deviation of each user accuracy (18), standard deviation of the recalls of each class
(19), classification error (20), and Kappa index (21). The accuracy is the metric most used, Table 12
shows the evaluation metrics used by these 56 models. The formulas of these evaluation metrics are:

Accuracy =
∑u

i=1 ∑
g
j,k=1 ni,j,k

∑u
i=1 ∑

g
j=1 ∑

g
k=1 ni,j,k

(9)

Recallclass(k) =
∑u

i=1 ni,k,k

∑u
i=1 ∑

g
j=1 ni,j,k

(10)

Precisionclass(j) =
∑u

i=1 ni,j,j

∑u
i=1 ∑

g
k=1 ni,j,k

(11)

Accuracyuser(i) =
∑

g
j,k=1 ni,j,k

∑
g
j=1 ∑

g
k=1 ni,j,k

(12)
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Recalluser(i)class(k) =
ni,k,k

∑
g
j=1 ni,j,k

(13)

Precisionuser(i)class(j) =
ni,j,j

∑
g
k=1 ni,j,k

(14)

Median(Accuracyuser(1), Accuracyuser(2), ..., Accuracyuser(u)) (15)

SDusers =

√
∑u

i=1(Accuracyuser(i) − Accuracymodel)2

u − 1
(16)

SDclasses =

√
∑

g
k=1(Recallclass(k) − Accuracymodel)2

g − 1
(17)

SDuser(i) =

√
∑

g
k=1(Recalluser(i),class(k) − Accuracyuser(i))

2

g − 1
(18)

SDclass(k) =

√
∑u

i=1(Recalluser(i),class(k) − Recallclass(k))
2

u − 1
(19)

AccuracyError = 1 − Accuracy (20)

KappaIndex =

Accuracy − ( 1
(∑u

i=1 ∑
g
j=1 ∑

g
k=1 ni,j,k)2 )× ∑u

i=1 ∑
g
aux=1(∑

g
k=1 ni,aux,k)× (∑

g
j=1 ni,j,aux)

1 − ( 1
(∑u

i=1 ∑
g
j=1 ∑

g
k=1 ni,j,k)2 )× ∑u

i=1 ∑
g
aux=1(∑

g
k=1 ni,aux,k)× (∑

g
j=1 ni,j,aux)

(21)

where ni,j,k is the number of gestures made by the user i, which were recognized by the model as j
but they were k. iεI = i1, i2, ..., iu is the set of test users, jεJ = j1, j2, ..., jg is the set of predicted classes,
kεK = k1, k2, ..., kg is the set of actual classes, u is the total number of test users, and g is the number
of classes.

Table 12. The evaluation metrics for machine learning used by the 56 HGR models.

Evaluation Metric IDs of the SPS

Accuracy All HGR models, except SPS 18, SPS 37, and SPS 38

Recall SPS 2, SPS 3, SPS 4, SPS 8, SPS 9, SPS 12, SPS 14,
SPS 17, SPS 18, SPS 19, SPS 24, SPS 26, SPS 28,
SPS 29, SPS 31, SPS 33, SPS 35, SPS 36, SPS 39,
SPS 40, SPS 42, SPS 44, SPS 46, SPS 49, SPS 53,
SPS 55, and , SPS 56

Precision SPS 2, SPS 8, SPS 9, SPS 14, SPS 35, SPS 36, SPS 44,
SPS 53, and SPS 56

Accuracy per User SPS 1, SPS 5, SPS 6, SPS 16, SPS 26, SPS 31, SPS 33,
SPS 38, SPS 39, SPS 48, SPS 52, SPS 53, and SPS 56

Recall per User SPS 15, and SPS 26

Precision per User SPS 15, and SPS 39

Median of the Accuracy per User SPS 6

Standard Deviation of the Accuracy per User SPS 1, SPS 5, SPS 7, SPS 20, SPS 35

Standard Deviation of the Accuracy per Class SPS 17

Standard Deviation of each User Accuracy SPS 5

Standard Deviation of the Recalls of each Class SPS 17

Kappa Index SPS 46

Accuracy Error SPS 37
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We identified five machine-learning metrics that evaluate the entire HGR model. The first one
is accuracy, which is the fraction of gestures recognized correctly among all the test data. Second,
the recall is the fraction of gestures recognized correctly for a class among the test data of this class.
Third, the precision is the fraction of gestures recognized correctly of a class among the gestures
recognized by the HGR model as this class. Fourth, the standard deviation of the accuracy per user is
the amount of dispersion of the recognition accuracies per user. Finally, the standard deviation of the
accuracy per class is the amount of dispersion of the recalls of a particular model.

These metrics can produce biased results for two reasons: an incorrect definition of a true positive,
and an unbalanced test. In order to determine the recognition accuracy, a gesture is considered as a
true positive (i.e., the gesture is recognized correctly) when the HGR model determines what gesture
was performed and when this gesture was performed by a person. However, only SPS 51 is evaluated
in this way. Eleven HGR models (SPS 2, SPS 5, SPS 6, SPS 7, SPS 8, SPS 9, SPS 19, SPS 20, SPS 34,
SPS 35, and SPS 36) determine the classification accuracy because they only took into consideration
what gesture was performed by a person as a true positive, and the remaining models do not show
what they consider a true positive.

In addition, the test set is balanced when it has the same number of samples per class and the
same number of samples per user (see Table 13). For example, if an HGR model is evaluated using a
set that has more data for the user A, the accuracy of this model and the accuracy of the user A tend to
be the same.

There are five SPS (SPS 2, SPS 5, SPS 8, SPS 9, and SPS 18) in which the evaluation was performed
with data acquired without feedback (i.e., the correctness of classification was not provided in the
evaluation), thus people cannot adjust their movements to the HGR model. Eight SPS were performed
with data acquired with feedback from the HGR model (SPS 1, SPS 4, SPS 11, SPS 12, SPS 13, SPS 17,
SPS 20, and SPS 29), and the remaining SPS do not indicate information about feedback.

Table 13 shows the recognition accuracies, the number of people who participated in the
evaluation, type of data set (i.e., balanced or unbalanced), and the use of Cross-Validation by the 56
HGR models. The largest number of people is 80 (SPS 23). Three HGR models were evaluated using
EMG data from amputees (SPS 6, SPS 21, and SPS 48). Moreover, 19 HGR models use cross-validation,
that is, a technique used to minimize the probability of biased results in small data sets (see Table 13).

Table 13. The accuracy, number of people who participated in the evaluation, type of data set
(i.e., balanced or unbalanced), and the use of cross-validation by the 56 HGR models.

ID SPS Model Classification Accuracy (%) NPE Type of Data Set Cross-Validation

SPS 1 94.00 13 balanced NI
SPS 2 90.70 10 balanced NI
SPS 3 99.00 1 balanced yes
SPS 4 93.00 10 balanced NI
SPS 5 92.20 5 balanced yes
SPS 6 82.39 8 unbalanced NI
SPS 7 95.64 14 balanced yes
SPS 8 86.00 10 balanced NI
SPS 9 89.50 10 balanced NI
SPS 10 85.00 1 NI NI
SPS 11 97.35 6 NI NI
SPS 12 89.00 NI balanced NI
SPS 13 82.43 17 NI NI
SPS 14 87.00 NI NI NI
SPS 15 90.00 3 balanced NI
SPS 16 94.00 4 balanced yes
SPS 17 89.38 5 balanced NI
SPS 18 NI NI NI yes
SPS 19 97.30 NI NI NI
SPS 20 97.90 18 NI NI
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Table 13. Cont.

ID SPS Model Classification Accuracy (%) NPE Type of Data Set Cross-Validation

SPS 21 89.00 8 balanced yes
SPS 22 97.50 20 NI NI
SPS 23 97.50 80 balanced yes
SPS 24 71.00 1 balanced NI
SPS 25 82.30 1 balanced yes
SPS 26 93.25 4 balanced NI
SPS 27 89.20 4 NI NI
SPS 28 91.80 9 balanced yes
SPS 29 93.00 10 balanced NI
SPS 30 83.90 1 NI yes
SPS 31 88.00 5 balanced yes
SPS 32 95.00 10 balanced yes
SPS 33 90.00 6 balanced yes
SPS 34 98.31 17 balanced yes
SPS 35 85.08 60 balanced NI
SPS 36 90.1 10 balanced NI
SPS 37 NI 6 balanced NI
SPS 38 NI 5 NI NI
SPS 39 96.08 5 balanced yes
SPS 40 99.03 10 balanced NI
SPS 41 97.01 3 balanced yes
SPS 42 91.93 8 balanced NI
SPS 43 98.15 NI balanced NI
SPS 44 96.70 1 balanced NI
SPS 45 82.11 5 NI yes
SPS 46 99.78 17 balanced NI
SPS 47 90.30 1 balanced yes
SPS 48 94.14 4 balanced NI
SPS 49 90.00 7 balanced NI
SPS 50 73.00 NI NI NI
SPS 51 95.31* 1 balanced NI
SPS 52 95.20 6 balanced yes
SPS 53 95.00 20 balanced NI
SPS 54 95.10 NI NI NI
SPS 55 99.20 10 NI NI
SPS 56 98.70 12 balanced NI

NI: Not indicated; NPE: Number of people who participated in the Evaluation; *: This is recognition accuracy
(i.e., this model determines what gesture and when this gesture was performed by a person); yes: This model
uses cross-validation.

3.5.2. HGR Models Evaluated Using Target Achievement Tests (from SPS 57 to SPS 65)

These nine HGR models used three target achievement tests, including the motion test (SPS 60),
target achievement control test (TAC) (SPS 60, SPS 63, and SPS 65), and Fitts’ law test (FLT) (SPS 59,
SPS 61, SPS 62, SPS 64, and SPS 65). These three tests used ten metrics, such as throughput (SPS 57,
SPS 58, SPS 59, SPS 61, SPS 62, SPS 64, and SPS 65), path efficiency (SPS 57, SPS 58, SPS 59, SPS 60,
SPS 61, SPS 62, SPS 64, and SPS 65), overshoot (SPS 57, SPS 58, SPS 59, SPS 61, SPS 62, SPS 64,
and SPS 65), average speed (SPS 57), completion rate (SPS 57, SPS 58, SPS 60, SPS 61, SPS 63, SPS 64,
and SPS 65), stopping distance (SPS 58), completion time (SPS 60, SPS 63, and SPS 65), real-time
accuracy (SPS 60), length error (SPS 63), and reaction time (SPS 64) (see Table 14).
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Table 14. Metrics of the target achievement test used by the nine HGR models.

Metric Description

Throughput Ratio between the index of difficulty and the movement time, which is the time (in
seconds) [107].

Path Efficiency Ratio between the straight line distance and the actual distance traveled [107,126].

Overshoot Ratio between overshoots and number of targets. The ability to stop on a target [107,126].

Average Speed Average nonzero speed of the cursor over the course of the trial [107,126].

Completion
Rate

Ratio between the completed trials and the number of trials within the allowed time
(i.e., trial time) [50,126].

Stopping
Distance Total distance traveled (path length) during the dwell time [108].

Completion
Time Time from movement initiation to the completion of the trial [31].

Real-time
Accuracy

Ratio between correct predictions and number of predictions during the completion
time [127].

Length Error Ratio between distance beyond the total required distance, and the total required
distance [31].

Reaction Time Time from a target appearance and the first move of the cursor/virtual prosthesis [113].

A motion test was proposed by patients with targeted muscle reinnervation to evaluate the
myoelectric capacity [128]. These patients should maintain a gesture until the HGR model has made a
predetermined number of correct predictions. In TAC, the patients control a virtual prosthesis to obtain
a target for a dwell time, which is generally 1 s [50]. These patients have a trial time to get the target,
which is generally 15 s. FLT is a similar test to TAC, but the users control a circular cursor with two
or three degrees of freedom. FLT states that there is a trade-off between speed and accuracy [51,108],
which is defined by:

MT = a + b ∗ ID (22)

where MT is the movement time, a and b are empirical constants, and ID is the index of difficulty
(ID) of a target (see Equation (23)), which is calculated using the distance (D) from an initial point
to a target, and the width (W) of the target. Throughput is a metric proposed by Fitts, which is the
ratio between the ID and MT (see Equation (24)), to summarizes the performance of a control system.
The results of FLT are reliable when this test combines a variety of IDs [129].

ID = log2(
D
W

+ 1) (23)

TP =
ID
MT

(24)

The people who participated in these tests received feedback (i.e., the correctness of classification
was provided in the evaluation). Four out of these nine HGR models were evaluated with four
amputees (SPS 63), two amputees (SPS 59, and SPS 64), and one amputee (SPS 65).

In order to achieve concluding results, it is necessary to consider the sample size, which is
the number of people who participated in the evaluation (n1) (see Table 11) times the number of
gestures per person (n2) (see Table 13), to allow us to obtain statistically significant results. Using
the typical values of a statistical hypothesis test (confidence level of 95%, margin of error of 5%,
and population portion of 50%), we estimated n1 according to the Normal Distribution using the
Central Limit Theorem (25), and n2 according to the Hoeffding’s inequality (26), which is widely used
in machine learning theory.
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n1 ≥ z2 ∗ p ∗ (1 − p)
ε2 =

1.962 ∗ 0.5 ∗ (1 − 0.5)
0.052 ≈ 385 (25)

n2 ≥ −
ln (1−α)

2
2ε2 = −

ln (1−0.95)
2

2 ∗ 0.052 ≈ 738, (26)

where, z is the critical value of the normal distribution for a confidence level of 95%, ε is the margin of
error, p is the population portion, and α is the confidence level. Therefore, the sample size (n1 ∗ n2)

gestures of the test set must be in the order of hundreds of thousands. None of the works present so
far considered these values to achieve a significant result. In the scientific literature, many EMG data
sets are available [130], but, according to the best of our knowledge, the data set with the higher n1 is
30 [131], and with the higher n2 is 40 [84,132].

4. Conclusions

This SLR analyzes works that propose HGR models using surface EMG and ML. Following the
Kitchenham methodology, we introduced four RQs based on the main goal of this SLR, which was
to analyze the state-of-the-art of these models. To answer these four RQs, we presented, analyzed,
and discussed the data extracted from 65 selected primary studies. Below are our findings in regard to
the four RQs.

Structure: The structure of the models studied varies from one work to the other. However,
we were able to examine the structure of these models using a structure composed of six stages:
data acquisition, segmentation, preprocessing, feature extraction, classification, and postprocessing.
Under this standard structure, we studied the types of HGR models, the number of EMG sensors,
the sampling rate, sensors, segmentation and preprocessing techniques, extracted features, the domain
of the extracted features, and the ML algorithm. The most used structure is: eight EMG
sensors, a sampling rate between 200 Hz and 1000 Hz, overlapping sliding windowing, filtering
(segmentation), mean absolute value (feature extraction), support vector machines, and feedforward
neural networks (classification).

Controller delay and hardware: The controller delay of gesture recognition models is the sum of
two values: data collection time (DCT) and data analysis time (DAT). A recognition model works in
real-time when this sum is less than an optimal controller delay. However, the works analyzed report
several optimal controller delays for different applications, suggesting that the optimal controller delay
is relative to the user perception and the application of a recognition model.

Number and types of gestures recognized: The 65 works analyzed propose models that
recognize different number and types of gestures: 31 works took into consideration the rest gesture
as a class to be recognized; only one model recognized both static and dynamic gestures; and the
remaining models recognized static gestures only. No model recognized dynamic gestures only as
most of the EMG data generated by dynamic gestures are in the transient state. Recognizing gestures
using EMG data in the transient state is more complex than in the steady state because the latter
behaves as a non-stationary process. The classification of the hand gestures using EMG data in the
steady state is more accurate than in the transient state, and only nine works recognized short-term
gestures (i.e., using EMG data in the transient state).

Metrics and results: We divided the SPS according to the types of evaluation, which are
machine-learning metrics and target achievement tests. 56 SPS evaluated their models using
machine learning metrics. We found 13 machine-learning metrics and three target achievement
tests. The training and testing protocols vary among the works making the comparison of their
performance very difficult. Moreover, taking into consideration that many works do not describe these
protocols and the whole structure of the model, one key point is the significance and reproducibility of
the results. Using the normal distribution for the number of people, and the Hoeffding’s inequality for
the number of gestures per person, we estimated that the sample size of the test set must be in the
order of the hundreds of thousands to obtain a result with a confidence level of 95% and a precision
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of 5%. None of the works analyzed utilize a test set of this magnitude, and therefore the confidence
and reproducibility of their results are questionable. Based on the definition a true positive, only one
out of the HGR models, which used machine-learning metrics, was evaluated using the recognition
accuracy; the remaining models were evaluated using classification accuracy as they only took into
consideration what gesture was performed by a person as a true positive.

5. Future Work

Based on this SLR, we identify the possible future works in this field:

• Research the optimal permitted delay to determine a general criterion of real-time processing in
HGR models using EMG and ML.

• Develop models using EMG and ML to recognize gestures of long and short duration. Therefore,
these models must be able to recognize gestures using EMG data in the transient and steady states.

• Develop evaluation methods for the HGR models using EMG and ML that state the test sets,
metrics, and protocol of evaluation.

• Develop general HGR models using EMG and ML that can be used by people who do not
participate in the training of these models.

• Develop recognition models that not only recognize one gesture but a sequence of movements.
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Abbreviations

The following abbreviations are used in this manuscript:

CL Classification
DA Data Acquisition
DAT Data Analysis Time
DCT Data Collection Time
DG Duration of the Gestures
EMG Surface Electromyography
FE Feature Extraction
FLT Fitts’ Law Test
HCI Human–Computer Interaction
HGR Hand Gesture recognition
ID Index of Difficulty
IMU Inertial Measurement Unit
ML Machine Learning
MMDC Mathematical Model for a Dynamic Contraction
MMSC Mathematical Model for a Static Contraction
MT Movement Time
MU Motor Unit
MUAP Motor Unit Action Potential
NGpPE Number of Gesture per Person in the Evaluation Set
NGpPT Number of Gestures per Person in the Training Set
NPT Number of People who Participated in the Training
POSTP Postprocessing
PREP Preprocessing
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SEGM Segmentation
SLR Systematic Literature Review
SPS Selected Primary Study
TAC Target Achievement Control Test
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