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Abstract: In this study, a new design of a tri-band multiple-input–multiple-output (MIMO) antenna
array is proposed for fifth-generation (5G) cellular systems. Its structure is composed of eight identical
planar-inverted F antenna (PIFA) elements placed at different edge corners of the handset mainboard
with overall dimensions of 150 × 75 mm2. The PIFA elements and ground plane of the MIMO antenna
system are arranged on the back layer of the platform, which makes the design easy to integrate
with the handset circuit. For S11 ≤ −10 dB, the radiation elements of the MIMO design operate at the
frequency ranges of 2.5–2.7 GHz, 3.4–3.75 GHz, and 5.6–6 GHz covering the long-term evolution (LTE)
41, 42/43, and 47 operation bands, respectively. The array achieves better than 15 dB return loss results
across the three operating bands. The presented antenna array not only exhibits multi-band operation
but also generates the polarization diversity characteristic, which makes it suitable for multi-mode
operation. The proposed antenna array was simulated and experimentally tested. Fundamental
characteristics of the proposed design are investigated. It offers three band S-parameters with
acceptable isolation and dual-polarized radiation with quite good efficiency and gain results. Besides
this, the total active reflection coefficient (TARC) and envelope correlation coefficient (ECC) results
of the PIFAs are very low over the bands. In addition, the radiation characteristics of the MIMO
antenna in the presence of the user and handset components are studied. Moreover, a new and
compact phased array millimeter-wave (MM-Wave) antenna with broad bandwidth and end-fire
radiation is introduced which can be easily integrated into the smartphone antenna system. Due to its
good performance and simple structures, the proposed smartphone antenna array design is a good
candidate for future multi-mode 5G cellular applications.

Keywords: 5G; future handsets; modified PIFA; multi-antenna system; multi-band operation

1. Introduction

With the rapid evolution of wireless communications, the 5G network has received a great deal of
attention from both academia and industry, with many reported efforts and research outputs [1–3].
Significant improvements will be made in different areas, including the data rate speed and resolution,
mobility, latency, etc. Multiple-input–multiple-output (MIMO) technology with multiple antennas
is a promising technology to obtain the requirements of 5G communications [4–6]. To date, 2 × 2
MIMO systems have been successfully employed for 4G mobile networks, and a larger number of
antenna elements is expected to be applied for 5G communications [7,8]. The 5G system is predicted
to possess an aggregate data rate 1000 times faster than 4G, and it has better link reliability. Thus,
compared with the 4G MIMO antenna systems, at least six to eight antenna elements are integrated into
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a mobile terminal for 5G massive MIMO to provide good diversity and multiplexing gain [9]. This can
enhance the channel capacity and link system reliability [10,11]. The greater number of antennas
could make it more resistant to intentional jamming and interference. Through spatial diversity and
spatial multiplexing, larger channel capacity and better communication reliability can be achieved.
Therefore, the multi-antenna system is much more capable of resisting multipath fading and improving
data throughput [12]. The 5G network also needs fundamental technologies to enable small cells,
beamforming, full duplexing, MIMO, and millimeter-wave (MM-Wave).

For sub-6 GHz 5G cellular communications, LTE band-41 (2.6 GHz), band-42 (3.5 GHz), band-43
(3.7 GHz), and band-47 (5.8 GHz) are the main important candidate frequency bands [13]. Due to the
available radio frequency (RF) circuit and test system, 2.6 GHz LTE can be considered as a default
for future mobile communications, and it has recently attracted a great deal of interest. Besides this,
3.4–3.8 GHz (LTE band 42/43) is also recognized by many countries as a first step in demonstrating 5G
systems. To further support more potential sub-6 GHz frequency bands, LTE band 47, which is also
known as the wireless wide area network (WLAN) operation band, can be considered for 5G massive
MIMO antenna design [14,15].

Several smartphone antenna designs with MIMO systems have been proposed recently [16–32].
However, all of these designs either cover only a single-band operation frequency or use a few antenna
elements with large sizes which could occupy a huge space of the mainboard. The 5G handset antenna
designs introduced in [16–24] only cover a single frequency band. In [25–29], dual-band or wideband
arrays are proposed to support two 5G spectrums. Only a few handset antennas with tri-band function
are reported in [30–32] for handset applications. However, these antennas have double/quad antenna
elements or do not cover important bands such as 2.6 GHz. In this study, we introduced a new MIMO
antenna with eight-element planar-inverted F antenna (PIFA) elements which, unlike the reported
designs, can cover multi-frequency bands simultaneously. In addition, due to the large number of
radiators, the proposed handset antenna can be applied for massive MIMO communication [33].
Furthermore, the proposed handset antenna generates the polarization diversity characteristic, which
supports both vertical and horizontal polarizations [34–36]. The modified PIFA radiation elements of
the design are employed at four corners of the printed circuit board (PCB) to operate at three different
frequencies covering the LTE 2600, 42/43, and 47 operation bands. The proposed PIFA array system
operates at three different bands—2.6, 3.6, and 5.8 GHz—of sub-6 GHz 5G cellular networks. It exhibits
good properties in terms of the fundamental characteristics and could be used in future handsets.

Apart from the sub-6-GHz spectrum, 5G smartphones are also expected to support the MM-Wave
spectrum [37]. Compact antennas arranged as an array can be employed in different portions of a
smartphone PCB to form linear phased arrays with high gain and directional radiation beams [38–40].
In contrast to conventional antennas, such as patch, slot, or monopole antennas, end-fire antennas
are more suitable to achieve the required radiation coverage [41,42]. Phased array antennas with
high performance are highly desirable for MM-Wave 5G communications as they can increase the
radiation and the connectivity of the system [43–45]. In addition to the proposed MIMO antenna, a
new and compact phased array millimeter-wave (MM-Wave) antenna with broad bandwidth and
end-fire radiation is introduced for 28 GHz applications. Its configuration is composed of eight loop
dipole resonators with pairs of directors arranged in a linear form which can be easily integrated into
the smartphone antenna system. The following sections present the design details, single-element
performance, characteristics of the tri-band MIMO antenna, and the 28 GHz phased array.

2. Design and Configuration of the Proposed 5G Antenna Array

The schematic of the designed MIMO handset antenna is plotted in Figure 1. As shown,
it is composed of four PIFA pairs that have been deployed at different corners of the mainboard.
The presented handset antenna is designed on an FR-4 dielectric with a relative permittivity of 4.4, loss
tangent of 0.026 and a thickness of hx = 1.6 mm. Each PIFA element is fed by a 50 ohm discrete feeding
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technique extended from the ground plane to the antenna feedline. The values of the design details are
listed in Table 1.Sensors 2020, 19 FOR PEER REVIEW  3 of 21 
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Table 1. The dimension values of the presented multi-mode array.

Parameter WX LX WX1 LX1 WX2 W L Wf

Value (mm) 150 75 83 18 5 20.5 6.5 1
Parameter Lf W1 L1 W2 L2 W3 L3 L4

Value (mm) 1 1 15.3 3.5 14.3 16 5.5 4.5

3. Characteristics of the Single-Element/Multi-Band PIFA Resonator

The PIFA is a compact size antenna radiator that provides omnidirectional radiation patterns
and can be used in hand-held devices [46–48]. The conventional PIFAs exhibit single-band operation.
However, the modified designs can cover multi-frequency bands for multi-mode operation [49].
The configuration of the PIFA element is depicted in Figure 2a. Its structure is composed of an
open-loop resonator with an L-shaped strip protruding from the ground plane. As shown, it has a low
profile with the dimension of W × L. A 50 Ω discrete feeding port is employed to excite the antenna.
The computer simulation technology (CST) software is used to investigate the properties of the designed
mobile-handset antenna [50].
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Figure 2. (a) Transparent view of the planar-inverted F antenna (PIFA) and (b) its S11 performance.

The main motive behind the modified PIFA is to obtain a compact antenna element which can
support different frequencies and could be integrated with a mainboard circuit while occupying a
small clearance. Figure 2b illustrates the simulated reflection coefficient (S11) characteristic of the
PIFA element. As shown, the antenna operates at 2.6, 3.6, and 5.8 GHz and provides wide impedance
bandwidths at these frequencies.

In order to justify the tri-band function of the design, the simulated current densities of the
modified PIFA element at different operation frequencies are illustrated in Figure 3. It is worth
mentioning that the maximum scaling for all figures is the same. At 2.6 GHz (first resonance), as can
be seen, the L-shaped strip has high current densities with the maximum distribution. Additionally,
the current flow reverses on the interior edge of the surrounded open loop [51]. It is evident that the
second resonance of the antenna S11 has been achieved using the open-loop resonator as it appears
very active at 3.6 GHz. The third resonance can be considered as the second harmonic of the first
resonance [52]. As shown in Figure 3c, the current distribution is almost equal around the L-shaped
strip and the open-loop resonator. Nevertheless, some coupling and interactions between the employed
parasitic strip of the modified PIFA can be discovered which could affect the frequency response of the
antenna [53].

The main motive behind the PIFA design is to obtain a low-profile and multi-mode radiator with
the possibility of integration in the mobile-handset mainboard. The S11 characteristics of the modified
PIFA antenna can be adjusted by changing the values of the fundamental antenna parameters [54,55].
The first resonance (at 2.6 GHz for the low-band) is mainly determined by the L-shaped strip. The
second and third resonances (at 3.6 GHz and 5.8 GHz) depends on the main resonator (open-loop).
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Therefore, the circumference lengths of the resonators can satisfy the dielectric wavelength at the
corresponding frequency points [56].
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Figure 4 illustrates the antenna S11 characteristic of varying design parameters including W3, L4,
W2, and W. In the simulation of the designed antenna, when one parameter changes, the rest of the
parameters are kept the same as listed in Table 1. The antenna S11 results for different values of W3 are
illustrated in Figure 4a. As evident from the figure, there is very little impact on the first resonance,
while the second and third resonant frequencies are influenced and tuned to higher frequencies.
Figure 4b shows that L4 (unlike W3) has a significant impact on the first resonance frequency and
little effect on the second and third resonance frequencies. Figure 4c shows the effects of W2 (length of
L-shaped strip) on the S11 of the antenna. It can be observed that as W2 decreases from 12.65 to
15.65 mm, the first and third resonances at 2.6 GHz and 5.8 GHz shift up to higher frequencies,
while very little variation is observed at the middle resonance frequency (3.6 GHz). The antenna S11

characteristic of the antenna at different frequencies is also highly dependent on the length of the
open-loop resonator (W). As shown in Figure 4d, changing the value of W affects all three resonances
of the antenna at different operation bands. According to the obtained results, it can be calculated
that the antenna frequency response in all operation bands is very flexible to be tuned to lower or
upper frequencies. In addition, its impedance matching can be also affected by changing the parameter
values [57,58].
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The fundamental radiation characteristics of the modified PIFA design including the radiation
efficiency (R.E.), total efficiency (T.E.) and maximum gain (M.G.) are studied in Figure 5. In theory,
the radiation and total efficiencies are related according to

e = erecd (1)

Sensors 2020, 19 FOR PEER REVIEW  6 of 21 

where e0 is the total efficiency, er is the reflection (mismatch) efficiency = (1−|Γ|2), ecd is the radiation 
efficiency and D0 is the antenna directivity [59]. As can be observed from Figure 5, the antenna 
provides better than 40% and 65% radiation and total efficiencies over the three operation bands. In 
addition, the maximum gain of the design varies from 2.5 to 4.5 dBi. 

 
Figure 5. Radiation characteristics of the PIFA element versus its operation bands. 

4. Characteristics of the Handset Antenna Array 

Figure 6 shows the S parameters of the designed handset antenna. As illustrated, the antenna 
exhibits good S parameters at three operation bands with acceptable mutual coupling at less than −10 
dB [5,60]. According to the obtained results in Figure 6, slight variation can be observed in the Snn 
results of the antenna elements, especially in the lower band (2.6 GHz). This variation is mainly due 
to different placements, feeding points, neighboring, and also unsymmetrical configurations of the 
employed elements in the main design (smartphone PCB), as shown in Figure 1. Besides this, the 
smartphone PCB is in a rectangular shape (with a size of 150 × 75 mm2) which could cause some 
discrepancies on the frequency responses and couplings, mainly between even and odd port numbers 
(antennas 1 and 2, for example). However, due to the flexible frequency behavior of the antenna 
elements (explained in Figure 4), by modifying the design parameters of the antenna element, the 
frequency response can be easily adjusted to the desired frequency bands [61]. 

  
(a) (b) 

Figure 6. (a) Snn and (b) Smn properties of the proposed 5G handset antenna. 

The side view of the design radiation patterns for a single-element radiator at different operation 
frequencies is illustrated in Figure 7. Clearly, the antenna radiation elements exhibit high symmetric 
radiation patterns covering the different sides of the handset mainboard and increasing the radiation 
coverage [62–65]. The 3D radiation patterns for the eight PIFAs of the main design are displayed in 

Figure 5. Radiation characteristics of the PIFA element versus its operation bands.

The antenna gain can be calculated using the radiation efficiency and the directivity as follows:

G0(dB) = 10 log(ecdD0) (2)

where e0 is the total efficiency, er is the reflection (mismatch) efficiency = (1−|Γ|2), ecd is the radiation
efficiency and D0 is the antenna directivity [59]. As can be observed from Figure 5, the antenna provides
better than 40% and 65% radiation and total efficiencies over the three operation bands. In addition,
the maximum gain of the design varies from 2.5 to 4.5 dBi.

4. Characteristics of the Handset Antenna Array

Figure 6 shows the S parameters of the designed handset antenna. As illustrated, the antenna
exhibits good S parameters at three operation bands with acceptable mutual coupling at less than −10
dB [5,60]. According to the obtained results in Figure 6, slight variation can be observed in the Snn

results of the antenna elements, especially in the lower band (2.6 GHz). This variation is mainly due
to different placements, feeding points, neighboring, and also unsymmetrical configurations of the
employed elements in the main design (smartphone PCB), as shown in Figure 1. Besides this, the
smartphone PCB is in a rectangular shape (with a size of 150 × 75 mm2) which could cause some
discrepancies on the frequency responses and couplings, mainly between even and odd port numbers
(antennas 1 and 2, for example). However, due to the flexible frequency behavior of the antenna
elements (explained in Figure 4), by modifying the design parameters of the antenna element, the
frequency response can be easily adjusted to the desired frequency bands [61].
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Figure 6. (a) Snn and (b) Smn properties of the proposed 5G handset antenna.

The side view of the design radiation patterns for a single-element radiator at different operation
frequencies is illustrated in Figure 7. Clearly, the antenna radiation elements exhibit high symmetric
radiation patterns covering the different sides of the handset mainboard and increasing the radiation
coverage [62–65]. The 3D radiation patterns for the eight PIFAs of the main design are displayed in
Figure 8. As illustrated, the gain level of the design varies from 3 to more than 4 dBi. Besides, due to
the placements of the PIFA element, four horizontally and vertically polarized radiation patterns are
achieved to improve the MIMO performance of the design [66,67].
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The envelope correlation coefficient (ECC) and total active reflection coefficient (TARC)
characteristics are substantial in MIMO/diversity antenna systems [68,69]. These parameters can be
extracted from the S-parameter results using the below formulas, respectively:

ECC =

∣∣∣S∗mmSnm + S∗mnSnn
∣∣∣2(

1− |Smm|
2
− |Smn|

2
)(

1− |Snm|
2
− |Snn|

2
)∗ (3)

TARC = −

√
(Smm + Smn)

2 + (Snm + Snn)
2

2
(4)
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The ECC and TARC results of the presented multi-mode MIMO antenna design are calculated
and plotted in Figure 9. As seen from Figure 9a, the calculated ECC results of PIFA pairs are very low
over the entire multi-operation bands (less than 0.01). Additionally, it can be observed from Figure 9b
that the TARC value of the diverse PIFA pairs is less than −20 dB at different frequencies.
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5. Fabrication and Measurements

A prototype sample of the proposed 5G handset antenna array was fabricated as illustrated in
Figure 10a,b. Due to the similar placements and performances of the modified PIFA pairs, the properties
of the handset antenna design for port 1 and 2 are measured and compared below. The feeding
mechanism of the adjacent elements is shown in Figure 10c.

The measured and simulated results of the S-parameters are compared in Figure 11a. As seen,
the S11/S21 measurements have good agreement with the simulated results in terms of covering the
required multi-operation bands: a quite good impedance bandwidth (S11 <−10) is achieved to cover the
operation bands of 2.45–2.65 GHz, 3.5–3.7 GHz and 5.6–6 GHz with resonances at 2.6, 3.6, and 5.8 GHz,
respectively. In addition, as shown, the mutual couplings of the adjacent PIFAs are less than −15, −10,
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and −13 dB at the desired frequency bands. One of the vital parameters for the MIMO performance of
an antenna array is diversity gain (DG), which can be calculated using the following formula:

DG = 10
√

1− (ECC)2 (5)
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Figure 11. Measured and simulated (a) S-parameters and (b) diversity gain of the two adjacent PIFAs.

The DG characteristics of the antenna are illustrated in Figure 11b. The diversity gain function
of the designed antenna over its operation band is more than 9.95 dB over the operating frequency
bands [70]. In Figure 12a,b, we plot and compare the calculated TARC and ECC results of the PIFA
pairs from simulated and measured results. As shown, the ECC function is very low (less than 0.05)
over the different frequency bands of interest. Besides, the obtained TARC results are less than −18 dB.
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Measured and simulated radiation patterns (H-plane) of the modified PIFA element at different
frequencies are shown in Figure 13. It is worth noting that, during the measurement of the antenna
radiation patterns, one port was kept excited while the other one was loaded with a 50 Ω load.
As can be clearly seen, the sample handset antenna prototype provides good quasi-omnidirectional
radiation patterns at different resonance frequencies with peak gains and acceptable agreement between
simulations and measurements. It is found that when the antenna frequency increases, the gain level
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Figure 13. Two-dimensional radiation patterns at (a) first (2.6 GHz), (b) second (3.6 GHz), and (c) third
(5.8 GHz) resonances.

6. Comparison

Table 2 compares the characteristics of the proposed handset antenna design and some reported
5G smartphone MIMO antenna designs in the literature with the recent states of the art [16–32]. To
the best of our knowledge, most of the reported sub-6 GHz 5G antennas are single-band operating,
and only a few works have reported on the use of the dual-band or multi-band techniques for 5G
smartphone applications. The main contribution of our work is that we propose a planar 8 × 8
MIMO diversity antenna array with a triple-band function covering the LTE 41, 42/43, and 47 bands.
As clearly shown, compared with the recently introduced MIMO handset antenna systems with planar
and uniplanar structures, our proposed handset antenna provides better characteristics in terms of
impedance matching and bandwidth and low-profile radiators.
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Table 2. Comparison of the design characteristics with the referenced handset antennas. MIMO:
multiple-input–multiple-output.

Reference Antenna Type Elements Bandwidth
(GHz) Efficiency (%) Overall Size (mm2) Isolation (dB) ECC

Single-Band MIMO Handset Antennas

[16] Coupled-Fed 8 2.55–2.68 48–63 136 × 68 12 <0.15
[17] Petal Slot 8 2.55–2.66 - 150 × 75 10 <0.1
[18] Loop 8 2.55–2.6 48–63 136 × 68 11 <0.15
[19] PIFA Slot 8 3.4–3.6 62–78 140 × 70 10 <0.20
[20] Slot-Ring 8 3.4–3.8 55–70 150 × 75 15 <0.05
[21] Patch-Slot 8 3.55–3.65 52–76 150 × 75 11 -
[22] Loop Element 8 3.3–3.6 40 120 × 70 15 <0.02
[23] CPW-Fed Slot 8 3.4–4.4 65 150 × 75 16 <0.01
[24] Monopole 8 4.55–4.75 50–70 136 × 68 10 -

Dual-Band MIMO Handset Antennas

[25] Coupled-Fed
Slot

10
3.4–3.8 41–84

150 × 80 12 <0.155.15–5.92 47–79

[26]
Dual Mode
Monopole 2

3.4–3.6, 50–61,
150 × 76.6 10.5 <0.25.725–5.875 67–80

[27]
Cuboid

Monopole 6
2.6–2.7 60–70

140 × 05 10 <0.055.1–5.9 70–80

[28] Monopole 8
3.2–3.9 60–80

150 × 75 12 -
5–5.5 70–85

[29]
Folded

Monopole 8
2.45–2.6 40–60

124 × 74 15 <0.23.45–3.65 50–80

Tri-Band MIMO Handset Antennas

[30] Coupled-Fed
Arm

8
3.3–3.8, 55–72,

130 × 70 10 <0.14.8–5, 50–65,
5.1–5.9 43–73

[31] Yet-Decoupled
Antennas

2
2.40–2.48 44–48,

150 × 75 15 <0.145.15–5.35, 74–80,
5.72–5.92 75

[32]
F-Shaped
Monopole 4

3.3–4.2,
60–80 150 × 75 12 <0.14.4–5,

5.15–5.85

Proposed Modified
Diversity PIFA 8

2.45–2.65, 40–65,
150 × 75 11 <0.013.4–3.75, 50–70,

5.6–6 60–80

The proposed design achieves improvements not only around tri-band impedance bandwidth but
also offers polarization diversity function at different edges of the mainboard. This is mainly due to
orthogonal placements of the adjacent PIFA resonators at different corners of the PCB. In addition,
unlike the reported handset antennas in the literature, the presented antenna is set on the single (back)
layer of the platform which makes the design easy to integrate with the handset circuit. Furthermore,
due to the small clearance of the proposed handset antenna, its characteristics in terms of data and
talk modes are not changed significantly; that is, the proposed eight-element antenna array has the
advantage of the comprehensive performance, meaning that it can be applied well in future 5G
mobile terminals.

7. User Effects on the Characteristics of the Designed Antenna Array

The health hazards of emitted electromagnetic (EM) radiation from mobile handsets has become a
point of open deliberation as the use of mobile handsets is increasing exponentially [74]. For mobile
handsets, the investigation of the user-effect on the characteristics of the antenna is indispensable [75].
Below, different usage postures in the data-mode of the user-hand for right and left hands are considered
and studied in Figures 14 and 15, respectively. The employed user-hand phantom in the simulation
has a relative permittivity of ε = 24 and conductivity of σ = 2 s/m [76]. According to the obtained
results, the proposed design exhibits similar radiation behavior for different hand scenarios. This is
mainly due to the symmetrical schematic of the designed MIMO antenna. It is shown that the handset
antenna and its modified PIFA elements exhibit good efficiencies. Besides, when the antenna frequency
increases, the efficiency of the antenna is improved. The reflection coefficients (Snn) of the proposed
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array are not affected drastically by the hand, except for some small frequency fluctuations. However,
the antenna efficiencies of the proposed array are affected significantly owing to the absorption effect of
the user’s hand. This is because some EM energy has been absorbed by the hand [77]. Compared with
the antenna performance in free space, the maximum reductions of the total efficiencies are observed
for the PIFA elements that have been partially covered by the hand [78]. Additionally, as evident
from the results, the antenna provides good S-parameters including Snn and Smn in both right and
left-hand scenarios.

Sensors 2020, 19 FOR PEER REVIEW  11 of 21 

[31] 
Yet-Decoupled 

Antennas 
2 

2.40–2.48 
5.15–5.35, 
5.72–5.92 

44–48, 
74–80, 

75 
150 × 75 15 <0.14 

[32] 
F-Shaped 
Monopole 

4 
3.3–4.2, 
4.4–5, 

5.15–5.85 
60–80 150 × 75 12 <0.1 

Proposed Modified 
Diversity PIFA 8 

2.45–2.65, 
3.4–3.75, 

5.6–6 

40–65, 
50–70, 
60–80 

150 × 75 11 <0.01 

The proposed design achieves improvements not only around tri-band impedance bandwidth 
but also offers polarization diversity function at different edges of the mainboard. This is mainly due 
to orthogonal placements of the adjacent PIFA resonators at different corners of the PCB. In addition, 
unlike the reported handset antennas in the literature, the presented antenna is set on the single (back) 
layer of the platform which makes the design easy to integrate with the handset circuit. Furthermore, 
due to the small clearance of the proposed handset antenna, its characteristics in terms of data and 
talk modes are not changed significantly; that is, the proposed eight-element antenna array has the 
advantage of the comprehensive performance, meaning that it can be applied well in future 5G 
mobile terminals. 

7. User Effects on the Characteristics of the Designed Antenna Array 

The health hazards of emitted electromagnetic (EM) radiation from mobile handsets has become 
a point of open deliberation as the use of mobile handsets is increasing exponentially [74]. For mobile 
handsets, the investigation of the user-effect on the characteristics of the antenna is indispensable 
[75]. Below, different usage postures in the data-mode of the user-hand for right and left hands are 
considered and studied in Figures 14 and 15, respectively. The employed user-hand phantom in the 
simulation has a relative permittivity of ε = 24 and conductivity of σ = 2 s/m [76]. According to the 
obtained results, the proposed design exhibits similar radiation behavior for different hand scenarios. 
This is mainly due to the symmetrical schematic of the designed MIMO antenna. It is shown that the 
handset antenna and its modified PIFA elements exhibit good efficiencies. Besides, when the antenna 
frequency increases, the efficiency of the antenna is improved. The reflection coefficients (Snn) of the 
proposed array are not affected drastically by the hand, except for some small frequency fluctuations. 
However, the antenna efficiencies of the proposed array are affected significantly owing to the 
absorption effect of the user’s hand. This is because some EM energy has been absorbed by the hand 
[77]. Compared with the antenna performance in free space, the maximum reductions of the total 
efficiencies are observed for the PIFA elements that have been partially covered by the hand [78]. 
Additionally, as evident from the results, the antenna provides good S-parameters including Snn and 
Smn in both right and left-hand scenarios. 

  
(a) (b) Sensors 2020, 19 FOR PEER REVIEW  12 of 21 

  
(c) (d) 

Figure 14. (a) Placement, (b) total efficiencies, (c) Snn, and (d) Smn results for the right-hand scenario. 

  
(a) (b) 

  
(c) (d) 

Figure 15. (a) Placement, (b) total efficiencies, (c) Snn, and (d) Smn results for the left-hand scenario. 

Apart from the data-mode, the antenna performance in talk-mode should be also studied.  
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Apart from the data-mode, the antenna performance in talk-mode should be also studied. Figure 16
shows the total efficiency, Snn (S11–S88), and Smn (S21–S81) characteristics of the designed handset
antenna in the presence of the user-hand/user-head in talk-mode.

Figure 16a shows the placement of the designed antenna array in talk-mode; the array’s total
efficiencies are represented in Figure 16b. It is shown that the antenna elements exhibit relatively good
efficiencies at different resonance frequencies. Additionally, the antenna S-parameters are depicted in
Figure 16d. As can be seen, the PIFAs are operating at the target frequencies with good Snn and less
than −10 dB Smn.

The EM energy absorbed by human body tissues can be evaluated by the specific absorption
rate (SAR) [79,80]. SAR is a measure of how much power is being absorbed per unit mass. The SAR
features of the MIMO design at three different operation frequencies are investigated. According to the
obtained results from different investigations of the antenna elements, it is found that antenna 2 causes
the maximum SAR value while the minimum SAR value is observed from antenna 6. The SAR results
of antenna 2 and antenna 6 at 2.6, 3.6, and 5.8 GHz are depicted in Figure 17. According to the results,
the distance between the PIFA elements and the head phantom is most important in terms of the value
of the SAR function.
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Below, the fundamental characteristics of the MIMO antenna including the total efficiency, Snn and
Smn are also studied in the presence of smartphone components including the battery, speaker, camera,
USB connector, and LCD screen. Table 3 lists the characteristics of the modeled components [81].
It is clearly seen from Figure 18 that the design provides consistent characteristics at the desired
operating frequencies.
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Table 3. Characteristics of the smartphone components.

Component Material Permittivity

Screen LCD film 4.8
Battery. Camera, Speaker perfect electric conductor (PEC) -

USB Connector Brass (PEC)
Button Rubber 3.5

printed circuit board (PCB) FR-4 4.4

8. Integration of a Compact MM-Wave Phased Array

In this section, a new and miniaturized MM-Wave phased array 5G antenna with broad bandwidth
is proposed to be incorporated in a shared board. The design details of the integrated phased array are
illustrated in Figure 19a. It has a very compact size, with an overall size of Wa × La = 18 × 5 mm2, and
it can be implemented in the same FR-4 laminate PCB with a thinner thickness of 0.8 mm. As shown, its
configuration is composed of eight loop dipole resonators with pairs of directors arranged in a linear
form. A discrete feeding port is applied separately for each antenna. The parameter values (in mm)
are as follows: Wa1 = 2.8, Wa2 = 0.125, Wa3 = 0.15, Wa4 = 1.8, Wa5 = 0.4, Wa6 = 0.15, La1 = 1, La2 = 1.5,
La3 = 0.2, da = 0.125, da1 = 0.8, da2 = 1.3. The phased array is designed to work at 28 GHz—one of the
promising 5G candidate bands at higher frequencies [82,83]. However, due to the broad bandwidth
characteristic, the proposed phased array is also capable of covering 26 and 30 GHz 5G bands [84–86].
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Figure 19b plots the S-parameters (S11–S41) of the phased array. As seen, the designed phased array
provides a broad impedance bandwidth of 25–31 GHz with a central frequency of 28 GHz. Besides, less
than a −15 dB mutual coupling characteristic is obtained for the antenna elements. Figure 19c compares
the maximum gains of the antenna element and the phased over the operation band. It is shown that
the antenna element provides 4~5 dBi gain values over the operation frequency, whereas more than
12 dBi maximum gain is achieved for the designed array. The 3D beam steering functions of the array
at 28 GHz for different angles are plotted in Figure 20a. The shapes and directions of the phased
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array beams are determined by the relative phase amplitudes applied to each antenna element with
discrete-feeding ports, as shown below [87]:

ψ = 2π
(

d
λ

)
sinθ (6)
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As shown, the designed phased array provides a good beam-steering function with end-fire
radiation beams. As illustrated, the designed array exhibits high gain radiation beams with
low sidelobes.

The active reflection coefficients (ARCs) of the design for different scanning angles are illustrated
in Figure 20b. As the radiation beam of the antenna is scanned, the amount of coupling between the
radiation elements changes, meaning that the active reflection coefficient curve moves slightly [88].
However, as shown, the proposed phased array antenna exhibits sufficient performance and supports
the target frequency bandwidth for different scanning angles. The radiation efficiency of the proposed
array antenna is more than 75% in the operating bandwidth of all switching modes. Figure 20c plots
the radiation and total efficiency levels of the array at scanning angles of 0, 30, and 60. It is shown that
the proposed phased array offers quite good efficiency results. Figure 21 shows the possible placements
and radiation beam-steering of the proposed phased array in the configuration of the smartphone
board. It can be observed that the array can be easily integrated into a small area of the PCB and could
provide full radiation coverage supporting different sides of the handset [89].
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9. Conclusions

The design and characteristics of a new MIMO smartphone antenna with a multi-mode operation
is successfully investigated in this paper. The designed handset antenna contains eight modified PIFA
elements deployed at four corners of the mainboard. The proposed design operates at 2.6, 3.6, and
5.8 GHz for sub-6 GHz 5G mobile terminals. It offers good characteristics in terms of bandwidth,
isolation, and radiation patterns. In addition, quite good characteristics are observed in the presence of
the user. Due to the tri-band and polarization diversity, the antenna can be considered for multi-mode
future handset applications. Furthermore, due to the available space on the smartphone antenna
system, a compact 28 GHz phased array is proposed to be integrated onto the 5G smartphone.
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