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Abstract: Inertial navigation systems suffer from unbounded errors in the position and orientation
estimates. This drift can be corrected by applying prior knowledge, instead of using exteroceptive
sensors. We want to show that the use of prior knowledge can yield full observability of the position
and orientation. A previous study showed that track cyclers can be tracked drift-free with an IMU
as the only sensor and the knowledge that the bike drives on the track. In this paper, we analyze
the observability of the pose in the experiment we conducted. Furthermore, we improve the pose
estimation of the previous study. The observability is analyzed by testing the weak observability
criterion with a Jacobian rank test. The improved estimator is presented and evaluated on a dataset
with three 60-round trials (10 km each). The average RMS is 1.08 m and the estimate is drift-free.
The observability analysis reveals that the system can gain complete observability in the curves and
observability of the orientation on the straight parts of the race track.

Keywords: observability analysis; IMU; INS; prior knowledge; C = context knowledge; vehicle
constraint; pose estimation; tracking

1. Introduction

For short time periods, the pose (position and orientation) of an object can be estimated with
an inertial measurement unit (IMU). The pose is estimated by integrating the acceleration and angular
rate measurements. This method accumulates the measurement errors of the IMU, wherefore the
estimate drifts over time. The drift can be corrected by fusing the IMU with exteroceptive sensors; e.g.,
a global navigation satellite system (GNSS).

In indoor environments, GNSS is unavailable. Custom radio emitters or a building’s WiFi can
be used instead [1]. Fusing with an external sensor seems essential. Surprisingly, several pedestrian
tracking systems achieve drift-free estimates with an IMU alone [2–4]. The systems fuse IMU
measurements with prior knowledge of the environment and specific gait motion dynamics, instead of
using an additional sensor.

Fusing IMU measurements with prior knowledge is a powerful concept with which to gain
drift-free estimates [5]. The knowledge allows one to observe otherwise unobservable states.
These approaches have the advantage that they do not require additional sensor hardware in the
buildings. Furthermore, most users already carry the necessary IMU in their smartphone [2].

Motivated by the success of prior knowledge in pedestrian tracking [2,6,7] and vehicle
tracking [8–10] we conducted an experiment to track cyclists (see Figure 1) with an IMU as the
only sensor [11]. The estimated trajectory was drift-free in three 20 min trials with an RMS of about
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1.15 m. This paper extends the experimental work [11] with an observability analysis and an improved
estimator with an RMS of about 1.08 m.

To achieve drift-free estimates, the IMU measurements were combined with two priors. The first is
the wheeled vehicle constraint of [8], which we call the forward velocity prior. It states that a wheeled
vehicle has approximately zero velocity perpendicular to its forward direction. This prior allows
one to observe the forward velocity from IMU measurements if the vehicle is driving on a curve.
Additionally, IMU biases are observable [12]. Since the bike track contained two 180◦ curves (see
Figure 1), the velocity and biases became periodically observable with the prior.

The second prior is the height map prior, which states that the bikes have to stay on the track.
Several works use maps to improve the state estimate. The map can have different forms; e.g., route
maps [10,13,14] with the paths that can be taken or building plans [3] with impassable walls. With a
terrain map, a vehicle can be localized without a GNSS [9]. Similarly, the track of the race (see Figure 1)
can be modeled as a height or terrain map. In contrast to the forward velocity prior, the observability
with a map prior is unknown.

The focus of this extended version is to analyze whether or not the proposed system can observe
the full pose of the bike. Thus, we analyze the observability properties of map priors in conjunction
with the forward velocity prior. The goal of the analysis is to understand the error behavior of the
system and to evaluate the qualification of the system to track the track cycler.

Informally, we mean by observable that the pose estimate does not drift away from the real pose.
This is important in practice, since applications such as visualization of a race require low errors of pose
estimates. While the error bounds may be evaluated by excessive experiments, an analytical analysis
of the observability reveals weak spots of the measurement system. This allows one to specifically test
error cases of the system and to predict the overall error behavior.

Figure 1. Ref. [11] The track of the Sixdays Bremen.

The contribution of this extended paper is the observability analysis of the height map prior
for wheeled vehicles. Different surface types are analyzed to reflect the two major parts of the race
track, the curves and the straight parts. In addition, an improved version of the original trajectory
estimator [11] is presented, which takes account of the bike dynamics [15]. The estimator is evaluated
on the original dataset.

2. Materials and Methods

2.1. Knowledge-Based Optimization Problem for Estimation

In track cycling, bikers race on a track. There are several game modes with varying strategies [16].
In our setup, the bikes are equipped with wireless IMUs, as shown in Figure 2.

The trajectory is estimated by finding the trajectory with the maximum a-posteriori probability
given the measurements of the main frame IMU, the dynamic model and the prior knowledge.
We formulate the state estimation as a minimization problem and solve it by using the ceres least
squares solver [17]. The solver works offline and optimizes the whole problem at once.
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The trajectory can be modeled as a sequence of n states xk, 0 < k ≤ n (see Figure 3) connected by
the dynamic model:

xk+1 = gk(xk) (1)

Original Body Frame Body Frame

Position
Offset

Center 
Line

Figure 2. Bike with inertial measurement units (IMUs). Only the main frame IMU is used.

· · · xk xk+1 · · ·gkgk−1 gk+1

hkf vk hk+1f vk+1

ak+1 ωk+1ak ωk

~gyk+1~ack+1~ack ~gyk

Figure 3. Ref. [11] The optimization problem as a factor graph. ~ack and ~gyk are the inputs, xk the state,
gk the dynamic model (8), ak the acceleration function (7), ωk the angular rate function (6), f vk the
forward velocity prior (9) and hk the height-map prior (10).

Instead of using the IMU input for the dynamic update, the state does contain every bit of
information needed for the dynamic model. The inputs are used as a constraint on the respective state.
The prior knowledge constrains every state of the trial.

Each state xk consists of the position ~pW , velocity ~vW and acceleration ~aW in world frame;
the rotation from body to world QB

W , the angular rate ~ωB and acceleration ~ω′B; and two-part biases
of the accelerometer~ba =~ba1 +~ba2 and the gyrometer~bω =~bω1 +~bω2. The biases are modeled as the
sums of two biases following the model in [18], which claims to be more precise than the standard bias
model. The components always refer to xk, wherefore we can omit the k-indices for readability:

xk =
(
~pW ~vW ~aW QB

W ~ωB ~ω′B ~ba1 ~ba2 ~bω1 ~bω2

)T
(2)

The orientation QB
W is modeled as an Euler–Rodriguez rotation matrix. Usually, the acceleration

and angular rate are modeled as inputs instead of states. We chose to add them to the state to apply
prior knowledge to them. Originally, we defined the point on the ground under the main frame IMU
as the body frame (see Figure 2), instead of the IMU pose, because the chosen prior knowledge does
not hold for the IMU pose. Taking the bike dynamics into account [15], the forward velocity prior
does only hold at the center of the rear wheel. At other points, side velocities appear when the bike
drives a curve. Thus, we changed the body frame to the position on the ground under the center of the
rear wheel.
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The complete parameter space X of the optimization problem consists of the states at all steps:

X = {x1, · · · , xn} (3)

We want to find the most likely sequence of states given the inputs ~ack and ~gyk, the input functions
ak(xk) and ωk(xk), the dynamic model gk(xk) and our prior knowledge; i.e., the height map hk(xk)

and the forward velocity prior f vk(xk). This can be calculated by solving the minimization problem:

X̂ = arg min
X

n
∑

k=1

||ωk(xk)− ~gyk||2Σgy︸ ︷︷ ︸
gyrometer input

+ ||ak(xk)− ~ack||2Σac︸ ︷︷ ︸
accelerometer input

+ ||gk(xk)� xk+1||2Σg︸ ︷︷ ︸
dynamic model

+ || f vk(xk)||2Σ f v︸ ︷︷ ︸
forward velocity prior

+ ||hk(xk)||2Σh︸ ︷︷ ︸
heightmap prior

 (4)

where ||v− v̂||2Σ is the Mahalanobis distance. The � is a normal minus operation, despite the fact
that—for rotation matrices—it returns the difference as a rotation vector; i.e., a unit axis scaled by
an angle [19]:

x∗ � x = {~p ∗W − ~pW , · · · ,
︷ ︸︸ ︷
log(QB

W
T

QB∗
W ), ~ω∗B − ~ωB, · · · } (5)

Its purpose is to handle the manifold structure of QB
W as proposed in [19].

The minimization problem is formulated by simply adding up information about the states.
The first pool of information added is the gyrometer input at each time step. Each state has to match
the measured angular rate. With ωk(xk), we calculate a prediction of the angular rate and compare it
with the measurement. By imposing the difference of the prediction and the measurement as an error,
the optimizer will adapt each state xk until the prediction and the measurement coincide as good as
possible. This is similar to the measurement step in a Kalman filter.

The prediction of the angular rate can be calculated by:

ωk(xk) = QB
I ∗ ~ωB +~bω (6)

where the calibrated rotation matrix QB
I transforms ~ωB from body to IMU frame. The ∗ denotes

matrix multiplication.
The second piece of information that we have about the states is the accelerometer input. Similar

to the gyrometer input, the predicted accelerations ak(xk) and the acceleration measurements ~ack have
to match. Since the IMU is not at the origin of the body frame, the IMU measures accelerations induced
by rotational movements. Additionally, the acceleration in the state is gravity free. Those accelerations
are taken into account by the prediction function:

ak(xk) = QB
I ∗ (QB

W)T ∗ (~aW −~gW)

+ QB
I ∗ (

[
~ω′B
]
× + [~ωB]

2
×) ∗~tI +~ba (7)

where ~gW is the gravity vector and [· · · ]× forms a skew symmetric matrix out of the given vector.~tI is
the calibrated offset between IMU and body frame.
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The dynamic model gk(xk) connects the states xk and xk+1 over time. The predicted next state
gk(xk) has to match the next state xk+1. The dynamic model is based on the classic inertial navigation
system (INS) state space model (Section 3.7.1 of [20]):

gk(xk) =



~pW + ∆t ·~vW + ∆t2

2 ·~aW
~vw + ∆t ·~aW

~aW
QB

W ∗ exp(∆t · ~ωB)

~ωB + ∆t · ~ω′B
~ω′B

~ba1 · (1− ∆t
Tcor1

)
~ba2 · (1− ∆t

Tcor2
)

~bω1
~bω2 · (1− ∆t

Tcor3
)



(8)

Tcor1 = 1000 s, Tcor2 = Tcor3 = 2000 s

where ∆t is the time difference. The accelerometer bias is modeled as the sum of two exponential auto
correlated random walk functions with decorrelation constants Tcor1 and Tcor2. The gyrometer bias
is modeled as the sum of a constant and an exponential auto correlated random walk function with
decorrelation constant Tcor3. exp(· · · ) is the Euler–Rodriguez Formula [19]. Cartesian and angular
acceleration stay constant in the dynamic model, but do not contribute to the error calculation.

In contrast to the other information, the prior knowledge sources do not have a measurement
to compare. However, prior knowledge often has a target value which is either constant or
state-dependent itself. For example, the forward velocity prior can be formulated as [8]:

f vk(xk) = (QB
W)T ∗~vW −

( ∗
0
0

)
=
(

0 1 0
0 0 1

)
∗ (QB

W)T ∗~vW (9)

where the target for the y and z dimensions of the body velocity is 0. The asterisk is a wildcard,
which allows arbitrary velocity in forward direction. If a measurement of the x dimension is available,
e.g., by odometry, it can be used instead. In our model, the x dimension is unused.

The height-map prior states that the wheels of the bike stay at the track. We impose this constraint
on the rear wheel only. This means that the distance between the position ~pW and the closest point on
the track has to be 0, or otherwise stated:

hk(xk) = ~pW − arg min
~cW∈Track

||~pW −~cW || (10)

where Track is the set of all points on the track. In this case, the prediction ~pW is trivial but the target
value is state dependent.

In this manner, additional information can be added simply by adding it to (4). The optimizer
will incorporate it weighted by the covariance of the information.

The covariances are crucial tuning parameters of the model. Neither the forward velocity prior,
nor the height-map prior hold exactly. Side slip can occur, which results in a side velocity. The height
map itself is imperfect. Furthermore, the bike may bounce on surface irregularities. Those imprecisions
of the knowledge are modeled in the covariance of the measurement equations. If the knowledge is
violated more than expected, the estimator’s performance will be reduced.

2.1.1. Initial Guess

The convergence of a least squares solver depends on the initial guess of the states. Especially
in the presence of state dependent constraints, the solver may stay in unsuitable local minima.



Sensors 2020, 20, 2438 6 of 26

We designed a method based on prior knowledge to provide an initial guess for the least squares
solver. This method is again based on another, but more simple model.

The initial guess method exploits the basic form of the track. In principle, the track consists of
two straight lines connected with two curves (see Figure 4). As a vague model of the track, we assume
that the bikers follow the 1D line. This model requires big noise in lateral direction and for orientation.
However, the error of the 1D model is bounded. In lateral direction, the bikers are forced to stay on the
track, which has a width of 6 m. Hence, they can not drive far away from the 1D line. Their yaw is also
constrained to follow the 1D track approximately, because they have to take the track counter clockwise.

Figure 4. [11] Basic form of the track. The red line shows the 1D simplification. The arrows show the
possible heading range.

The 1D formulation of the track has the advantage that we can apply Theorem 1 from [5],
which states that a 1D system is observable from gyrometer measurements alone if the rotation axis
changes. At the entries and exits of the curves, the rotation axis changes. Hence, they can be detected.

Between the entries and exits of the curves, dead reckoning is required. To reduce the drift,
we can apply the forward velocity prior [8]. It makes the forward velocity observable. Hence, it can be
estimated drift-free.

The initial guess is calculated by an unscented Kalman filter (UKF). Each state xk consists of:

xk =
(

λ λ̇ QB
W ~ωB ~vW ~aW

)T
(11)

where λ is the position on the 1D line, λ̇ the speed on the line and the rest is defined as in (2).
The dynamic model is similar defined as Equation (8) by:

g(xk) =



λ + ∆t · λ̇
λ̇

QB
W ∗ exp(∆t · ~ωB)

~ωB
~vW + ∆t ·~aW

~aW


(12)

We formulated the main model by taking the difference of the measurement and a prediction
function of the measurement as error. The same prediction function can be used in the measurement
step of the UKF to apply the same information. In the case of prior knowledge, 0 is used as the target
value. This is called a pseudo measurement [21]. In this manner, Equations (6) and (7) are used to
incorporate the IMU measurements. Equation (9) is used to apply the forward velocity prior.

In the 1D model, the bike follows the line only. Hence, we have to set λ̇ to the norm of the velocity.
This is done as a perfect measurement using the prediction function:

λ̇p(xk) = |~vW | − λ̇ (13)
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Since the biker has to follow the track’s direction, the angular rate has to be the direction change
of the track approximately. In other words, the biker is likely to be in a curve if the gyrometer measures
a nonzero angular rate. The prediction function is:

ωp(xk) = ~ωB − C(λ) · λ̇ (14)

where C(λ) is a function which returns the curvature of the 1D line at a given λ. This prior allows one
to observe the entry and exit points of the curves.

The UKF evaluates the probability distribution at different sigma points. If the covariance of the
filter is underestimated, i.e., the UKF is too confident in the estimate, the distribution is evaluated
poorly. Therefore, we apply high process noise, which allows the filter to correct implausible estimates.
The high process noise models the vagueness of the 1D model.

The pseudo measurements are only useful on the curves of the track. During the straight
parts, dead reckoning is performed implicitly. As a result, the covariance rises quickly on the straight
segments and is low when the biker drives a curve. Hence, the estimate jumps whenever the bike enters
a curve. The estimate jumps are smoothed with the unscented Rauch–Tung–Striebel smoother [22].

2.1.2. Implementation Details

The main model has been implemented in ceres-solver, an extensive nonlinear least squares
library [17]. It provides an automatic differentiation framework, which simplifies the use of
nonlinear constraints; e.g., the prior knowledge. The local parameterization of ceres is used to
adapt the rotation matrices without breaking them. Additionally, the rotation matrices are normalized
every iteration.

Inputs, the dynamic model and the prior knowledge are implemented as cost functions.
The covariances for the Mahalanobis distances are shown in Table A1 (initial guess) and Table A2
(main model) in Appendix A.

To calculate the penalty for leaving the track, the closest point on the track is required.
We approximate the closest point by taking the closest point on the x-y plane; i.e.:

hk(xk) ≈ ~pW − arg min
~cW∈Track

∣∣( 1 0 0
0 1 0

)
∗ (~pW −~cW)

∣∣ (15)

This enables us to precalculate the closest point for any x-y pair in a rectangle around the track
and to store it in a 2D grid. Values between grid points are interpolated with a cubic spline using
the algorithm of [23], which is already implemented in ceres. The smooth interpolation improves the
gradient descent. Values outside the precalculated rectangle are extrapolated by taking the closest
border point.

Since least square optimizers are sensitive to outliers, measurements exorbitantly outside the
sensor range were removed from the dataset. They are treated as missing measurements. Missing
measurements in the data are handled by assuming that they were 0 and drastically increasing the
noise of each measurement. This allows the estimator to estimate the acceleration without allowing
irregularly high accelerations. For further details, the complete implementation is available at GitHub
(https://github.com/TomLKoller/ZaVI_TrackCycling).

2.2. Dataset

We recorded the dataset (Download at: http://www.informatik.uni-bremen.de/agebv/zavi.)
at the track of the Sixdays Bremen (see Figure 1), an annual track cycling race. The track has a nominal
length of 166.66 m and a width of 6 m. A height map (see Figure 5) was built based on the blueprints
by [24].

https://github.com/TomLKoller/ZaVI_TrackCycling
http://www.informatik.uni-bremen.de/agebv/zavi
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Figure 5. Ref. [11] Height map of the Sixdays track. The red lines show the laser barriers.

We equipped the bike with four Xsens Awinda IMUs [25] at different links (see Figure 2).
The placement was meant to allow us to estimate the joint angles of the bike using [26]. The crank IMU
could be used to estimate the bike’s velocity via wheel turn odometry. The sensors were connected
wirelessly and measure at 100 Hz. They buffer the sensor data for 10 s during connection losses. Still,
around 5% of the measurements were lost due to a broken antenna.

The bikes were also equipped with turn rate sensors to measure velocity as a reference for the
bikers only.

A tracking system that covers the complete track was not available. Thus, we used laser barriers
to measure when the bikes passed a certain position.

We used six custom built laser barriers as the ground truth references. They triggered at 1024 Hz.
The barriers were placed at the entries and exits of the curves (see Figure 5). Two barriers were
perpendicular to the track. The other four were arranged in two crosses. In each trial, one laser barrier
failed to record data.

The moment when the bike’s center line (see Figure 2) passes the laser barrier is used as the ground
truth measurement. It is calculated as the center of the detected interval in each round. We approximate
that this method has a random error around 5 ms. With a constant velocity assumption, the lateral
position could be calculated at the crosses. With the known length of the bikes, the velocity could be
estimated from the time the biker needs to pass each laser barrier.

The barrier clocks (2 ppm error) and the IMU base station (1 ppm error) were synchronized before
each trial. The accumulated time error after each trial is negligible.

The alignment of the barriers with the 3D model is imperfect. Thus, an unknown bias of a few
centimeters is introduced.

Two bikers participated in data recording using their own bikes. The dataset consists of two trials
with Biker 1 and one with Biker 2. The bikers were instructed to ride in this sequence:

1. Ride on the 166.66 m reference line.
2. Stay in the 0.7 m corridor above the reference line .
3. Stay in the lower track half.
4. Use the whole track.
5. Repeat (2) with constant velocity.
6. Repeat (3) with constant velocity.
7. Ride as you like.

All tasks except (7) were executed for 10 rounds. That resulted in a driving distance of at least
10 km per trial and a driving time of approximately 20 min. The tasks could be used to test the use of
prior knowledge of varying strength, such as corridor width information.

In addition, calibration motions were recorded for both bikes. These were used to calibrate the
position~tI and orientation QB

I of the IMUs with respect to the body frame.
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2.3. Observability Criteria

A systems state is observable if it can be determined uniquely in a given interval [t0, tend] given the
observed output measurements z of the interval [27]. It is not required that the state is measured directly.
The observability of nonlinear systems can be analyzed using the observability Grammian [12,28].
In general, the analysis is performed without taking noise into account.

We decided to use the weak observability of [29], which is based on the inverse function theorem.
Any function can be locally inverted if its Jacobian is nonsingular; i.e., if it has full rank. A system
is called weakly observable if the Jacobian of its measurement equations has full rank. Weakly
observable means that the state can be determined uniquely around a working point. For example,
given the sine output y(x) = sin(x), x is only weakly observable since the inversion y−1(y(x)) is
ambiguous. The value of x is only unique if the region of x; e.g., x ∈ [−π, π] is given. In contrast,
global observability means that the state can be determined everywhere in the possible state space.
In practice, local observability is easier to prove, since it resolves in a Jacobian rank test.

The method requires measurement equations Z that depend on the N unknown states x1 · · · xN
and the M known, possibly time varying parameters y1 · · · yM. One measurement equation is required
per unknown state. If there are less than N measurement equations available, further equations can
be generated by derivation. Thus, if only one measurement equation z is available, N − 1 derivatives
have to be used. The Jacobian is formed with respect to the unknown states only:

J =


∂z

∂x1
· · · ∂z

∂xN
...

. . .
...

∂z(N−1)

∂x1
· · · ∂z(N−1)

∂xN

 (16)

The system is weakly observable around a configuration x1 · · · xN , y1 · · · yM if this Jacobian
has full rank; i.e., if the determinant is nonzero. Another way to test the rank is to check linear
independency of the rows or columns. Similarly to the observability Grammian, the unobservable
substate is the nullspace of the Jacobian. Hence, a rank defect does not mean that all states are
unobservable. The system remains with N − rank(J) unobservable degrees of freedom (DOFs).

In this paper, we depend on former observability proofs [12] which make F states xK:N (K =

N− F + 1) observable. Consequently, we can treat them as known parameters without having columns
for them in the Jacobian, since their observability has been proven. To see that this is correct, consider
the following: The measurement equations used depend on xK:N . If we were to add them and their
corresponding measurement equations Z∗ to the Jacobian, we would get a block shaped Jacobian of
the form:

J∗ =

(
J ∂Z

∂xK:N

0F:N
∂Z∗

∂xK:N

)
(17)

where 0F:N is a F× N matrix of zeros. Due to the block shape, J∗ has full rank, if J and ∂Z∗
∂xK:N

have full

rank. Since the states xK:N are observable, ∂Z∗
∂xK:N

has full rank. Hence, only the rank of J determines the
observability of the unknown states.

3. Results of the Track Cycling Experiment

The trials are evaluated using the measurements of the main frame IMU. The laser barriers are
only used as ground truth. The estimated trajectories stay on the track (see Figure 6).
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(f) Time error Trial 3

Figure 6. (a–c) Trajectory of a biker in all trials after 100 iterations. The lasers are shown as red lines.
Blue color means that the estimator predicts that the bike passes a laser barrier. Red color means that
a barrier measured that a bikes passes. Green color shows where prediction and measurement agree.
(d–f) Time error between measured pass time and predicted pass time of the laser barriers.

Since we do not have continuous ground truth position, we evaluate the error indirectly.
We predict when the center line of the bike passes the laser barriers and compare the prediction
with the measurement (see Figure 6). Table 1 shows error metrics. To transfer the time error into
a position error, multiply it by the highest velocity of the trial (∼12 m/s).

The estimator predicts passing the laser barrier with an average RMS of 0.090 s. The prediction
error does not increase over time, but it has a random component. Since it does not increase,
the estimate error is drift-free. It performs better than the previous estimator [11], which had an RMS
of 0.096 s.

High time errors occur often at the first and last rounds (see Figure 6). Since we did not apply
a start or end position constraint on the state estimate, the end and start point are less constrained
than a point in the middle of the trial. Therefore, the error can be higher at those points. Additionally,
the bikes are slower at the the start and end (roll out), which increases the dead reckoning time between
the curves.

In Trial 3, the end point almost leaves the track. This is an additional hint that the constraints are
weaker at end points.

The standard deviations are lower than the RMS. Thus, the estimate is biased. To have a measure
of the bias, the mean error is used. The highest mean error is −0.176 s. In most cases, the bias is almost
equal to the mean absolute error. Hence, it has a big impact on the quality of the estimate.

The average standard deviation decreased from 0.077 to 0.048 s compared to the previous
estimator [11]. Hence, the precision of the estimator has greatly increased by changing the body frame.

The biases are negative for all trials and barriers. They stay similar over the trials. Barrier 1 has
a outstanding high bias error. In our previous study, we claimed that the biases are caused by the prior
knowledge [11]. Probably, they were caused by the old body frame position which falsifies the forward
velocity prior. Now, the improved estimator reveals that the bias is likely to be systematic. Higher than
expected alignment errors between the height map and the laser barriers may be a source of the bias.

In addition to the laser barriers, a video analysis has been performed for Trial 1. The estimated
position of the bike is reprojected onto the video. This method is unsuitable for quantitative findings,
but qualitative statements can be taken. It appears that the lateral error of the tracking (the error in the
direction of the track) does increase at the straight parts in contrast to the curves.
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Overall, the estimates are surprisingly close to the ground truth data, given that there is no
exteroceptive sensor. The drift is corrected by the used prior knowledge. The average RMS of 0.090 s
(∼1.08 m) is low and comparable to the accuracy of pedestrian tracking systems without dedicated
external hardware [1,7]. The error has a few high peaks, which would affect an application. At the
current state, the method cannot compete in accuracy with off-the-shelf indoor GNSS systems with
±2 cm error [30]. Nevertheless, we consider our results a successful tracking of the biker, which does
not require external reference sensors.

Table 1. Mean error e, mean absolute error |e|, root-mean-squared error RMS, maximum error emax and
standard deviation σ of time errors in seconds. Trial 1 (orange), Trial 2 (green) and Trial 3 (yellow).

Laser # e e RMS emax σ e e RMS emax σ e e RMS emax σ

1 −0.141 0.166 0.190 0.925 0.128 −0.159 0.159 0.164 −0.256 0.040 −0.176 0.176 0.180 −0.278 0.036
2 - - - - - −0.050 0.053 0.103 −0.600 0.090 −0.017 0.023 0.027 −0.082 0.021
3 −0.047 0.053 0.061 0.163 0.039 −0.049 0.053 0.060 −0.129 0.034 - - - - -
4 −0.047 0.048 0.061 −0.267 0.039 - - - - - −0.040 0.040 0.045 −0.114 0.021
5 −0.038 0.044 0.054 −0.190 0.038 −0.021 0.048 0.078 0.366 0.075 −0.052 0.054 0.060 −0.136 0.031
6 −0.074 0.074 0.085 −0.274 0.041 −0.077 0.084 0.109 −0.399 0.076 −0.069 0.069 0.071 −0.104 0.016

4. Results of the Observability Analysis

The analysis of the observability properties is not straightforward. It is split into multiple steps
(see Figure 7). It is already proven [12] that the body velocity ~vb, the roll ϕ and the pitch θ are
observable with the forward velocity prior, if the vehicle drives on a curve. The same holds for the
biases. These allow one to infer additional information, such as the yaw rate ψ′. Based on the known
states, the measurement equation z′, which allows one to analyze the height-map prior, is inferred
in Section 4.1. The height-map prior is analyzed for three surface types: tilted planes, cones and
cone-like surfaces. The tilted planes and cone-like surfaces appear in the track of the Sixdays. It will be
shown that driving curves on a tilted plane makes the yaw observable (Section 4.2), whereas driving
on a cone-like surface can make the full state observable (Sections 4.4 and 4.5). The analysis of the
cone (Section 4.3) is performed as a specific case of the general cone-like surfaces. Additionally,
the observability of general surfaces is analyzed for a given yaw (Section 4.6).

4.1. Measurement Equation of the Height-Map Prior

To apply the observability criterion of [29] the unknown DOFs have to be identified. The ultimate
goal is to observe the 3D pose (position ~p and orientation q) of the tracked bike. The analysis is
performed on the general motion model instead of the discretized model in Section 2.1: ~̇pW

~̇vW
Q̇B

W

 =

 ~vW
~aW

QB
W ∗ [~ωB]×

 , (18)

where [~ωB]× is the skew symmetric matrix of ~ωB. The body velocity is constrained to lay in forward
direction; i.e.:

~vb =

(
v f
0
0

)
, (19)

where v f is the forward velocity. With this forward velocity prior [8], observability of the roll ϕ and
pitch θ is already achieved when the bike drives on a curve. Additionally, IMU biases and the forward
velocity become observable. Hence, the four DOFs of the position and the yaw ψ are unknown.
From now on, all observability proofs are valid only if the bike drives a curve, since this is required for
the observability induced by the forward velocity prior.
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IMU (~ab +~ba), (~ωb +~bω)

Forward Velocity Prior

~vb, ϕ, θ,~ba,~bω

z′, |vx:y|, ψ′

⇓
z′′, ψ′′, z′′′

0
2

4
0

2

40

2

4
~d

x

y

z

−2 −1
0

1
2 0

1

2

0

1

2

r

φ

~di

~dv

δ

x

y

z

−2 −1
0

1
2 0

1

2
0

10

x

y

z

ψ δ, r

x, y, z, ψ

[12]

Section 4.1

Section 4.2 Section 4.3 Section 4.4

Section 4.5

Figure 7. Overview of the observability analysis. The available information is arranged in the boxes.
The arrows show which information is required to infer additional information. Blue boxes show
the prior knowledge. Information in the red box is retrieved by numeric analysis, whereas all other
information is derived analytically.

The position is constrained to lay on the track. Thus, we can define a function z(x, y) which maps
x, y coordinates to the corresponding height as in [31]. This further reduces the number of unknown
DOFs to three, because z can be calculated if x and y are known.

Possibly, the three unknown DOFs are observable through the height-map prior. Therefore,
we designed our measurement equation based on the height function z(x, y). The height function can
not be used as the measurement equation directly, since no measurement of the height z is available.
Instead, its derivative is used. The value of ż(t) can be calculated from the known pitch and forward
velocity. We omit the function parameter (t) on the right side of the equations for simplicity:

ż(t) =
(

Rz(ψ) ∗ Ry(θ) ∗ Rx(ϕ) ∗
(

v f
0
0

))
z
=

(
Rz(ψ) ∗ Ry(θ) ∗

(
v f
0
0

))
z
=

(
Ry(θ) ∗

(
v f
0
0

))
z

, (20)

where Rv(α) creates a matrix which rotates a around the axis v by angle α. (· · · )z retrieves the z
component of a 3D vector. The yaw rotation has no influence, since we only retrieve the z-component.
Thus, we can further reduce to:

ż(t) = v f · sin(θ) (21)

The measurement model is then simply the derivative of z(x, y):

ż(t) = ż(x, y) =
∂z(x, y)

∂x
· ẋ +

∂z(x, y)
∂y

· ẏ (22)
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This introduces the two unknown functions ẋ and ẏ which are the world x-velocity vx and
y-velocity vy respectively. These functions can be modeled with respect to the yaw and the planar
velocity vp ( the velocity in the x-y plane):(

vx

vy

)
= vp ·

(
cos(ψ)
sin(ψ)

)
(23)

The planar velocity itself can be retrieved from the forward velocity and the pitch:

vp = |vx:y| =
∣∣∣∣∣
(

Rz(ψ) ∗ Ry(θ) ∗
(

v f
0
0

))
x:y

∣∣∣∣∣ =
∣∣∣∣∣
(

Ry(θ) ∗
(

v f
0
0

))
x:y

∣∣∣∣∣ (24)

Since we use the norm of the vx:y vector it is independent of the yaw and can be further reduced to:

vp = v f · cos(θ) (25)

With those substitutions, the measurement equation only depends on known parameters and the
three unknown states x, y and yaw:

ż(t) = ż(x, y, ψ) =
∂z(x, y)

∂x
· vp cos(ψ) +

∂z(x, y)
∂y

· vp sin(ψ) (26)

This measurement equation effectively states that the vehicle has to stay on the surface. To clarify
this, the equation can be reformed with respect to the surface normals. The surface normal can be
calculated by:

N(x, y) =


∂z(x,y)

∂x
∂z(x,y)

∂y
−1

 (27)

Rearranging the measurement equation yields:

0 =
∂z(x, y)

∂x
· vx +

∂z(x, y)
∂y

· vy − 1 · ż (28)

This equation can be expressed by the dot product of the normal and the velocity vector with
ż = vz:

0 = N(x, y) ∗~v(t) (29)

Thus, the equation effectively states that the velocity vector has to be orthogonal to the surface
normal, wherefore the trajectory cannot leave the surface.

The pose trajectory is effectively a 3D curve. It is often useful to define such a curve with regard
to its arc length so that the norm of the derivative is one, which would equal:

vz(l)2 + vp(l)2 = 1 (30)

where l is the arc length. In our case, it is more useful to parametrize the curve with regard to the
planar distance traveled s so that:

vp(s) = 1 (31)

Following [32], the curve can be parametrized with respect to the planar traveled distance s since
∂s
∂t = vp(t) 6= 0 (we assume that we always have a planar motion).

Reparametrizing the measurement model is simple, but it is required that we are able to calculate
the measurement value ∂z(s)

∂s = z′(s) on the left hand side of the measurement equation.
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We parametrize t with respect to the planar distance traveled as t(s). Now we get the equation:

z′(s) =
∂z(t(s))

∂s
=

∂z(t(s))
∂t

· ∂t(s)
∂s

(32)

∂z(t(s))
∂t is the known time derivative of z. Hence, only ∂t(s)

∂s is required to calculate the value of z′(s).
Calculating the derivative of the position with respect to s yields:

∂~p(t(s))
∂s

=
∂~p(t(s))

∂t
· ∂t(s)

∂s
(33)

Calculating vp(s) as the norm of the x and y derivative we get:

vp(s) =

√√√√(∂~p(t(s))
∂t

)2

x
+

(
∂~p(t(s))

∂t

)2

y
· ∂t(s)

∂s
=
√

vx(t(s))2 + vy(t(s))2 · ∂t(s)
∂s

(34)

Using (31) and rearranging yields:

∂t(s)
∂s

=
1√

vx(t(s))2 + vy(t(s))2
(35)

The value of
√

vx(t(s))2 + vy(t(s))2 is the planar velocity vp(t) in time space. Hence, we can

calculate the value of z′(s) from our measurements, which allows the reparameterization with respect
to s.

The reparameterization yields the new measurement equation:

z′(s) = z′(x(s), y(s), ψ(s)) =
∂z(x, y)

∂x
· cos(ψ) +

∂z(x, y)
∂y

· sin(ψ) (36)

Since three states are unknown, three equations are required, which we retrieve by
further differentiation:

z′′ =
∂z′

∂x
· cos(ψ) +

∂z′

∂y
· sin(ψ) +

∂z′

∂ψ
· ψ′ (37)

z′′′ =
∂z′′

∂x
· cos(ψ) +

∂z′′

∂y
· sin(ψ) +

∂z′′

∂ψ
· ψ′ + ∂z′′

∂ψ′
· ψ′′ (38)

The two new variables ψ′ and ψ′′ appear in the measurement equations. However, these are
known since ψ′ can be calculated from the gyrometer measurements similarly to (20):

ψ′(s) =
(

Ry(θ) ∗ Rx(ϕ) ∗ω
)

z (39)

where ω is the angular rate measurement of the gyrometer. The roll ϕ can not be ignored, since ω can
be nonzero in its x and y directions. ψ′′ is automatically available as the derivative of ψ′.

To analyze the observability of the system, the rank of the Jacobian J with respect to the unknown
states has to be retrieved:

rank (J) = rank


∂z′
∂x

∂z′
∂y

∂z′
∂ψ

∂z′′
∂x

∂z′′
∂y

∂z′′
∂ψ

∂z′′′
∂x

∂z′′′
∂y

∂z′′′
∂ψ

 (40)

The rank of the Jacobian highly depends on the surface function z(x, y). Hence, it is difficult to
find general statements about the observability conditions. Instead, we perform the analysis for typical
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surfaces that appear in the race track, to shed light on the overall situation. The two surfaces that
appear are tilted planes and cone-like surfaces.

4.2. Analysis of Planar Surfaces

Horizontal planar surfaces (see Figure 8a) are the most simple surfaces a vehicle can drive on.
The height of a vehicle driving on these surfaces is constant as used in [33]. While driving on these
surfaces makes the z position observable (since it is constant), it does not give any information on the
other three states. z(x, y) is constant for a horizontal planar surface. Thus, all its derivatives are zero,
wherefore all entries of J are 0.

0
2

4
0

2

4

−1

0

1

x

y

z

(a) Horizontal planar surface

0
2

4
0

2

40

2

4
~d

x

y

z

(b) Tilted planar surface

Figure 8. Planar surfaces.

Tilted planar surfaces (see Figure 8b) are more interesting. Tilted surfaces can be represented
without loss of generality with:

z(x, y) = a · y, a ∈ R\{0}, (41)

by rotating the coordinate system accordingly. The measurement equations collapse to:

z′(s) = a · sin(ψ) (42)

z′′(s) = a · cos(ψ)ψ′ (43)

z′′′(s) = a ·
(

cos(ψ)ψ′′ − sin(ψ)ψ′2
)

(44)

Theorem 1. The yaw ψ of a vehicle driving on a tilted planar surface is observable if it drives a curve.

Proof. The measurement Jacobian for a tilted planar surface is:

J =

0 0 a · cos(ψ)
0 0 −a · sin(ψ)ψ′

0 0 −a
(
sin(ψ)ψ′′ + cos(ψ)ψ′2

)
 (45)

The rank of this matrix is always one except if ψ ∈ π/2 + Zπ and ψ′′ = ψ′ = 0, which means
following the direction vector ~d in Figure 8b permanently. This can not happen, if the vehicle drives a
curve. The null space null(J) of the matrix is:

v ∈ null(J)⇒ J ∗ v =~0⇔ v =

x
y
0

 , x, y ∈ R (46)
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Thus, the yaw is observable.

In practice, one may retrieve the yaw with the following equation:

ψ =

atan2
(

z′′(s)
ψ′ , z′(s)

)
= atan2 (a · cos(ψ), a · sin(ψ)) if ψ′ 6= 0

atan2
(

z′′′(s)
ψ′′ , z′(s)

)
= atan2 (a · cos(ψ), a · sin(ψ)) if ψ′ = 0, ψ′′ 6= 0

(47)

Since x and y do not appear in the measurement equations (and all further derivatives), they are
unobservable from the height-map prior.

4.3. Analysis of Cone Surfaces

A general cone (see Figure 9a) can be represented by:

z(x, y) = r(x, y) ·m, m > 0, (48)

where r(x, y) is the planar distance to the center point and m is the inclination of the cone. Since cones
are bodys of rotation, it is useful to use polar coordinates instead of Cartesian coordinates to analyze
the cone using the substitutions:

x(s) = r cos(φ) (49)

y(s) = r sin(φ) (50)

where φ is the angle between the vector
(

x(s)
y(s)

)
and the x axis.

The derivatives r′ and φ′ can be calculated as follows:

r(s) =
√

x2 + y2 (51)

r′(s) =
xx′√

x2 + y2
+

yy′√
x2 + y2

(52)

Using (23) with (31) yields:

r′(s) =
r cos(φ) cos(ψ) + r sin(φ) sin(ψ)

r
(53)

= cos(φ− ψ) (54)

Similarly for φ′(s):

φ(s) = atan(y/x) (55)

φ′(s) =
xy′

x2 + y2 −
yx′

r2 + y2 (56)

=
r cos(φ) sin(ψ)

r2 − r sin(φ) cos(ψ)
r2 (57)

= − sin(φ− ψ)

r
(58)

The measurement equation of the general cone follows:

z′(s) = r′ ·m = cos(φ− ψ) ·m (59)

Since a general cone is symmetric in the rotation around its center, it is impossible to observe
either φ or ψ. Instead, only the difference of the two angles δ = φ− ψ can be observed. δ represents
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the angle of the vehicle direction ~dv in relation to the maximum inclination direction ~di at the current
position of the vehicle (see Figure 9a).

−2 −1
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0
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~di

~dv

δ

x

y

z

(a) A general cone

−2 −1
0

1
2 0

1

2
0

10

x

y

z
(b) A cone-like surface

Figure 9. Cone-shaped surfaces.

The distance to the cone center r does not appear in the measurement equation. But it appears in
the derivative:

z′′(s) =
z′

dφ
· φ′ + z′

dψ
· ψ′ (60)

= m ·
(

sin(φ− ψ)2

r
+ sin(φ− ψ)ψ′

)
(61)

Hence, we can retrieve information about r and δ from the measurement.

Theorem 2. The relative angle δ and the planar distance to the cones center r of a vehicle driving on a general
cone surface are observable unless the vehicle drives parallel to the direction of maximum inclination.

Proof. We substitute δ = φ− ψ into the measurement equations:

z′(s) = cos(δ) ·m (62)

z′′(s) = m ·
(

sin(δ)2

r
+ sin(δ)ψ′

)
(63)

The Jacobian of z′(s) and z′′(s) with respect to the two unknown states δ and r is:

J =

(
− sin(δ) ·m 0

m ·
(

2 sin(δ) cos(δ)
r + cos(δ)ψ′

)
−m ·

(
sin(δ)2

r2

)) (64)

J has full rank if its determinant is nonzero. Hence, r and δ are observable unless the determinant
is zero:

|J| = m2 · sin(δ)3

r2 = 0 (65)

Thus, the Jacobian is not full ranked if sin(δ) = 0; i.e.:

δ ∈ Zπ (66)
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Equation (66) only holds if the vehicle travels in the direction of the maximum inclination ~di or in
the exact opposite. Thus, the Jacobian has full rank and implies observability of r and δ if the travel
direction is not parallel to the direction of maximum inclination.

4.4. Analysis of Cone-Like Surfaces

The curves of the Sixdays track are not cone shaped. The inclination m of the curves is not constant,
but changes depending on the angle φ. We call such a surface a cone-like surface (see Figure 9b).

Definition 1. A cone-like surface is a surface which height function can be stated as:

z(r, φ) = (r− r0) ·m(φ), (67)

where r > 0 is the distance to the cone center, r0 > 0 and m(φ) > 0 is the inclination function.

The parameter r0 represents the radius at which the cone-like surface has 0 height. At this height,
an x-y cut of the surface shows a perfect circle with radius r0.

The dependency of m on φ complicates the analysis of the observability. Since φ appears without
ψ, three equations are required. The base measurement equation changes to:

z′(s) = r′ ·m(φ) + (r− r0) ·m′(φ)φ′ = cos(φ− ψ) ·m(φ)− (1− r0

r
) ·m′(φ) sin(φ− ψ) (68)

The two derivatives can be found in Appendix B. Due to the complexity of the equations,
only specific maneuvers can be analyzed reasonable, as it was done in [34]. It is important to
note that in our case we do not know which maneuver is taken by the biker. Therefore, it is
not allowed to simplify the measurement equations with the maneuver. The conditions of the
maneuvers have to be substituted into the Jacobian instead. The MATLAB symbolic toolbox
[35] has been used to handle the analysis of the observability (Matlab scripts available at: https:
//github.com/TomLKoller/ZaVI_TrackCycling/tree/master/MatlabProofs).

Theorem 3. The angle φ of a vehicle driving on a cone-like surface is unobservable if the vehicle stays at a
constant planar distance r = r0 to the center.

Proof. Staying at a constant r implies that r′ = 0, with (54):

0 = r′(s) = cos(φ− ψ) (69)

⇒ ψ = φ +
π

2
+Zπ (70)

Now using the derivative of ψ:

ψ′(s) = φ′ = − sin(φ− ψ)

r
= − sin(−π/2)

r
=

1
r

(71)

Since r is constant ψ′ and φ′ are also constant.

⇒ ψ′′ = φ′′ = 0 (72)

Before we calculate the Jacobian of the system, we substitute δ = φ− ψ so that we can calculate
the Jacobian with respect to φ, r and δ. The value of δ follows from the value of ψ:

δ = φ− ψ = −π

2
(73)

https://github.com/TomLKoller/ZaVI_TrackCycling/tree/master/MatlabProofs
https://github.com/TomLKoller/ZaVI_TrackCycling/tree/master/MatlabProofs
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Now, we substitute the values of δ, ψ′, ψ′′ and r into the observability Jacobian derived from the
measurement equations (Appendix B):

J =


0 m′(φ)

r0
m (φ)

0 m′′(φ)
r2

0
− m(φ)

r2
0

2 m′(φ)
r0

0 m′′′(φ)
r3

0
− 3 m′(φ)

r3
0

3 m′′(φ)
r2

0
− m(φ)

r2
0

 (74)

Column 1 is the 0-vector, which means that the Jacobian is rank deficient. Since the system is
nonlinear, additional derivatives of the measurement equation may yield nonzero elements in the first
column. The first column corresponds to the change of the measurement equation in the direction of φ.
Since the measurement equation is 0 for every φ given that r = r0, there can not be any nonzero entry.
Thus, φ is completely unobservable from the height-map prior.

The remaining unknown DOFs δ and r are observable, as long as the second and third column of
the Jacobian are linearly independent.

4.5. Numerical Analysis of the Sixdays Track

Analysing the observability on cone-like surfaces beyond Theorem 3 is astonishing complex.
The only possible way for us to retrieve meaningful statements about the observability was to calculate
the determinants of the Jacobian numerically.

For numeric analysis, the inclination function m(φ) of the Sixdays track’s curves has been derived
from the 3D model. The inclinations per angle φ were retrieved by least squares minimization and
a fourth order polynomial was fitted onto the inclinations (see Figure 10):

m(φ) = −0.0227φ4 + 0.133φ3 − 0.3351φ2 + 0.4124φ + 0.5775 (75)

r0 has been set to 10 m.
Figure 11 shows the determinants of trajectories with constant radius r. The determinants are

greater 0 for every r > r0. Hence, the pose is completely observable for every movement on a constant
radius with r > r0.

Figure 10. Inclination function of the Sixdays track.
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Figure 11. Determinant of the observability Jacobian for different radii on the Sixdays track with
r0 = 10.

Intuitively, we interpret the magnitude of the determinant as an indicator for the degree of
observability. The magnitude increases with increasing radius. Hence, the pose is better observable if
the biker is driving on the outer line of the track. The determinant decreases around φ = π

2 . At this
point, the inclination function is almost flat, wherefore it is almost a general cone around the middle of
the curve.

4.6. Analysis with Known Orientation

In many applications the yaw is observable. For example, the magnetometer of the IMU can
be used to measure the yaw if the magnetic field is sufficiently stable [36]. According to Theorem 1,
the yaw gets observable if the vehicle drives a curve on a tilted planar surface. Even in cases where the
yaw is unobservable, it has only a small error for short time periods of gyrometer integration. Hence,
it is worthwhile to analyze the impact of a known yaw on the observability.

At a general cone surface the known yaw gives full observability since r and δ are observable
anyway. The missing angle φ can be calculated by:

φ = ψ + δ (76)

Theorem 4. If the yaw of a vehicle driving on a surface is known, the system is unobservable only if the
gradients of of all derivatives of z(s) have the same direction.

Proof. Since the yaw is known, only x and y are the unknown states. Since the system is nonlinear,
we have to form the Jacobian from all derivatives of z(s) to prove that a state is unobservable.
The resulting Jacobian for general surfaces is:

J =


∂z(1)(s)

∂x
∂z(1)(s)

∂y
...

...
∂z(K)(s)

∂x
∂z(K)(s)

∂y

 , K = ∞ (77)

The system is unobservable if rank(J) < 2, which is the case if all submatrices Jij formed by taking
two different nonzero rows i, j of J have a zero determinant:

|Jij| =
∂z(i)(s)

∂x
· ∂z(j)(s)

∂y
− ∂z(i)(s)

∂y
· ∂z(j)(s)

∂x
= 0 (78)



Sensors 2020, 20, 2438 21 of 26

Rearranging yields:
∂z(i)(s)

∂x
∂z(i)(s)

∂y

=
∂z(j)(s)

∂x
∂z(j)(s)

∂y

(79)

The gradients can be parametrized with respect to the direction of the gradients αi and αj so that:

∂z(i)(s)
∂x

= |∇z(i)(s)| cos(αi) (80)

∂z(i)(s)
∂y

= |∇z(i)(s)| sin(αi) (81)

∂z(j)(s)
∂x

= |∇z(j)(s)| cos(αj) (82)

∂z(j)(s)
∂y

= |∇z(j)(s)| sin(αj) (83)

where |∇z(i)(s)| and |∇z(j)(s)| are the norms of the gradients of z(i)(s) and z(j)(s) respectively. Now we
substitute them into Equation (79):

|z(i)(s)| cos(αi)

|z(i)(s)| sin(αi)
=
|z(j)(s)| cos(αj)

|z(j)(s)| sin(αj)
(84)

cos(αi)

sin(αi)
=

cos(αj)

sin(αj)
(85)

αi = αj +Zπ (86)

In the case of an unobservable system, the direction angles of the gradient of each derivative have
to be parallel to the gradient of each other derivative. Thus, all gradients of all derivatives need to
have the same direction.

While Theorem 4 is simple to prove, it is hard to grasp. Thus, we try to analyze it further. Since the
gradients of z′ and z′′ have the same direction, they are linearly dependent:

∇z′(s) = λ∇z′′(s) (87)

This means that the direction of the gradient of z′ has to stay constant for the whole trajectory
if the trajectory is unobservable. Unfortunately, this statement can not be used for surfaces without
knowing the trajectory, since z′ depends on x, y and yaw. It is possible only if the direction of ∇z′(s) is
independent of the yaw.

Surfaces that consist solely of aligned, parabolic points fulfil this condition. These surfaces are
extrusions of a 3D curve (see Figure 12). The direction of ∇z′(s) does not depend on the yaw. Thus,
the position is always unobservable on such a surface.
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Figure 12. A surface with only parabolic points with the same direction for k2.

The unobservable direction can be determined by finding the null space of the Jacobian:

J ∗ null(J) =~0 (88)

By using the angle representation we get:

~n ∈ null(J)⇔
(

0
0

)
= J ∗~n =

(
|z′(s)| cos(α) |z′(s)| sin(α)
|z′′(s)| cos(α) |z′′(s)| sin(α)

)
∗
(

nx

ny

)
(89)

By solving for the null space we get:(
nx

ny

)
=

(
− sin(α)

cos(α)

)
(90)

which is the direction of the gradients of z′(s) and z′′(s) rotated by 90◦. Hence, the null space is
orthogonal to ∇z′(s).

5. Discussion

In this work, a foundation has been laid to analyze the observability of vehicles driving on surfaces.
A general analysis approach based on the criteria of [29], has been developed. The measurement
Equation (36) can be used to analyze arbitrary surfaces. Unfortunately, the observability highly
depends on the surface equation and the taken trajectory. Thus, no general analysis of the observability
could be performed.

Analysis has been performed for surface types that occur in the race track. The track consists
of two straight parts, which are tilted planar surfaces and two cone-like curves. The yaw of the bike
is observable in a race according to Theorem 1, because the bikers never drive straight upwards the
slope. A limitation of this statement is that the biker is required to drive a curve to observe the velocity
by the forward velocity prior. If the biker is driving straight, the whole analysis is pointless, since the z
velocity and planar velocity are unobservable. Adding a wheel odometer would greatly improve the
observability of the yaw, since the body velocity would be observable even when driving straight.

The qualitative video analysis shows that the lateral error increases at the straight parts in contrast
to the curves. This is not surprising since the straight parts do not contain any information about the
position. It also indicates that there is positional information available in the curve.

It was not possible to retrieve a clear mathematical answer, whether or not the pose is observable
in the curves. Bikers tend to drive on a constant radius in a race to reduce the traveled distance. Hence,
the pose would be observable according to our numerical analysis. However, Theorem 3 states that
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the pose is unobservable if the biker drives on the most inner line of the track. Since they tend to drive
the shortest route, they drive close to the inner line. Thus, the pose may be poorly observable.

The drift-free experimental results with an RMS of 0.090 s (approximately 1.08 m) indicate that
the pose is overall observable. Since the yaw drifts slowly, a few time periods with observable yaw
(e.g., driving a curve on the straight parts) may be enough to retrieve a sufficient estimate of the yaw.
This estimate may be enough to retrieve the pose in the curves even if the biker drives on the inner line.

The analysis revealed a weakness of the estimator. A trajectory, where the driver drives straight
on the straight parts and on the inner line of the curves, may have insufficient observability of the
pose. Therefore, an experiment with this kind of trajectory is required to verify the error bounds of the
systems. In addition, the observability for trajectories on non-constant radii in the curves has to be
examined experimentally, since it was not possible to calculate it analytically.

Overall, the observability analysis revealed some of the error properties of a bike driving on the
race track. The height map prior can give observability of the pose but it is not guaranteed to do so.
The drift-free estimates of the experiment are now better understood and ongoing development of the
state estimator can benefit from the gained insight.

The general capability of the system to deliver drift free estimates of the pose has been proven.
Thus, future work has to focus on improving the estimate until it reaches a usable level. An absolute
reference system is required to quantify the true estimate error in all driving conditions. As a first
improvement, the IMU should be positioned at the center of the rear wheel, since the transformation
of the IMU measurements amplifies the IMU noise.
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The following abbreviations are used in this manuscript:

DOF Degree of freedom
IMU Inertial measurement unit
UKF Unscented Kalman filter
GNSS global navigation satellite system
RMS Root mean square error

Appendix A. Covariances of the Estimator

Covariances: Process noise applies on the dynamic model constraint (8). The~aI measurement
noise consists of the sensor noise and additional noise which is caused by the transform from IMU
acceleration to the body acceleration.
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Table A1. Ref. [11] Covariances of the initial guess.

Process noise λ 10 m2/s

Process noise λ̇ 0.1 m2/s2/s

Process noise QB
W 0 rad2/s

Process noise ~ωB 1 rad2/s2/s

Process noise ~vW 0 m2/s2/s

Process noise~aW 100 m2/s4/s

~ωI measurement noise (6) 3.05 × 10−6 rad2/s2

~aI measurement noise (7) 0.2004 m2/s4

Forward velocity prior (9) 0.1 m2/s2

λ̇ pseudo measurement noise (13) 0.2 m2/s2

~ωB pseudo measurement noise (14) 0.5 rad2/s2

Table A2. Ref. [11] Covariances of the main model.

Process noise ~pW in Σg 0.1 m2/s

Process noise ~vW in Σg 0.1 m2/s2/s

Process noise~aW in Σg ∞

Process noise QB
W in Σg 0.1 rad2/s

Process noise ~ωB in Σg 0.1 rad2/s2/s

Process noise ~ω′B in Σg ∞

Process noise~ba in Σg 8.28 × 10−9 m2/s4/s

Process noise~bg in Σg 0.58 × 10−9 rad2/s2/s

~ωI measurement noise (6) in Σgy 3.05 × 10−6 rad2/s2

Missing angular rate noise (6) in Σgy 1 rad2/s2

~aI measurement noise (7) in Σac 0.2004 m2/s4

Missing acceleration noise (7) in Σac 400 m2/s2

Forward velocity prior (9) in Σ f v 0.1 m2/s2

Heightmap prior (10) in Σh 0.1 m2

Appendix B. Measurement Equations for Cone-Like Surfaces

z′(s) = cos(φ− ψ) ·m(φ)− (1− r0

r
) ·m′(φ) sin(φ− ψ) (A1)

z′′(s) = ψ′
(

sin(φ− ψ)m(φ) +

(
1− r0

r

)
m′(φ) cos(φ− ψ)

)
+

sin2(φ− ψ)

r

(
m(φ) + m′′(φ)

(
1− r0

r

))
− 2

r0
r2 cos(φ− ψ) sin(φ− ψ)m′(φ)

(A2)
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z′′′(s) =
(

3 cos (3φ− 3ψ)

4r2 − cos (φ− ψ)

(
ψ′2 +

3
4r2

)
+ ψ′′ sin (φ− ψ)− 3ψ′ sin (2φ− 2ψ)

2r

)
m (φ)

+

(
sin (3φ− 3ψ)

(
2r0

r3 +
1

4r2

)
− sin (φ− ψ)

(
ψ′2
( r0

r
− 1
)
+

3
4r2

))
m′(φ)

+

(
−ψ′′ cos (φ− ψ)

( r0

r
− 1
)
+

3ψ′r0 cos (2φ− 2ψ)

r2

)
m′ (φ)

+

(
cos (φ− ψ)

(
3r0

2r3 −
3

4r2

)
− cos (3φ− 3ψ)

(
3r0

2r3 −
3

4r2

))
m′′(φ)

+

(
ψ′ sin (2φ− 2ψ)

(
3r0

2r2 −
3
2r

))
m′′ (φ)

+

(
sin (φ− ψ)

(
3r0

4r3 −
3

4r2

)
− sin (3φ− 3ψ)

(
r0

4r3 −
1

4r2

))
m′′′ (φ)

(A3)
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