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Abstract: More accurate navigation systems are always required for autonomous unmanned
underwater vehicles (AUUV)s under various circumstances. In this paper, a measuring complex of a
heavy unmanned underwater vehicle (UUV) was investigated. The measuring complex consists of
an inertial navigation platform system, a Doppler lag (DL) and an estimation algorithm. During a
relatively long-term voyage of an UUV without surfacing and correction from buoys and stationary
stations, errors of the measuring complex will increase over time. The increase in errors is caused
by an increase in the deviation angles of the gyro platform relative to the accompanying trihedron
of the selected coordinate system. To reduce these angles, correction is used in the structure of the
inertial navigation system (INS) using a linear regulator. To increase accuracy, it is proposed to
take into account the nonlinear features of INS errors; an adaptive nonlinear Kalman filter and a
nonlinear controller were used in the correction scheme. Considering that, a modified nonlinear
Kalman filter and a regulator in the measuring complex are proposed to improve the accuracy
of the measurement information, and modification of the nonlinear Kalman filter was performed
through a genetic algorithm, in which the regulator was developed by the State Dependent Coefficient
(SDC) method of the formulated model. Modeling combined with a semi-natural experiment with
a real inertial navigation system for the UUV demonstrated the efficiency and effectiveness of the
proposed algorithms.

Keywords: unmanned underwater vehicle; inertial navigation system; measuring complex; nonlinear
Kalman filter; SDC method; semi-natural experiment

1. Introduction

For performing underwater work as scientific research and practical implementation, unmanned
underwater vehicles (UUV)s are widely used. The most famous UUV series are as follows: “Remus”
(Hydroid, USA), “Autosub 6000” (UK), and “GAVIA” (Russia) [1,2]. With the help of UUVs, search
operations and the inspection of sunk objects and pipelines are carried out, information warfare by
creating false targets and interference is conducted, and UUVs are implemented for environmental
monitoring, etc. Normally, UUVs can be classified according to the mass of the vehicle: micro, small,
medium and heavy classes [3,4]. For the study of ice conditions, the performance of hydrographic
work in the Arctic, as well as the fulfillment of special tasks in the interests of defense agencies, heavy
autonomous unmanned underwater vehicles (AUUV)s (not towed UUVs) are applied. During the
operation of UUVs, their exact orientation in space and knowledge of navigation parameters are
very important. For this purpose, inertial navigation systems (INS), sonars, Doppler lags, etc., are
installed on AUUVs [5–7]. For example, the UUV GAVIA is equipped with a strapdown INS and the
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WN-300 Doppler lag, which are combined into a measuring complex (MC). The INS and lag signals
are processed together using the Kalman filter [8–11].

When the UUV is working under ice fields in the Arctic, there is no possibility of periodic ascent
to the surface of the sea; thus, INS correction from a gyro-stabilized platform (GSP) is not provided.
In the case of long-term autonomous navigation with the use of a strapdown INS, errors increase
over time due to the instability of sensitive elements. Moreover, when UUVs perform maneuvers
to complete tasks with long-term autonomous navigation, even for platform INS, errors will reach
large values. This is due to an increase in the deviation angles of the gyro-stabilized platform (GSP)
relative to the accompanying coordinate system (SC). Even with the correction of INS from a lag and
information processing by the Kalman filter, errors of the navigation information increase as the model
of INS errors in the Kalman filter becomes inadequate for the real process.

Considering the prospective applications, scientists have been interested in AUUVs and all the
particular constraints in different media have been formulated into mathematical problems. Wu et
al. [12] generated the optimal paths based on the Particle Swarm Optimization (PSO) algorithm and
the Kalman filter to finish an underwater target strike mission; Batista et al. [13] proposed a filtering
method with applications to estimate the linear motion of underwater vehicles, taking into considertion
both environmental disturbances and realistic measurement noise; Jens et al. proposed a sensor-based
method with hybrid dynamical systems for underwater navigation; further, the observer performance
should be evaluated in closed-loop with a feedback controller, an attitude observer, and a guidance
scheme [14]. In order to improve the accuracy of navigation definitions of heavy UUVs for long-term
autonomous operation, it is advisable to use more accurate nonlinear error models of INS in the
algorithmic support. Accordingly, the nonlinear Kalman filter (NKF) can be applied in the MC [15,16].

In this work, the novelty lies in the application of algorithmic correction in the structure of the
INS. Correction algorithms are proposed: an adaptive nonlinear Kalman filter and a nonlinear state
regulator. The reduced regulator for INS correction in a nonlinear statement of the problem has been
developed, and the Dependent Coefficient (SDC) method of transformation of the nonlinear INS error
model is considered for the synthesis of the regulator; a correction in the structure of INS is proposed
and used with the help of a regulator [17,18]. A reduced regulator and an adaptive regulator for the
INS correction using linear models of INS errors were formulated, and the linear models of INS errors
quite roughly describe the process of real INS errors. Moreover, the efficiency of the proposed INS
correction method was demonstrated by mathematical modeling and simulation according to the
semi-natural experiment.

The paper is organized as follows: In Section 2, the nonlinear errors model of INS for UUVs
is introduced, as well as the platform of INS. The correction of navigation systems by a nonlinear
Kalman filter modification is presented in Section 3, which provides the algorithmic support for the
INS correction process of UUVs. Simulation and validation through experiments of the proposed
method are performed in Section 4, and the discussion and analysis of results are presented later.
Section 6 concludes the paper.

2. Nonlinear Errors Model of INS

The main measurement complex system of the studied UUV is INS; the platform INS consists of
accelerometers installed on a GSP [19,20]. INS has errors which are caused by the drift of gyroscopes,
accelerometers and other perturbing factors, and INS errors increase over time and could get large
values. The platform coordinate system (CS) differs from the navigation CS in the misalignment angles
φE, φN and φup. These angles can be used as indicators of system errors, considering the fact that the
physical axes of the platform must coincide with the platform axes. Thus, the transition matrix from
the navigation CS to the platform can be represented as [21–24]
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The errors of INS horizontal accelerometers are obtained from the equations as follows:
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where Bi is zero offsets of accelerometers and µi is errors from scale coefficient.
Then, substituting Equation (1) into Equation (3), the error equations of INS can be obtained [21,22]:
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where VE, δVE, δVN are velocities of the UUV in navigation CS and their errors; ϕ and δϕ represent
latitude and its error, respectively, U is the angular velocity of the Earth, and here, D is the nonlinear part.

In Equation (4), the matrix Φ determines the relation between the components of the state vector
x. W is input noise, including dominant external disturbances. D is a matrix including nonlinear terms
of the second order of smallness [21,22]. The dominant elements that determine the dynamics of x are
selected in matrix Φ.

In the algorithmic support of measuring systems, which is implemented on the board of the
underwater vehicle, more simple error models of INS are used [21,24]. For the only horizontal channel,
the nonlinear error model of INS has its form as follows:

xk = Fxk−1 + wk−1 (5)

where xk is the state vector, F is the matrix of the object and wk is input noise.

xk =


δvE

ΦN

ωdr
N


k

; F =


1 −TgcosΦE 0
T
R 1− T

RδvNtgΦE T
0 0 1− Tβ

; wk =


TBE

0
TA

√
2βw


where δvE denotes error in determining the velocity, ΦNE represents angles of horizontal deviation,
ωdr

N is drift velocity, BE is zero offset, and w is white noise.
In order to compensate for the INS errors, these errors should first be evaluated. Estimation of

errors of INS is carried out using estimation algorithms [25], and one of the most common methods is
the Kalman filter. Taking nonlinear components into account, the nonlinear Kalman filter (NKF) is
used to estimate the INS errors. However, the INS error model in the NKF may not be adequate for the
actual process of the changing the INS errors, especially when performing UUV maneuvers. Thus, the
identification of the INS error model in the NKF should be considered.

3. Correction of Navigation Systems by a Nonlinear Kalman Filter Modification

When maneuvers are performed on UUVs, the deviation angles of GSP in INS relative to the
selected coordinate system increase, and the linear model of its errors, obtained by taking into account
the assumption of horizontal movement of the supporting object and small angles of stabilization, will
become inadequate for the real process.

High-precision correction of navigation information is carried out by NKF and its modifications.

3.1. Methods of Realization of Nonlinear Kalman Filter

Assuming the equation for state vector has the next form:

xk = Φk(xk−1) + wk (6)

where xk represents the sate vector, Φk(xk−1) is the nonlinear model vector characterizing the dynamics
of the process under study. Part of the state vectors are measured by INS and GPS navigation systems:

zk = Hkxk + vk (7)

where zk is the measurement vector, Hk is the matrix of measurement, and wk and vk are discrete
analogs of Gaussian white noise with zero mathematical expectations and covariance matrices Qk and
Rk, respectively, which are uncorrelated with each other.

The equations of the nonlinear Kalman filter have the following form [26,27]:

^
xk =

^
xk,k−1 + Kk

(
^
xk−1

)[
zk −Hk

^
xk,k−1

]
(8)
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)
Hk

]
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where Hk(x̂k−1) is the matrix of gain coefficients of the Kalman filter.
Such an approach can be applied only in the case of a unimodal character of a posteriori density.

When the posterior density is multi-extreme, an algorithm can be used where the posterior density is
represented by a set of δ functions.

The listed implementations of the Kalman nonlinear filter require linearization of the INS error
model using the Taylor series, representing the posterior density as a set of δ functions, or replacing
the posterior density with a system of partial Gaussian densities with different weights. As a result,
only linear models of INS errors are used in the Kalman filter. The nonlinear Kalman filter models
applied in the general case are difficult due to the fact that the posterior density of the state vector is
not Gaussian. Consequently, it is not possible to obtain algorithmic recurrence relations for calculating
estimations of the state vector.

The other famous methods for the implementation of the Kalman filter is solving a stochastic partial
differential equation written in the Ito or Stratonovich form. However, the practical implementation
of this solution is also complicated; special rules which do not coincide with the usual rules of
mathematical analysis need to be applied when integrating these equations. Another disadvantage of
the approach of the non-linear Kalman filter mentioned is that it has lower accuracy than the original
non-linear model. The most complete account of all the nature features of changes in INS errors, and
most importantly, a specific INS in conditions of each specific flight, it is possible by constructing a
nonlinear model using one of the evolutionary algorithms.

Therefore, the nonlinear model can be used as a reference model to ensure the adequacy of the
Kalman filter model and the real change process of INS errors. Figure 1 presents a scheme of INS
correction by genetic algorithm (GA) [28,29], where NKF denotes the nonlinear Kalman filter, and C
denotes the divergence indicator of the evaluation process.
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For a neural network in the Kalman filter, we can apply an indicator to the network, which is
considered as the sum of squared residuals for all components of the output vector and all sets of
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measurements between the reference values and values at the output of the neural network. Meanwhile,
the RAO-Kramer inequality can be used as an indicator of divergence in the INS correction scheme.

As a modification of Kalman filter, GA is applied to build a model of the evaluation process. If the
evaluation becomes divergent, then a new model will be used in the Kalman filter. Thus, the developed
correction algorithm in accordance with Fig. 1 consists of a non-linear Kalman filter, an estimation
indicator, and GA, and we have a model of the process under study (INS error model) at the output
side [26].

The following notations are introduced in Figure 1: NKF represents the non-linear Kalman filter; θ
represents true navigation information; ξ is DL error vector; x is the vector of INS errors; z is the vector

of measurements;
^
x denotes the estimation of the error vector of the INS;

~
x denotes the estimation of

INS errors.
Here, GA is implemented as a standard algorithm, information about INS error estimation is

obtained by the modified NFC, and correction signals are generated in the structure of INS.
In accordance with Figure 1, INS correction is carried out in the output signal, and the correction

signal does not affect the dynamics of INS. Deviation angles of GSP increase and the model of INS
errors becomes inadequate for the real process over time. Therefore, it is necessary to reduce the angles
of deviation of GSP and maintain the adequacy of the INS error model, considering that corrective
signals are forwarded into the INS structure. When the information about estimation of INS errors is
obtained by the modified NKF, correction signals will be generated in the structure of INS.

3.2. Correction in the Structure of INS

The implementation of INS involves obtaining not only the navigation parameters of the object,
but also information about its orientation relative to the reference coordinate system. The reference
coordinate system is defined by the GSP. However, the GSP deviates from the given position due to
the drift of gyroscopes, zero offset, accelerometer drift, and errors of the first integrator. A significant
increase in the deflection angles of the GSP leads to platform drift due to moments of residual imbalance
around the precession axes of the gyroscopes and the anisoelasticity of the GSP and gyroscopes during
vibration. As errors of autonomous INS increase over time, in order to obtain reliable information
about the orientation of the NPA, it is necessary to compensate for the deviation of the GSP from the
specified position.

The correction scheme in the structure of INS is presented in Figure 2:
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3.3. Development of a Nonlinear Algorithm for INS Errors Correction

The INS error equation can be described in Equation (5), and SDC representation of a nonlinear
system (5) has the following form:

xk = Fxk + wk (13)
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where xk =


δVk
ψk
εk

; wk =


Bk
0
ηk

; F =


1 −Tgk 0
T
Rk

1 + TδVk
Rk

T
0 0 1− Tµ

 and T is the period of discretization.

The state vector is represented as the sum of vectors zk and yk, which are extracted in vector zk,the
only components that we intend to control, and in vector yk, all remaining components of the state
vector. The equation of the object has the following form:

xk = Fzk−1 + Gyk−1 + wk−1 + uk−1 (14)

and denotes:
wk−1 + Gyk−1 = ζk−1 (15)

Assuming that zk−1 and ζk−1 can be evaluated, the control will be searched in the form as follows:

uk−1 = −
(
Kk−1ẑk−1 + ζ̂k−1

)
(16)

The implementation of state vector estimation in the regulator implies a preliminary assessment
by using the estimation algorithm. At the output of the estimation algorithm, we have a signal as
follows:

x̂k = xk − x̃k (17)

where x̃k represents error estimation of the state vector.
Substituting Equation (16) into Equation (14) and taking into account expression (17), we can

obtain:
xk = (F−Kk−1)zk−1 + Kk−1z̃k−1 + ζ̃k−1 (18)

The optimal control is determined by finding a regulator matrix in which the functional is

J = M
[
xk

Txk
]

(19)

Here we will take the minimum value of this function. The covariance matrix of state vector can
be represented as follows:

M
[
xkxk

T
]
= M

{[
(F−Kk−1)xk−1 + Kk−1x̃k−1 + ζ̃k−1

]
×

[
(F−Kk−1)xk−1 + Kk−1x̃k−1 + ζ̃k−1

]T
}

(20)

Considering the principle of orthogonality, Equation (20) takes the form of

M
[
xT

k xk
]

= (F−Kk−1)M
[
xk−1xT

k−1

]
(F−Kk−1)

T + (F−Kk−1)M
[
x̃k−1x̃T

k−1

]
KT

k−1+

+Kk−1M
[
x̃k−1x̃T

k−1

]
(F−Kk−1)

T + Kk−1M
[
x̃k−1x̃T

k−1

]
KT

k−1 + (F−Kk−1)M
[
x̃k−1ζ̃

T
k−1

]
+M

[
ζ̃k−1x̃T

k−1

]
(F−Kk−1)

T + Kk−1M
[
x̃k−1ζ̃

T
k−1

]
+ M

[
ζ̃k−1x̃T

k−1

]
KT

k−1+

+Kk−1M
[
x̃k−1x̃T

k−1

]
KT

k−1 +
[
ζ̃k−1ζ̃

T
k−1

] (21)

Let us determine the sum of variances of the state vector:

J = sp M
[
xkxk

T
]
= M

[
xk

Txk
]

(22)

Then, the optimal value of regulator matrix on the condition of zero gradient can be obtained:

∂J
∂Kk−1

= 0 (23)

Using the matrix differentiation rules, an optimality condition that leads to a minimum of the
functional can be obtained:

Kk−1 = F (24)
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Thus, a MC with correction in the structure of INS is developed in this section. In order to improve
the accuracy of navigation definitions of UUV, the nonlinear control algorithm and the developed
control algorithm based on SDC representation of the nonlinear model of INS errors are applied in
the MC.

4. Experimental Study and Validation

In order to conduct an experiment with a real INS, the following steps should be considered and
performed:

1. Install the INS platform on a fixed base, and enable INS. Since the INS is stationary, the output
signal is an INS error.

2. Generate measurements for the Kalman filter z in accordance with Figure 1, and a Doppler lag
error is simulated using a random number sensor. The signal is smoothed at the interval T = 12 s.

3. Evaluate the INS errors by means of the algorithm in Figure 1. In the Kalman filter in the matrix
F, the following numerical values are used: R = 6,370,000 m, g = 9.8 m/s2, the average frequency
of random drift change is µ = 2 × 10−4/s. In Equation (10), during the formation of the covariance
matrix of the Kalman filter measuring noise, errors of the Doppler lag v are assumed to be white
noise with an intensity equal to 0.015 m/s, and in Equation (11) in the matrix Q, the zero offset of
the accelerometer is assumed to be a constant value B = 5 × 10−4 m/s2; the dispersion of external
perturbation on the gyroscope ηk is assumed to be 10−16.

4. Form the control u = −Fx̂, and submit a signal u to the input of INS with Figure 2. The control
signal is forwarded to the input of first integrator and the input of the torque sensor.

The results of the operation modeling of MC with a control algorithm and MC with a nonlinear
control algorithm are presented in Figures 3–6.
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In Figures 3 and 5, it is shown that the errors of the MC in INS with the linear and nonlinear
models that were used in the regulator at the first stage almost coincide. The difference begins to be
clearly observed with 30 min of MC operation. Based on the results of mathematical modeling, it can
also be seen that it is possible to improve the accuracy of error calculation in determining velocity by
10%, and deviation angles of GSP by 15%.
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For comparison and validation, modeling according to a laboratory experiment was carried out
using a nonlinear Kalman filter. The simulation results are presented in Figures 7–9.
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Figure 7. TS060K Errors for determination of velocity.

Figures 6 and 7 show the results of modeling the INS error in autonomous mode and with
correction obtained by the control algorithm. Line 1 represents the error of INS in determining the
speed in autonomous mode (without correction), and line 2 shows the INS error in determining the
velocity after correction using the developed nonlinear control algorithm.

In Figure 8, line 1 denotes the deviation angles of a real system GSP and line 2 represents the
estimation of deviation angles of the GSP.
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In Figure 9, line 1 denotes the velocity drift of a real system GSP, and line 2 represents the
estimation of deviation angles of the GSP.
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5. Discussion and Analysis of Simulation Results

Here, a set of algorithms was developed for MC, including a nonlinear control algorithm that
was used for error compensation in the structure of INS, and they can work for a long time without
correction from stationary navigation stations. In the synthesis of the control algorithm, the method of
SDC representation of nonlinear models was used. The efficiency and effectiveness of the developed
algorithms were demonstrated by means of mathematical modeling and simulations according to data
results of the semi-natural experiment within the TS060K system (Inertial Navigation System Ц060K,
Russia).
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The proposed MC correction algorithms increase the accuracy of navigational determinations
of UUVs during long-term voyages in the underwater state and without correction from stationary
stations and buoys. While the proposed algorithms have applied a priori models in the regulator,
which may not accurately describe the changing process of INS errors, in general, the SDC method
has limitations in its application [30,31], and not every model can be represented by the SDC method.
These aspects limit the application of the developed algorithmic software in other dynamic objects.

6. Conclusions

In this paper, the measurement complex of an autonomous heavy UUV designed for long voyages
without surfacing on the sea surface was developed. The MC consists of an INS platform, Doppler lag,
NKF of modified GA, and a nonlinear controller for correction in the structure of INS. Synthesis of the
reduced regulator was carried out using the SDC method.

With the help of a regulator, INS errors were reduced during operation for a long time without
correction from stationary navigation stations, GPS and beacons. In comparison with the well-known
methods (linear optimal and adaptive regulators in the INS correction scheme), the simulation results
confirm the advantages of the proposed method for increasing the accuracy of INS. Therefore, the
method proposed in this paper allows an increase of the accuracy of navigational determinations of
UUVs during long-term (more than 3 hours) autonomous navigation.

Author Contributions: In this research work, the individual contributions of authors are specified as follows:
conceptualization, D.C.; methodology, K.A.N. and M.S.S.; validation, M.S.S.; investigation, K.A.N. and M.S.S.;
writing, original draft preparation, D.C.; writing, review and editing, D.C.; funding acquisition, D.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Program of Introducing Talents of Discipline to Universities in China
(Program 111, No. B 16025) and NSFC (Natural Science Foundation of China) (No. 51905272).

Acknowledgments: The authors would like to thank the editors and the anonymous reviewers for their valuable
comments and constructive suggestions.

Conflicts of Interest: The authors declare that there is no conflict of interest regarding the publication of this
paper. The authors also declare that they do not have any commercial or associative interest that represents a
conflict of interest in connection with the work submitted.

References

1. Whitcomb, L.L. Underwater robotics: Out of the research laboratory and into the field. In Proceedings of the
2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia
Proceedings IEEE, San Francisco, CA, USA, 24–28 April 2000; Volume 1, pp. 709–716.

2. Diorio, R.A.; Walter, C.R.; Tintner, R.J. Encapsulated Underwater Vehicle Modules. U.S. Patent 11,465,773, 21
February 2008.

3. Bocharov, L. Uninhabited underwater vehicles: State and general development trends. Part 2. Electron. Sci.
Technol. Bus. 2009, 8, 88–93.

4. Rhif, A. A review note for position control of an autonomous underwater vehicle. IETE Tech. Rev. 2011, 28,
486–492. [CrossRef]

5. Chen, D.; Neusypin, K.; Selezneva, M.; Mu, Z. New Algorithms for Autonomous Inertial Navigation Systems
Correction with Precession Angle Sensors in Aircrafts. Sensors 2019, 19, 5016. [CrossRef] [PubMed]

6. Proletarsky, A.V.; Neusypin, K.A.; Selezneva, M.S. Method for Improving Accuracy of INS using Scalar
Parametric Identification. In Proceedings of the 2019 International Russian Automation Conference IEEE,
Sochi, Russia, 8–14 September 2019; pp. 1–4.

7. Selezneva, M.S.; Neusypin, K.A.; Proletarsky, A.V. Navigation complex with adaptive non-linear Kalman
filter for unmanned flight vehicle. Metrol. Meas. Syst. 2019, 26, 3.

8. Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. Signal Process. Sensor
Fusion Target Recognit. VI Int. Soc. Opt. Photonics 1997, 3068, 182–193.

9. Amsters, R.; Demeester, E.; Stevens, N.; Slaets, P. In-Depth Analysis of Unmodulated Visible Light Positioning
Using the Iterated Extended Kalman Filter. Sensors 2019, 19, 5198. [CrossRef] [PubMed]

http://dx.doi.org/10.4103/0256-4602.90757
http://dx.doi.org/10.3390/s19225016
http://www.ncbi.nlm.nih.gov/pubmed/31744205
http://dx.doi.org/10.3390/s19235198
http://www.ncbi.nlm.nih.gov/pubmed/31783628


Sensors 2020, 20, 2365 13 of 13

10. Gao, B.; Hu, G.; Zhu, X.; Zhong, Y. A Robust Cubature Kalman Filter with Abnormal Observations
Identification Using the Mahalanobis Distance Criterion for Vehicular INS/GNSS Integration. Sensors 2019,
19, 5149. [CrossRef] [PubMed]

11. Selezneva, M.; Proletarsky, A.; Neusypin, K.; Lifei, Z. Modification of the Federated Kalman Filter Using
the Observability Degree Criterion of State Variables. In Proceedings of the 2019 26th Saint Petersburg
International Conference on Integrated Navigation Systems (ICINS) IEEE, Saint Petersburg, Russia, 27–29
May 2019; pp. 1–3.

12. Wu, Y. Coordinated path planning for an unmanned aerial-aquatic vehicle (UAAV) and an autonomous
underwater vehicle (AUV) in an underwater target strike mission. Ocean Eng. 2019, 182, 162–173. [CrossRef]

13. Batista, P.; Silvestre, C.; Oliveira, P. Optimal position and velocity navigation filters for autonomous vehicles.
Automatica 2010, 46, 767–774. [CrossRef]

14. Bremnes, J.E.; Brodtkorb, A.H.; Sørensen, A.J. Sensor-Based Hybrid Translational Observer for Underwater
Navigation. IFAC-Pap. OnLine 2019, 52, 378–383. [CrossRef]

15. Hostetler, L.; Andreas, R. Nonlinear Kalman filtering techniques for terrain-aided navigation. IEEE Trans.
Autom. Control 1983, 28, 315–323. [CrossRef]

16. Lefebvre, T.; Bruyninckx, H.; Schutter, J. Nonlinear Kalman Filtering for Force-controlled Robot Tasks; Springer:
Berlin, Germany, 2005; Volume 19.

17. Yang, G.; Chen, D.; Selezneva, M.; Neusypin, K. Development of the measuring complex with reduced
regulator. J. Phys. Conf. Ser. 2019, 1311, 12–37. [CrossRef]

18. Proletarsky, A. Nonlinear Information Processing Algorithm for Navigation Complex with Increased Degree
of Parametric Identifiability. Recent Res. Control Eng. Decis. Mak. 2019, 199, 37–49.

19. Tijing, C.; Emeliantsev, G.I. Study on the rate azimuth platform inertial navigation system. J. Southeast Univ.
2005, 21, 29–32.

20. Goshen-Meskin, D.; Bar-Itzhack, I.Y. Unified approach to inertial navigation system error modeling. J. Guid.
Control Dyn. 1992, 15, 648–653. [CrossRef]

21. Salychev, O.S. Applied Inertial Navigation: Problems and Solutions; BMSTU Press: Moscow, Russia, 2004.
22. Andreev, V.D. Theory of inertial navigation. In Autonomous Systems; Science: New York, NY, USA, 1966;

p. 579.
23. Andreev, V.D. Theory of inertial navigation. In Corrected Systems; Science: New York, NY, USA, 1967; p. 697.
24. Kuzovkov, N.T.; Salychev, O.S. Inertial Navigation and Optimal Filtration; Mechanical Engineering: Moscow,

Russia, 1982; p. 217.
25. Shin, S.H.; Park, C.G.; Kim, J.W.; Hong, H.S.; Lee, J.M. Adaptive step length estimation algorithm using

low-cost MEMS inertial sensors. In Proceedings of the IEEE Sensors Applications Symposium, San Diego,
CA, USA, 6–8 February 2007; pp. 1–5.

26. Rigatos, G.G. Nonlinear Kalman filters and particle filters for integrated navigation of unmanned aerial
vehicles. Robot. Auton. Syst. 2012, 60, 978–995. [CrossRef]

27. Shakhtarin, B.I.; Shen, K.; Neusypin, K.A. Modification of the nonlinear kalman filter in a correction scheme
of aircraft navigation systems. J. Commun. Technol. Electron. 2016, 61, 1252–1258. [CrossRef]

28. Elsheikh, M.; Abdelfatah, W.; Noureldin, A.; Iqbal, U.; Korenberg, M.; Noureldin, A. Low-Cost Real-Time
PPP/INS Integration for Automated Land Vehicles. Sensors 2019, 19, 4896. [CrossRef] [PubMed]

29. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992; p. 840.

30. Afanasyev, V.N.; Neusypin, K.A. RF Patent Navigation Complex. German Patent No. 2,016,383, 15 July 1994.
31. Afanasyev, V.N. Management of Non-linear Indefinite Dynamic Objects; Librocom URSS: Moscow, Russia, 2015;

p. 224.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s19235149
http://www.ncbi.nlm.nih.gov/pubmed/31775260
http://dx.doi.org/10.1016/j.oceaneng.2019.04.062
http://dx.doi.org/10.1016/j.automatica.2010.02.004
http://dx.doi.org/10.1016/j.ifacol.2019.12.336
http://dx.doi.org/10.1109/TAC.1983.1103232
http://dx.doi.org/10.1088/1742-6596/1311/1/012037
http://dx.doi.org/10.2514/3.20887
http://dx.doi.org/10.1016/j.robot.2012.03.001
http://dx.doi.org/10.1134/S1064226916110115
http://dx.doi.org/10.3390/s19224896
http://www.ncbi.nlm.nih.gov/pubmed/31717569
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Nonlinear Errors Model of INS 
	Correction of Navigation Systems by a Nonlinear Kalman Filter Modification 
	Methods of Realization of Nonlinear Kalman Filter 
	Correction in the Structure of INS 
	Development of a Nonlinear Algorithm for INS Errors Correction 

	Experimental Study and Validation 
	Discussion and Analysis of Simulation Results 
	Conclusions 
	References

