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Abstract: Differentially driven devices represent a highly promising research field for radio frequency
(RF), microwave (MW), and millimeter-wave (mmWave) designers and engineers. Designs employing
differential signals are essential elements in low-noise fourth-generation (4G) and fifth-generation (5G)
communications. Apart from the conventional planar MW components, differential–fed balanced
microstrip filters, as promising alternatives, have several advantages, including high common-mode
rejection, low unwanted radiation levels, high noise immunity, and wideband harmonic suppression.
In this paper, a comprehensive and in-depth review of the existing research on differential-fed
microstrip filter designs are presented and discussed with a focus on recent advances in this research
and the challenges facing the researchers. A comparison between different design techniques is
presented and discussed in detail to provide the researchers with the advantages and disadvantages of
each technique that could be of interest to a specific application. Challenges and future developments
of balanced microstrip bandpass filters (BPFs) are also presented in this paper. Balanced filters
surveyed include recent single-, dual-, tri-, and wide-band BPFs, which employ different design
techniques and accomplish different performances for current and future wireless applications.

Keywords: differential-fed filter; microstrip; RF; MW; 4G; 5G; bandpass

1. Introduction

In recent years, fourth-generation (4G) and fifth-generation (5G) wireless applications have been
experiencing fast development [1–16]. Signal crosstalk, interference, and high costs have a big effect on
the rapid development of radio frequency (RF) and microwave (MW) devices, while common-mode
signal causes radiation power loss of up to 25% of the input power in the millimeter-wave (mmWave)
spectrum (26–40 GHz) [17,18]. Over the last decade, many differential-fed devices, which provide high
protection to interference signals, low RF noise, and a good degree of freedom, were increasingly in
need of more attention and further studies [19]. Differential-fed filters [20,21], differential-fed power
dividers [22,23], and differential-fed antennas [24–26] are the most widely used differentially driven
microstrip devices. Therefore, in order to meet the increasing demands for multifunctional systems in
the recent wireless applications such as 4G and 5G systems, differential-fed planar bandpass filters
(BPFs) are highly required and recommended for these applications. However, many design techniques
in many proposals and research articles have been accomplished on the differential-fed (balanced)
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microstrip BPFs over the last years [27–35]. With high data rate transmissions over channels, RF, MW,
and mmWave systems operating with differentially driven ports represent a highly promising research
topic for researchers, designers, and engineers. It is expected that more and more design techniques
for balanced circuits will be proposed and developed in the next few years. It is worth mentioning
that, compared to the single-band microstrip BPFs, traditional high-order multi-band microstrip BPFs
present high insertion losses and less passband selectivity due to the metal resistance. Also, wide-band
differential microstrip BPFs are essential in the new generations of wireless systems since they can
provide higher data rate transmission and higher suppression for noise and interference signals
compared with the narrow-band balanced microstrip BPFs. In our view, for passive differential-fed
microstrip BPFs, the main important advantages can be summarized as follows:

• High noise immunity.
• High common-mode attenuation.
• High passband selectivity.
• Wide-stopband harmonic suppression.
• Low radiation power loss.
• Multi-function integration.
• High linearity.

So far, a few review papers have been introduced on the scop of balanced filters [36,37].
Arbelaez-Nieto et al. [36] reviewed and studied some basic concepts related to microwave balanced
bandpass filter structures and discussed some alternative methods to design, simulate, and measure
differentially fed microstrip BPFs. To simplify the design procedure for other researchers, the paper
has presented the step by step developments of planar differentially driven BPFs. To fully describe
differentially driven devices, mixed-mode reflection coefficients were presented and discussed generally
and this can be applied whenever a designer has a multiport circuit. Since balanced filters have a
pair of differential ports or a pair of two single-ended ports short-circuited to the ground, the authors
have also proposed a design methodology for differential-fed microstrip filters using mixed-mode
s-parameter conversion.

Feng et al. [37] proposed a survey on new balanced planar devices using dual-mode ring resonator
structures. A comparison between recently proposed balanced RF components using different design
techniques was also presented and discussed. The paper has shown that the common-mode attenuation
can be up to five times the passbands for the differential-fed filters. Furthermore, using dual-mode ring
resonators can enhance the filtering performance for differential-fed power dividers and crossovers,
and this can minimize the system size and decrease the radiation power loss. The dual-mode ring
resonator circuits can also offer more compact sizes by employing multilayer techniques [38], and
this will lead to the development of a high suppression of the common-mode noise for high data rate
transmission and high-frequency applications.

Unlike other presented reviews, our paper aims to survey and compare several design techniques
of differential-fed microstrip BPFs by focusing on recent advances and challenges. Differential-fed
microstrip BPFs can be classified according to their performance into four categories, as follows:

• Single-band differential microstrip BPFs.
• Dual-band differential microstrip BPFs.
• Tri- and quad-band differential microstrip BPFs.
• Wide-band and ultra-wideband differential microstrip BPFs.

Each category can be performed using different design techniques and structures according to
the system requirements and limitations. All these aspects will be detailed in the following sections
of this research. This survey is organized as follows: Section 2 reviews single-band differential BPFs.
Section 3 reviews dual-band differential BPFs. Section 4 reviews tri- and quad-band differential BPFs
and Section 5 reviews wide-band and ultra-wideband differential BPFs, with tables of comparisons
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between these designs follow each section. Section 6 shows the challenges and future development of
differential-fed microstrip BPFs. Finally, Section 7 presents the conclusion of our review.

2. Single-Band Differential Microstrip BPFs

Recently, many single-band differential planar BPFs based on different techniques have been
reported [39–56]. The main difference between these designs is the structures utilized. Several
types of resonators and techniques can be used to obtain a single-band differential planar BPF with
different performance. Generally, the common-mode noise suppression is an interesting topic for
high-speed and high-frequency wireless applications. The common-mode noise signals can degrade
the differential-mode transmitted signals as well as the entire power of such wireless applications.
To suppress the common-mode signals, some researchers and engineers have proposed the use of a
series of combinations of single-band differential-fed planar filters and transmission lines [39]. However,
this technique will lead to a large area and so not suitable for new demands of compact systems.
However, Ebrahimi et al. have proposed a new balanced BPF using dumbbell-shaped defected ground
structures (DGSs) [42]. The proposed DGS resonator provides the option of implementing higher-order
differential filters. Also, in comparison with similar techniques such as S-shaped complementary
split-ring resonators (CSRRs), which have similar structures in common-mode and differential mode
transmission [39], differential filters based on DGSs provide high common-mode attenuation by
utilizing two separate equivalent models in differential- and common-mode operations. Figure 1
shows a photograph of the fabricated prototype with simulated and measured differential- and
common-mode performance.
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Figure 1. The proposed differential planar filter [42]: (a) Front view of the prototype; (b) Back view of
the prototype; (c) Simulations and measurement results.

Furthermore, balun structures have an essential role in RF, MW and mmWave wireless applications
to feed different differential components such as filters, antennas and power amplifiers (PA) by
creating the differential mode signal [43]. According to this, a new technique is proposed to design a
differential-fed planar BPF and balun filter by incorporating edge- and connected-couplings [43]. In this
technique, the edge- and connected-couplings are utilized simultaneously to design differential-fed
planar BPF and Balun filter. This combination provides lower insertion loss, higher common-mode
rejection ratio (CMRR) and better stopband attenuation compared with some other design techniques
presented previously.
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Gómez-García et al. [44] presneted a new differential-fed planar filter based on asymmetrical
quasi-reflectionless design technique. The filter uses quasi-absorptive resistively ended bandstop
filter paths connected to the input and output terminals of the structure. With this case, the
nontransmitted differential input power of the stopband signal is passed to the resistor loads
of the bandstop terminals. This technique shows that the higher-order BPFs will lead to sharp
differential-mode roll-off skirts rejection and higher suppression to the common-mode signals with the
same quasi-absorptive mechanism. Figure 2 below shows fabricated prototypes of the differential-fed
planar filters for single-band and dual-band configurations and their simulated and measured
differential-mode performance.
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Figure 2. The proposed differential planar filters [44]: (a) Single-band filter configuration;
(b) Single-band simulation and measurement results; (c) Dual-band filter configuration; (d) Dual-band
simulation and measurement results.

An isosceles right-angled triangular microstrip technique was proposed and developed recently
by Rong et al. [45]. In this approach, a differential-fed bandpass filter, a balanced–to-balanced filtering
power divider and a balanced–to-unbalanced (balun) bandpass filter resonating at 10 GHz were
introduced. As shown in Figure 3a, the differential-fed bandpass filter consists of two triangular
microstrip resonators and a half-wavelength (λ/2) resonator. To perform a novel design technique,
the basic design in Figure 3a was modified to the new structure shown in Figure 3b to obtain the
balance-to-balanced filtering power divider which is introduced by employing four resonators. The
isolation between terminals 2 and 3 was improved by adding a λ/2 transmission line with a resistor
between the main two λ/2 resonators.

The simulated and measured s-parameters of the proposed balanced filter and
balanced-to-balanced filtering power divider are shown in Figure 4a,b, respectively. Moreover,
in this new study, converting the four ports differential filter to three ports circuit with one of the ports
open is also introduced and applied to design a balun filter. A photograph of the fabricated balun
bandpass filter using this technique is illustrated in Figure 5. Figure 5b shows the performance of the
simulated and measured s-parameters of the proposed microstrip balun bandpass filter.
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Figure 5. The proposed microstrip balun BPF [45]: (a) Photograph of the prototype; (b) S-parameter performance.

On top of that, further studies for this technique have been carried out by introducing a new
approach [46]. The study was originating from a careful investigation on resonant characteristics of a
right-angled isosceles triangular patch resonator, where a half-mode microstrip resonator with one
electric wall and two magnetic walls in its three edges was established. Furthermore, a third-order
differential fed bandpass filter with three finite transmission zeros was designed by accurately setting
up the coupling coefficient factors between three right-angled isosceles triangular patch resonators
and two half-mode right-angled isosceles triangular patch resonators [46]. Figure 6 shows the layout
of the proposed third-order differential BPF and the hardware realization of the fabricated prototype
with simulated and measured s-parameter responses.
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Additionally, several papers have been published recently on investigating and implementing
balanced microstrip filters based on substrate integrated waveguide (SIW) technology [47–50].
A compact balanced BPFs can be obtained by utilizing the dual-mode cavity resonators, which
reduces the number of the resonators (filter’s order) by half [47]. Despite very few works that have
been done in the literature using this technique, Hong-wei et al. have proposed a TM dual-mode
cavity resonator for differential-fed BPFs. This technique can result in a compact structure with a sharp
roll-off skirt rejection and an enhanced common-mode suppression over a wide frequency range.

To obtain cascaded short-path TE20δ-mode resonators, a differential-fed SIW BPF loaded with
transverse slots on the top layer of the structure is presented by Shen et al. [50]. This topology leads to
a compact size planar BPF with low loss. Also, the presented balanced SIW filter shows a relatively
wide 3-dB fractional bandwidth due to the introduced high coupling mechanism. Figure 7 shows the
electric field distributions of the SIW resonators, a photograph of the fabricated balanced filter, and the
simulated and measured s-parameter results.Sensors 2020, 20, x FOR PEER REVIEW 7 of 25 
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High immunity to noise and crosstalk signals, which can be offered by the differential-fed
structures, makes balanced components are widely used in many wireless communications. Therefore,
and to achieve the requirements of high-performance tunable/reconfigurable RF devices, it is highly
recommended to develop and investigate the design of tunable BPFs with differential-fed ports to
improve the integration properties [35,51–53]. During the past few years, fluidics-based resonating
technologies have been widely applied in tunable filter circuits [35,54–56]. Zhou et al. [35] presented
a novel microfluidics-based reconfigurable differential-fed microstrip filter with accurately tuned
passband transmission. The design is a second-order balanced structure and is mainly utilizing
dual-mode transmission line resonators, as shown in Figure 8. The microfluidic circuit was introduced
by employing a Teflon tube placed between the top and ground layers. The differential mode passband
with a constant fractional bandwidth was tuned by filing water into the Teflon tube, and the low
loss characteristics of the differential mode transmission band were achieved at each configuration.
The enhanced characteristics could make the presented microfluidic balanced BPF a very promised
application for the current and future wireless communications. Figure 8c illustrates the extracted
external quality factor and coupling coefficients for all configuration states of the tunable balanced
BPF, while Figure 8d shows the measured and simulated tunable s-parameter performance. The small
frequency discrepancies between measurement and simulations are due to unpredictable fabrication
tolerance as can be explained by Outerelo et al. [57]. Table 1 summarises performance comparisons for
the presented techniques of single-band differential microstrip BPFs.Sensors 2020, 20, x FOR PEER REVIEW 8 of 25 
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Table 1. Performance comparisons for some recent single-band differential microstrip BPFs.

Ref. Technique Freq.
(GHz)

FBW
(%)

IL
(dB)

CMS
(dB)

DMSS
(dB)

Size
(λg × λg)

[35] Microfluidcally tunable 2.1 21.8 0.6 >18 — 0.32 × 0.32

[42] Dumbbell 1.5 6 2.4 >30 >30 @
≤1.55 f 0

0.34 × 0.34

[44] Quasi- reflectionless 3 21 1.7 >30 — 1.69 × 1.15

[45]-I Isosceles balanced 10 6 2.35 >26 >20 @
≤2.0 f 0

0.94 × 0.94

[45]-II Isosceles FPD 10 18 4 >30 >20 @
≤2.0 f 0

0.94 × 0.94

[45]-III Isosceles balun 10 6 5 — >20 @
≤1.6 f 0

0.94 × 0.94

[49] Right-angled isosceles 2 12.9 0.5 >27.8 >26 @
≤2.0 f 0

0.51 × 0.25

[50] Substrate integrated waveguide 3.5 16 0.91 — >20 @
≤1.7 f 0

1.2 × 0.83

IL: insertion loss; CMS: common-mode suppression; DMSS: different-mode stopband suppression; FBW: fractional
bandwidth; FPD: filtering power divider.

3. Dual-Band Differential Microstrip BPFs

Unlike single-band differential microstrip BPFs, fewer numbers of balanced filter designs and
techniques have been proposed recently with a dual-band performance [58–70]. Nevertheless,
increasing demand for flexible resonant devices has led to more attention and interest in designing and
implementing of dual-/tri-/quad-band BPFs. Furthermore, more multi-functional devices and highly
efficient design techniques are required to achieve better differential-mode characteristics and higher
common-mode rejection ratio. However, and to obtain high selectivity, high-order dual-band balanced
microstrip BPFs can be used. Unfortunately, these filters present high insertion loss due to increasing
the inherent losses (metal resistance) [71]. In this section, we survey the main important and recent
dual-band balanced planar BPF design techniques and its challenges.

To overcome this challenge, balanced dual-band BPF based on high-temperature superconducting
material technology was first proposed by the research group in [61–63]. Using this technology can
offer highly efficient performance which is not affordable by using traditional materials. Ren et al. [62]
proposed a balanced dual-band microstrip BPF based on the superconducting technology and using
multi-mode close-loop stepped-impedance resonators. As shown in Figure 9a,b, the filter was firstly
designed by using a conventional square ring loaded resonator and investigated with the transmission
line model. Then, the stepped-impedance resonator structure was utilized to increase the design degree
of freedom by controlling the differential mode performance. Finally, fourth-degree balanced BPF was
introduced by modifying the previous structure and by applying a high-temperature superconducting
technique. Figure 9b,c shows the performance of the proposed dual-band superconducting BPF. It is
shown that controlling the feeding points Lf1 and Lf2 for ports 1 and 2 can improve the transfer of
the maximum power between input and output ports. Also, it is shown that the presented technique
provides good common-mode suppression of more than 20 dB in the transmission passband.

Ren et al. [66] presented a compact dual-band balanced microstrip BPF based on quadruple-mode
stepped-impedance closed-loop resonators by the same research group. Two differentially excited
modes of stepped-impedance close-loop resonators were employed to produce the dual differentially-def
bands. The admittance ratio factor of the stepped-impedance resonators was adjusted accurately to
stop the interference of the common-mode signal with the differential-mode one. To improve the
common-mode attenuation within the differential transmitted signal and to enhance the roll-off skirts
of the differential-mode signal, two compact and adjacent transmission lines were loaded to the input
and output feeding ports as seen in Figure 10a. The source-load coupling scheme was introduced and
studied to improve the selectivity and to generate more finite transmission zeros. As seen in Figure 10b,
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four transmission zeros successfully generated and this has improved the stop-band selectivity for the
differential mode performance. Furthermore, the predicted minimum common-mode insertion losses
for the first and second bands were 62 dB and 48, respectively. Moreover, it can be noticed that the
presented balanced dual-band filter has better performance than the proposed designs by Wei et al. [64]
and Chen et al. [65] in regards to the common-mode suppression and the stopband rejection of the
differential mode performance.

A new elliptic-type balanced dual-band BPF was presented by Simpson et al. [69]. To improve the
filter performance, coupling scheme synthesis was introduced and discussed in this paper as shown in
Figure 11a. In this technique, multi-resonant circuits were connected in series for elliptic-type structure
in the differential-mode excitation to enhance the common-mode rejection ratio and improve the
stopband selectivity. It should be noted that the coupling-route diagram in Figure 11a can be utilized
only for tackling the actual number of resonators and coupling circuits in the balanced bandpass
filter and can not be achieved form the single-ended coupling-route diagram presented in Figure 11b.
Figure 11c,d show a photograph of the hardware realization and the frequency responses of the
proposed balanced dual-band BPF, respectively. Compared with other similar structures [67,68], the
presented techniques can result in higher selectivity and better stopband rejection.
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Figure 11. The proposed balanced dual-band BPF [65]: (a) Coupling scheme of the proposed filter;
(b) Differential-mode single-ended coupling scheme; (c) Photograph of the fabricated prototype;
(d) Simulated and measured frequency responses.

Karimi et al. [72] proposed a new coupling system named unequal two coupled U-shaped structure
(TCUS) and applied to design a dual-band differential microstrip BPF with independently controllable
passbands. To improve the suppression level in the differential mode and the common-mode rejection
ratio, third-order Sierpinski fractal design was utilized on the I-shaped transmission line. As a result,
the proposed filter has a differential mode return loss better than 15 dB in the and a common-mode
suppression level higher than 16 dB. Also, the filter has a high rejection level of 30 dB in the upper
stopbands with insertion losses better than 0.6 and 1.8 dB in the first and second bands, respectively.
Table 2 summarises performance comparisons for the presented dual-band differential microstrip BPFs.
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Table 2. Performance comparisons for some recent dual-band differential microstrip BPFs.

Ref. Technique Freq.
(GHz)

FBW
(%)

IL
(dB)

In-Band CMS
(dB)

Number
of TZs

Size
(λg × λg)

[45] Quasi-
reflectionless 2.85/3.15 5.2/5.1 1.9/1.7 20/25 3 2.0 × 0.96

[58] Stub-loaded SIRs 2.45/5.25 9.8/4.6 2.4/4.6 53/45 3 0.38 × 0.42

[59] Coupled SIRs 2.4/5 16.4/8.6 1.78/2.53 32/32 3 0.50 × 0.70

[60] Substrate integrated
waveguide 9.47/9.96 2.9/3.1 1.89/1.73 31/30 3 2.87 × 2.95

[62] High temperature
superconducting 2.32/4.90 3.9/4.9 0.13/0.16 63/40 5 0.32 × 0.31

[64] Stub-loaded SIRs 2.5/5.8 12.9/4.5 0.77/1.56 42/38 4 0.15 × 0.37

[65] Quasi-elliptic 2.5/3.5 13/12 1.3/1.4 52/38 5 0.80 × 0.57

[66] Quadruple-Mode
SIRs 2.6/5.8 10.2/3.6 1.1/2.15 62/48 4 0.26 × 0.34

IL: insertion loss; CMS: common-mode suppression; FBW: fractional bandwidth; TZs: transmission zeros;
SIR: stepped-impedance resonator.

4. Tri- and Quad-Band Differential Microstrip BPFs

Although the responses of the balanced microstrip filters presented in the previous two sections
are quite sufficient, they are only useful for single-band and dual-band applications. Therefore, to meet
the increasing demands for multi-band wireless systems, several tri-band and quad-band balanced
microstrip filters have been proposed in the past few years [65,66,73–79]. In this section, we survey the
main design techniques recently proposed for tri-band and quad-band balanced microstrip BPFs.

The same dual-band microstrip balanced filter structures presented by Wei et al. [64] and
Ren et al. [66] have also been modified and developed to resonate at three differential-mode passbands.
A differential-fed BPF has been implemented based on five stub loaded resonators, as shown in
Figure 12 [64]. Also, two parallel λ/2 open stub transmission lines were used at the input and output
ports of the modified balanced structure, which can generate one extra transmission zero between
the dual-band passbands. Thus, the roll-off skirt sharpness has been improved, as seen in Figure 12.
The stopband bandwidth was enhanced to 13 GHz with a suppression level of more than 17 dB,
which is five times the first-mode operation frequency. A differential-fed BPF has been designed
based on two coupled six-mode stepped-impedance close ring loaded transmission lines, as shown
in Figure 13 [66]. To obtain a compact size structure, the four open-loop and center transmission
lines of the stepped-impedance ring resonators have been folded. In a similar way, and to shift
the common-mode frequencies without affecting the differential-mode performance, three T-shaped
transmission lines were employed at the center point of both stepped-impedance ring resonators.
A photograph of the fabricated prototype with the simulated and measured frequency responses is
presented in Figure 13.

A multi-stub-loaded quasi-elliptic-type technique has been used in the design of new class
tri-band balanced microstrip BPF [73]. A detailed structure of the introduced filter is shown in
Figure 14a. To realize a differential-mode filtering response, each side of the symmetry line has
three cascaded circuits of six-stub-loaded cells with two transmission lines. Additionally, to increase
the common-mode rejection ratio for the three differential passbands, two of the stub lines of each
circuit were short-circuited to the ground layer, while the other stub lines were connected to the
virtual ground utilized by the differential-fed ports. The simulated and measured frequency responses
for the differential-mode, common-mode and group delay are given in Figure 14b–d, respectively.
Compared to the filter designed by Wei et al. [64], this filter has higher common-mode rejection levels
and fewer insertion losses for the three passbands with higher bandwidths for the second and third
passbands. Furthermore, the presented technique has another attractive performance which is the lack
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of electromagnetic couplings between the transmission lines, and this has led to the low insertion loss,
simple design, and possibility for lumped-element transformation.

The square ring loaded resonator is a simple technique and suitable for multi-band wireless
applications. The design of tri-band differential BPF with a high common-mode rejection level and
wide-upper stopband bandwidth using a square ring resonator technique was recently presented
in [74]. In this work, the balanced BPF involves a ring resonator and six-loaded-stub lines, and its
frequency response was achieved by even- and odd-mode analysis. Under differential-mode excitation,
the multi-band performance of the presented square ring resonator was investigated and utilized to
construct tri-differential bands with a wide stopband rejection bandwidth. After this step, the design
was loaded with stub lines along with the symmetry line to enhance the common-mode rejection
ratio. A photograph of the fabricated prototype with the simulated and measured differential- and
common-mode s-parameters of the proposed tri-band balanced BPF is shown in Figure 15. Also, the filter
has shown a reasonable degree of freedom to control the differential-mode passband. According to
the achieved performance, and due to the attractive tri-band differential-mode frequency response
and wideband common-mode rejection characteristics achieved by this technique, the presented
differential-fed BPF has an excellent perspective on multi-mode wireless devices.
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Figure 15. Simulated and measured differential- and common-mode performance of the balanced
tri-band BPF with a photograph of the fabricated prototype [74].

Besides, complementary split-ring resonators [75] and octo-section stepped-impedance ring
resonator [76] have also been introduced in the literature as new topologies for the designing of tri-band
balanced BPF. Zhang et al. [77] introduced a novel differential-fed tri- and quad-band microstrip BPFs
with controllable bandwidths using a slotline coupling feed technique. Figure 16 shows the simulated
and measured differential- and common- mode frequency responses and a photograph of the hardware
realization of the proposed tri- and quad-band balanced BPFs. For differential-mode excitation, the tri-
and quad-band responses were obtained by three- and four-λ/2 resonators, respectively, which are
utilized for specified resonant frequencies. In addition, the coupling coefficient factors and external
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quality factors of each differential-mode resonant frequency have been adjusted independently and
thus, the operational bandwidth of each bandpass has been also controlled. It is worth mentioning
that the presented quad-band differential-fed BPF was the first-ever introduced in the literature.
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Figure 16. Simulated and measured results and photographs of the prototypes [77]: (a) Tri-band
differential-fed BPF; (b) Quad-band differential-fed BPF.

Also, a differential-fed quad-band microstrip BPF with adjustable center frequencies and
bandwidths using slotline technique was presented by Wei et al. [78]. In the differential-mode excitation,
the resonant frequencies of the four passbands have been adjusted by altering the electrical length ratio
of each asymmetric short stub-loaded resonator while the operational bandwidths have been controlled
by changing the gap dimensions between the resonators itself and the interdigital transmission lines.
Figure 17 shows a photograph of the prototypes and simulated and measured performance of the
proposed quad-band balanced filter. Table 3 summarises performance comparisons for the presented
papers in the literature with the scope of tri- and quad-band differential microstrip BPFs.
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Table 3. Performance comparisons for some recent tri- and quad-band differential microstrip BPFs.

Ref. Technique Freq. (GHz) FBW (%) IL (dB) In-Band
CMS (dB)

Number
of TZs

Size
(λg × λg)

[64] Stub-loaded
SIRs 2.5/3.5/5.8 13.2/3.1/3.5 0.8/2.3/2.4 32/31/32 6 0.18 × 0.38

[66] Quadruple-Mode
SIRs 1.9/3.3/5.8 4.74/8.6/2.78 0.94/1.2/1.93 54/27/32 5 0.91 × 0.23

[73] Multi-stub-loaded 1.5/2.1/2.7 12/7.3/7 0.74/1.3/1.4 37/59/48 7 0.74 × 0.74

[74] Multi-mode
SRLR 2.4/3.5/5.2 1.2/2/1.52 0.71/0.9/0.67 38/32/25 6 0.56 × 0.43

[77]-I Slotline
coupled-feed 2.4/3.5/5.2 9/5.5/4 2.4/3.5/3.6 33/33/33 6 0.30 × 0.25

[77]-II Slotline
coupled-feed 1.54/2.15/3.6/5.2 11/4.9/8.8/5 1.9/2.8/3.7/4.6 >32 5 0.45 × 0.32

[78] Balanced MS
transition 2.54/3.46/4.5/5.2 6.45/5.68/3.93/4.91 1.58/1.78/2.23/2.45 >41 8 0.59 × 0.42

IL: insertion loss; CMS: common-mode suppression; FBW: fractional bandwidth; TZs: transmission zeros;
SIR: stepped-impedance resonator; SRLR: square ring loaded resonator; MS: microstrip/slotline.

5. Wide-Band and Ultra-Wideband Differential Microstrip BPFs

The research on wide-band and ultra-wideband systems is an attractive topic for current and
future wireless applications due to the preferable functions to deal with high data rate transmissions.
Wide-band and ultra-wideband BPFs are one of the fundamental elements of wide-band MW/RF
communications, which has been deeply investigated in the literature [79–86]. Nevertheless, there
has been little attention paid to wide-band and ultra-wideband differential microstrip BPF designs
in the past few years [87–96]. Despite the good common-mode attenuation that has been obtained
in these filters, the roll-off skirts and insertion losses of the differential mode passbands still require
some improvements.

Recently, some design techniques for balanced wide-band microstrip BPFs have been
introduced [87–91]. One technique is using input-/output-coupled lines with open- and shorted-circuit
transmission stubs [87], which can provide sharp roll-off rejection and high stopband suppression
levels. According to this, two new wide-band differential-fed microstrip BPFs have been proposed.
The first wide-band differential filter utilized by four shunt-connected λ/2 transmission lines as
shown in Figure 18a. Even and odd mode analysis was carried out and four finite transmission
zeros were successfully generated for the differential- and common-mode excitation. The second
wide-band differential filter based on asymmetric open- and short-circuit stubs by replacing the
two λ/4 transmission lines of the first filter by two λ/2 resonators, as shown in Figure 18b. For the
common-mode operation, five finite transmission zeros have been realized and thus the stopband
rejection level has been enhanced. Figure 18a,b shows the photograph of the fabricated prototypes and
the s-parameter performance for the presented wide-band balanced BPFs. A similar approach has
been applied to design a simple structure wide-band balanced BPF using three λ/2 transmission lies
resonators [88]. The new technique does not require two symmetric circuits along the central line of
the structure and therefore a compact size has been obtained.

Sans et al. [89] proposed a compact wide-band differential-fed BPF with wide-stopband restriction
for the common- and differential-modes and based on integrating multisection stepped-impedance
resonators with interdigital capacitors. This technique combines an aggressive-mapping optimization
(that transforms the components of the electronic circuit into the required filter structure) with pre- and
post-optimization algorithms required to find the best position of the finite transmission zeros. Filter size
and the common- and differential-mode wide-band rejection characteristics are the main advantages
of the presented technique. Figure 19a shows a photograph of the prototype differential-fed BPF
which was obtained by using photomask etching. Figure 19b illustrates the simulated and measured
s-parameters for the differential- and common-mode operation of the presented wide-band BPF.
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More recently, a compact wide-band balanced BPF based on coupled line resonators and two
pairs of lumped capacitors has been presented by Dong et al. [90]. The loaded capacitors have been
combined with the even- and odd-mode impedances of the coupled transmission lines and this has led
to the generation and adjustment of three transmission poles and four finite transmission zeros under
the differential-mode excitation and three finite transmission zeros under the common-mode excitation.
On top of that, and unlike the previously reported technique, the surface plasmon polaritons technique
is also another new technique that has been reported by Liu et al. [91] for wide-band balanced BPFs.
The surface plasmon waveguide has lowpass and slow-wave properties, while the microstrip patch
has a highpass response with intrinsic common-mode suppression properties. Integrating these two
components will lead to a new wide-band balanced BPF with improved common-mode rejection ratio
and better stopband differential-mode performance as proved in this paper. The presented filter is
symmetric along the centerline of the design with differential-fed ports. Longitudinal slots were loaded
on the ground layer, and this provides a mode conversion from microstrip patch to surface plasmon
polaritons waveguide. Figure 20 shows a photograph of the fabricated prototypes and simulated and
measured s-parameters for the proposed balanced wide-band BPF.
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On the other hand, few numbers of design techniques for balanced ultra-wideband microstrip
BPFs have been reported recently [92–96]. One technique was presented by using half mode dumbbell
defected ground structure to design a compact ultra-wideband differential-fed BPF [92]. In this paper,
a T-shaped multimode resonator with a short-circuit stub was used to obtain the ultra-wideband
performance. Also, a half-mode defected ground structure was presented to the patch layer to
obtain a compact design with a wideband common-mode rejection performance. Moreover, another
ultra-wideband differential-fed BPF based on a low-cost liquid-crystal polymer material was recently
presented by Aliqab et al. [93]. The main target of this technique is to design new, cheap, compact
and simple balanced BPF by cascading two baluns structures. Figure 21 illustrates a photograph
of the fabricated prototypes and simulated and measured s-parameters for the proposed balanced
ultra-wideband BPF. Table 4 summarises performance comparisons for the recently proposed wide-band
and ultra-wideband differential microstrip BPFs.
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Table 4. Performance comparisons for some recent wide-band and ultra-wideband differential
microstrip BPFs.

Ref. Technique Freq. (GHz) FBW (%) IL (dB) CMS (dB) Stopband (dB) Size (λg × λg)

[87]-I Symmetrical/asymmetrical
coupled lines 5 30 < 2 >4 5 >20 @

≤2.9 f 0
0.65 × 0.60

[87]-II Symmetrical/asymmetrical
coupled lines 5 25 < 2 >50 >25 @

≤2.9 f 0
0.65 × 0.50

[88] Half-Wavelength Lines 1.8 57.8 < 0.27 >20 >20 @
≤0.67 f 0

0.26 × 0.26

[89] Multisection
mirrored SIRs 1.8 55.4 < 1 >28 >22 @

≤3.6 f 0
0.48 × 0.51

[91] Slotline surface
plasmon polaritons 4.2 147 < 1.7 >55 >30 @

≤6 f 0
2.95 × 0.89

[93] Liquid-crystal polymer 6.85 118 < 1.1 >35 — 0.94 × 0.94

IL: insertion loss; CMS: common-mode suppression; FBW: fractional bandwidth; SIRs: stepped-impedance resonators.

6. Challenges of Balanced Microstrip BPFs and Future Development

Over the last few years, RF designers, researchers, and engineers have investigated
balanced/differential microstrip BPF design techniques as alternatives to the existing approaches
and topologies to develop high differential- and common-mode performances. Compared to the
single-ended BPFs, some essential challenges are accompanying double-ended (balanced) BPFs, which
have both differential-mode excitation of improved stopband suppression and common-mode excitation
of enhanced common-mode rejection ratio. As can be observed from the previous sections of this paper,
if the bandwidth of the differential-mode response increased, the common-mode rejection ratio will be
decreased, and this can be considered as a common challenge for all differential-fed BPFs. To overcome
this challenge, some differential-fed BPFs with a wideband common-mode rejection ratio by employing
dual-mode ring resonators were introduced in [35,37,48,49]. Also, since the differential-fed filters
should be designed with symmetrical structure, therefore these filters should be two times the size of
the single-ended ones, and thus the size reduction will be an essential challenge for the balanced BPFs.

For multi-band balanced BPFs, several techniques have been used such as stepped-impedance,
coupled-line and substrate integrated waveguide resonators. However, the filter presented by
Liu et al. [76] using an octo-section stepped-impedance resonator can offer the advantage of a
high common-mode rejection ratio with wide-stopband suppression. Nevertheless, the isolation
between the adjacent bands as well as the roll-off rejection should be further improved to meet the
prospective high-performance specifications of the current and future wireless applications. Also,
classical high-order multi-band differential-fed filters present high insertion loss performance because
of the inherent copper resistance. This problem has also been solved by using high-temperature
superconducting techniques to obtain a very promised performance which is not affordable using
traditional materials [63,64].

Wide-band and ultra-wideband differential microstrip BPFs are essential and essential components
of the future wide-band wireless applications to tackle the high speed and high data rate transmissions.
For these BPFs, it is noticed that the size, insertion losses, and differential-mode bandwidth should also
be taken into consideration and carefully investigated by the designers. Most of the proposed wide-band
and ultra-wideband balanced BPFs are designed based on single-layer microstrips. Therefore, it should
be pointed out that using liquid crystal resonators and low-temperature co-fired ceramic can enhance
the common- and differential-mode suppression, thus improving and developing the performance of
the wide-band communication systems [93–97].

Differential-fed BPFs based on substrate integrated waveguide techniques can be used for mmWave
applications to obtain lower losses and higher quality factors and more power handling capability
when compared with traditional planar BPFs [47–50]. Nevertheless, using these techniques can present
some challenges, such as the improvement of bandwidths and reduction of the losses and sizes of the
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filters. From the presented review, the design technique presented by Shen et al. [47] can overcome
these challenges by using only one single-layer half-mode substrate integrated waveguide resonator
with four slots. As one of the microwave components, differential-fed microstrip BPFs can also be
designed, analyzed, and optimized using artificial intelligence, neural networks, and bio-inspired
optimization techniques [98,99]. These approaches can be utilized for future differential-fed microstrip
BPF designs since these double-ended structures require more analysis and parameter studies than
single-ended structures. Therefore, using these approaches can lead to overcoming many of these
challenges by considering and dealing with many variables simultaneously. It is anticipated that more
novel fully balanced microstrip BPFs will be seen in the near future.

7. Conclusions

Up-to-date detailed reviews of differential-fed (balanced) microstrip BPF design techniques,
challenges, and future developments are presented in this paper. Single-,dual-,tri-, and wide-band
differential-fed microstrip BPFs are surveyed, which employ several design techniques for current and
future wireless applications. A comparison between different design techniques and structures is also
presented and discussed in this paper by focusing on the main important and recent contributions
in the balanced microstrip BPFs. Compared with the single-ended BPFs, the presented balanced
designs have the advantages of high common-mode wideband attenuation, high noise immunity, high
passband selectivity, and wide-stopband harmonic suppression with low levels of radiation power
loss in wireless systems. From these reviews, we have also concluded the main challenges and future
developments of balanced microstrip BPFs filters. Despite certain limitations, we anticipate that more
new, promising, and multifunctional differential-fed BPFs will be seen in the next few years.
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