ﬂ SCNSors m\py

Article
Hardware/Software Co-Design of Fractal Features
Based Fall Detection System

Ahsen Tahir ¥**{, Gordon Morison !, Dawn A. Skelton 3 and Ryan M. Gibson !

1 School of Computing, Engineering and Built Environment, Glasgow Caledonian University,

Glasgow G4 0BA, UK; Gordon.Morison@gcu.ac.uk (G.M.); Ryan.Gibson@gcu.ac.uk (RM.G.)

Department of Electrical Engineering, University of Engineering and Technology, Lahore,

Punjab 54890, Pakistan

3 School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK;
Dawn.Skelton@gcu.ac.uk

*  Correspondence: ahsen.tahir@gcu.ac.uk

Received: 5 March 2020; Accepted: 16 April 2020; Published: 18 April 2020 lclrl])e':lcrt]:);
Abstract: Falls are a leading cause of death in older adults and result in high levels of mortality,
morbidity and immobility. Fall Detection Systems (FDS) are imperative for timely medical aid and
have been known to reduce death rate by 80%. We propose a novel wearable sensor FDS which
exploits fractal dynamics of fall accelerometer signals. Fractal dynamics can be used as an irregularity
measure of signals and our work shows that it is a key discriminant for classification of falls from other
activities of life. We design, implement and evaluate a hardware feature accelerator for computation
of fractal features through multi-level wavelet transform on a reconfigurable embedded System
on Chip, Zynq device for evaluating wearable accelerometer sensors. The proposed FDS utilises a
hardware/software co-design approach with hardware accelerator for fractal features and software
implementation of Linear Discriminant Analysis on an embedded ARM core for high accuracy and
energy efficiency. The proposed system achieves 99.38% fall detection accuracy, 7.3 x speed-up and
6.53 x improvements in power consumption, compared to the software only execution with an overall
performance per Watt advantage of 47.6x, while consuming low reconfigurable resources at 28.67%.

Keywords: fall detection; wearable sensors; classification; machine learning; fractal features;
hardware software co-design; FPGA; reconfigurable design; embedded system on chip

1. Introduction

Falls are the highest cause of death from injury in individuals over the age of 65, resulting in
high mortality, morbidity and immobility [1]. Falls produce a high cost for the National Health
Service (NHS), with associated costs over £2 billion and 4 million bed days per year [1]. Fall Detection
Systems (FDS) provide aid and support for individuals who live alone and may not be able to call
for prompt medical aid due to injury or unconsciousness. Additionally, fall detection systems have
been reported to obtain 26% and 80% improvements for hospitalization and death rates by providing
immediate medical aid on fall event detection [2]. FDS detect and classify falls from other movements
of a human body caused by Activities of Daily Life (ADL).

The movements of a human body are a result of complex non-linear interactions between
feed-forward spinal circuitry and feed-back mechanisms from muscles, skin and various senses [3].
It is a non-linear dynamic system, which can be modelled as a chaotic system and analysed with chaos
theory and fractal dynamics. While, the present work in non-linear dynamic systems understands
the human body as a chaotic system and is limited to walking activity and gait analyses. There is
a significant gap in understanding of the non-linear dynamics of falls through fractal analysis of
accelerometer signals for falls and ADL.
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Fractals are self-similar structures where the whole is similar to its parts. Self-similarity in
structures or patterns can be approximate and limited to one or more parts. Self-similarity can
also be statistical in nature. Many real world objects show statistical self-similarity where statistical
properties are similar at different scales. Statistical self-similarity may manifest in time varying
signals. However, sensor signals do not need to be truly fractal in nature. The fractal dimension
has a positive correlation with irregularity of a signal, according to Mandelbrot [4] and can be used
as a measure of signal irregularity. Our work first determines if such an irregularity measure of
the signal is a discriminant feature for classification of falls from ADL. While many fractal analysis
methods have been proposed in literature, our work utilises Autoregressive Fractionally Integrated
Moving Average (ARFIMA) for fractal analysis, since the technique has the advantage of solving the
problem of biased overestimation and higher errors of fractal parameters for complex processes [5,6],
such as human movements and activities. ARFIMA works with stationary signals and non-stationary
signals can be analysed with ARFIMA by first conversion to stationary signals [7]. Once the signal is
converted to a stationary signal, ARFIMA is applied and fractal parameters are calculated. The fractal
parameters are then determined for the original non-stationary signal through conversion from the
stationary signal parameters [7]. Therefore, stationarity testing is imperative for such an approach.
For stationarity testing fall and ADL signals are analysed with Augmented Dickey-Fuller (ADF) and
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) tests in Section 4.2 for a rigorous treatment to understand
the stationarity characteristics and provide empirical evidence of non-stationarity. For non-stationary
signals it is important to find the order of difference for conversion to a stationary signal. ARFIMA
modelling is performed in Section 4.3.1 using a public fall dataset by Kwolek et al. [8] discussed in
Section 3. ARFIMA modelling in Section 4.3.1 shows that fractal parameters are useful discriminant
features to classify falls, to the best of our knowledge, fractal parameters have not been used to classify
falls from ADL. While, ARFIMA provides robust analysis, it requires development of ARFIMA models
and careful inspection of goodness of fit functions to determine the fractal dynamics, which is not
appropriate for real-time classification events. The relationship of Discrete Wavelet Transform (DWT)
with fractal computations [9,10] is leveraged for real-time implementation on an embedded wearable
device for fall detection.

Hardware reconfigurable design of a fall detection system can satisfy the design constraints of high
performance per Watt to enable real-time implementation with computationally intensive algorithms
for higher accuracy requirements. Embedded multicore FPGAs are a suitable platform for hardware
implementations and acceleration of intelligent systems/machine learning models on embedded
devices and provide good performance to power ratio [11,12]. A real-time sustainable operation
requires low power consumption and high throughput with high performance per Watt for a multi-level
wavelet transform and fractal features extraction process for FDS. The high throughput and low
latency achieved with reconfigurable design can provide system scalability for multiple multichannel
sensors at a low power budget. One of the major contributions of our work is a reconfigurable
accelerator design which leverages multi-level DWT for real-time fractal computations performed
directly on non-stationary signals, since ARFIMA method is not feasible for an embedded low latency
implementation. We utilise a hardware/software co-design of a fall detection system to satisfy the
design constraints of high performance per Watt to enable real-time implementation of computationally
intensive parts of the algorithm. The hardware accelerator for multi-level DWT and fractal features
leverages various design innovations and optimizations. Pipelined arithmetic trees are utilised for
convolution operations and variance computations. Memory system optimizations are performed
to provide required throughput to the arithmetic trees through cyclic two-port memory blocks.
DWT convolution and subsequent downsampling operations are optimised into a single operation by
skipping alternative computations and storing filter coefficients in flipped form. The number of clever
design optimizations and their results are discussed in Sections 7.1 and 8, respectively. The fractal
dimensions along with the DWT low pass coefficients obtained as a byproduct of fractal computations
from the hardware accelerator are passed on as features to the embedded ARM core for machine
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learning classification. A Linear Discriminant Analysis (LDA) classifier is then applied to the feature
set for classification of falls on an embedded ARM core in the SoC device. We show that with fractal
features and DWT coefficients, classification of falls from ADL provide high accuracy of 99.38%,
a high throughput, low power consumption and high performance per Watt for a hardware/software
co-designed system. The main contributions of our work are as follows:

e  Fractal analyses undertaken to explore the irregularity of accelerometers for stationary and
non-stationary fall/ADL signals.

¢  Fractal features utilised as irregularity metric of the signal for fall detection and classification for
the first time, to the best of our knowledge.

¢  Energy efficient hardware accelerator for high throughput and maximal re-use of computation
blocks for the feature extraction process.

e Multi-level DWT and fractal features clever design innovations and optimizations, including
pipelined arithmetic trees for fractal computations, cyclic two-port memory optimizations,
convolution and subsequent downsampling optimization through a single operation etc.

e  Hardware/software co-design of a portable FDS system for sustainable operation and real-time
classification, evaluating wearable accelerometer sensor.

¢ Higher performance and accuracy of 99.38% than existing hybrid vision and accelerometer fall
detection systems.

*  Low power and latency optimised design with high performance per Watt of 46.7 x.

2. Related Work

Current fall detection systems have a significant focus on using machine learning algorithms
and can be classified into sensor-based [13-17] and vision-based [18-23] systems. The data obtained
from sensors or camera is processed to extract features for classification of human movements as falls.
Most sensor-based FDS have employed acceleration data [8,16,24,25]. Gibson et al. [25] evaluated
accelerometer data with wavelet transforms and principal component analysis to detect falls and
utilise compressive sensing based techniques to reduce transmission information. They further utilise
multiple classifiers with a majority voting system to improve performance over a single classifier for
robust classification [24]. Sukor et al. [16] used accelerometer data from the MobiFall dataset [26] for
signal processing and features selection. A number of time-domain and frequency domain features
were used including Spectral Density and Spectral Energy. Kwolek et al. [8] applied support vector
machines with accelerometer signals and image evaluation for fall detection. Hsieh et al. [13] presented
the hierarchical fall event algorithm that uses a dual threshold and machine learning based approach
for detection of falls from triaxial accelerometer with sensitivity, specificity and accuracy values
above 98%. Zhong et al. [17] presented a real-time algorithm system based on the thresholds of velocity
and displacement to classify falls. A second order filter was applied to the signal to minimize the
impact of drift on vertical velocity.

Current work on chaotic and fractal analysis of human movements is limited to gait analysis
and human walk. Human gait models have been determined to possess elements of chaotic systems
in [27]. A local dynamic stability analysis of walking activity and human gait has determined a
positive Lyapunov Exponent (LE) [28-31]. A positive LE is a signature characteristic of chaotic
systems and a measure of sensitivity to small perturbations. Recently, [28,32] have associated local
dynamic stability with the risk of falls. Morbidoni et al. [33] utilise electromyography signals for deep
learning classification of stance, swing phases during natural walking. Pairot et al. [34] determined
the validity of commercially available, wearable sensors by monitoring gait during running and
concluded that only few metrics measured by commercially available sensors are valid. Park et al. [35]
developed a real-time healthcare monitoring system for monitoring gait and vital signs, and utilised
machine learning classification for health conditions, such as disordered gait and onset of stroke.
Margiotta et al. [36] utilised a wearable device wireless system to analyse time gait variability,
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for early diagnosis of health conditions. Nguyen et al. [37] captured gait characteristics with
multiple wearable body sensors and performed gait classification to determine subject groups with
abnormalities. Schneider et al. [38] proposed a gait analysis system to determine gait parameters and
speed. The authors utilised a camera and an accelerometer sensor for discriminating various gait
speeds through frequency domain gait features. Coviello et al. [39] utilised embedded devices with
inertial sensors to propose a large multi-sensor platform for measurement of activities through reduced
single node complexity and guaranteeing time synchronization for acquired samples. Sahoo et al. [40]
proposed an early detection technique for inertial sensor based system to detect gait events early and
reduce the effect of delay in powered prosthetic and assistive devices. Apart from stability analysis,
fractal dynamics of walk and human gait has also been analysed in [41-43]. Fractal dimensions
have been used in biomedical systems for detection of anomalies [44,45]. Koutsiana et al. [44]
evaluated fractal dimensions on wavelet transformed data for detection of fetal heart sounds,
while Zhang et al. [45] used fractal dimensions to detect brain anomalies. current work has not
investigated fractal features for training machine learning algorithms for fall and activities, let alone
an embedded reconfigurable device implementation.

Recent published work with FPGAs and SoCs with programmable logic resources such as the
Xilinx Zynq system either do not provide power consumption analysis or suffer from lower accuracies
with accelerometer sensors for fall detection. Vision-based approaches have limitations, while higher
accuracy is also achieved at the cost of higher power consumption. Senouci et al. [46] utilised
spatio-temporal information from camera images including wavelet transform, object bounding
box height, width, aspect ratio and motion variation with hardware acceleration on a Zynq device to
classify falls in real-time with Support Vector Machine (SVM) and Adaboost algorithms. However,
their implementation did not give any power consumption values. Ali et al. [47] implemented a
sensor-based FDS on a Zynq System on Chip (SoC) device which applies DWT and PCA for feature
extraction and a binary decision tree for classification. The system suffered from lower accuracy and
no power consumption analysis has been performed. Ong et al. in [48,49] presented an FPGA-based
architecture for visual fall detection with a CMOS camera. They achieved a frame rate of 60 fps for
VGA resolutions of 640 x 480 with a pixel processing pipeline which implements feature extraction.
Furthermore, the design is optimised in [49] for power giving a reduction of up to 33% in power
consumption from their initial design. The technique not only suffered from the limitations of a
vision-based systems, but resulted in a high power consumption of 5.2 W which is not feasible for an
embedded wearable device. Abdelhedi et al. [50] proposed an FPGA based solution for fall detection
on a Zybo board with a single accelerometer. Their work used threshold method with the sum-vector
of three accelerometer axes and the body tilt angle for fall detection. All the processing is performed
in software on the ARM core, while only the detection decision is sent to the programmable logic for
fall detection indication (blinking LEDs). The work was further expanded in [51] by implementing a
hardware core for the above mentioned operations in programmable logic on a Zybo FPGA board.
To the best of our knowledge, this is the first implementation of a fractal feature accelerator using
multi-level DWT for classification of falls from ADL.

3. Fall Detection System Overview

The proposed fall detection system concept is illustrated in Figure 1 and is designed to evaluate
wearable accelerometer sensors with efficient machine learning algorithms implemented on an
embedded reconfigurable Zynq device.

While the proposed Zynq SoC design is potentially a prime candidate for a wearable/body
mounted configuration, in this work, the proposed system is designed as a Zynq device base station
for portability, sustainability and scalability, and performs ADL/fall classification and detection
derived from dataset signals.The fall classification and detection decision is transmitted from the
Zynq SoC device to the wireless router, from where a medical aid centre is notified for an immediate
medical response.
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The Zynq SoC device is a development board and consists of dual-core ARM processor and
a Programmable Logic (PL) core. The Zynq device has 6.3 in x 6.3 in dimensions with a SoC
measuring 19 mm x 19 mm. The Zynq board includes 256 KB on chip RAM, 512 MB board RAM,
Serial Peripheral Interface (SPI) and Inter-Integrated Circuit (I2C) interfaces and 12-bit Analog to Digital
Converters (ADC). The system has on chip voltage and temperature sensors. External accelerometer
sensors can be connected wirelessly to the board or directly through the ADC and communicate
directly with the PL. The device works with 12 V battery operated or external power converter. The
movement signals can be obtained from any wearable accelerometer sensor in units of G-force (g),
with similar specifications to the dataset by Kwolek et al. [8], against which the design is validated.
The proposed Zynq SoC design is compatible with accelerometer sensors, such as x-IMU [52] and
ADXL345-EP [53] which have a programmable sampling rate of 32 Hz and a full scale range of —8
to +8 g at 12-bit resolution. Window segments of 128 samples from each of the tri axis acceleration
signals ay, ay and a, along three axes of motion x,y and z are processed to obtain the sum vectored

signal a’ = /a2 +ay? +a,2. The process captures the signal variations along the three axis of
motion into a single signal and reduces the processing time. The mean p, of the sum vectored signal
a’ = {a’'(n)} where n = {1,...,128}, is computed and the sum vectored signal is zero meaned,
a = a’ — py. The zero mean signal a = {a(n)} for n = {1,...,128} is then wavelet transformed
with a Daubechies-4 DWT function to obtain the DWT approximation .4; and detail coefficients
D at level 1. The process is repeated 4 times to achieve a 4-level wavelet transform with a DWT
output signal of size [1 x 8] for each of the approximation and detail coefficients. The variance of
the DWT detail coefficients D; and the variance 02 = YN _; (a(n) — 1s)?/ (N — 1) of the zero meaned,
sum vectored accelerometer signal a with mean y, = 0 and N = 128 are used for fractal analysis,
since the variance of detail coefficients can be utilised to determine fractal dimensions according to
Equations (25)—(27). The fractal dimensions along with the mean y, and variance Uﬂz, of the sum
vectored accelerometer signal a’ = {a’(n)} forn = {1,...,128} and DWT approximation coefficients
Ay at level 4 are used as a feature set for classification and detection of falls. The classification is
carried out on the feature set with machine learning classifiers on the ARM core of a reconfigurable
embedded system, as shown in Figure 1. Multiple DWT level analysis is a computationally intensive
process and requires hardware implementation to investigate resource usage with associated DWT
levels and fall detection accuracy. The fractal dimensions are calculated from the wavelet coefficients
on the reconfigurable logic hardware accelerator.
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Dataset: The proposed DWT based fractal feature and machine learning algorithms for FDS
were trained, tested and validated with Matlab and publicly available fall accelerometer data by
Kwolek et al. [8]. The data consists of falls and various activities of daily life including walking,
kneeling, picking up objects, standing up, sitting down and lying. The data is obtained from an Inertial
Measurement Unit with 12 bit three axis accelerometer and 16 bit gyroscope. The device was worn with
the pelvis by 5 individuals who performed different kind of falls, including backward, forward and
lateral falls. The data obtained from sensors is transmitted wirelessly from the device through Bluetooth.
The sampling rate of the accelerometer is 32 Hz (overall sampling rate is 256 Hz for multichannel
sensors). In our work, we utilise the accelerometer data for testing proposed features and algorithm.
The accelerometer sensor values vary from —8 to +8 g. Three axes of accelerometer values are shown
in Figure 2 with 128 sample segments for fall activity. Samples from each of the activities were used
for training and validation of the proposed architecture. The input accelerometer data and the target
outputs are stored as C arrays in the Xilinx Software Development Kit (SDK). The arrays are loaded
into the Zynq memory and the accelerometer values are read in a loop. The data values are used as
inputs into the hardware accelerator and the output features obtained from the hardware accelerator
are used for LDA classification algorithm executed on the ARM core. The classification results obtained
are then compared with the target outputs in the array and classification accuracy is calculated.

While the classification performance values have been computed for the given dataset.
The fractal dimension, according to Mandelbrot [4] has a positive correlation with irregularity of
a signal, and can be used as a measure of signal irregularity. The different irregularity characteristics of
fall signals is a generic observation, which distinguishes all fall signals composed of a spike with ADL.
The ADL signals are mostly composed of irregular episodic variations and hence can be distinguished
from falls based on their irregularity characteristics.
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Figure 2. Three axes accelerometer signals ax, ay and a, for falls.

4. Signal Processing and Fractal Analysis

4.1. Discrete Wavelet Transform

The Discrete Wavelet Transform is a projection of the sum vectored and zero mean accelerometer
signal a = {a(n)} wheren = {1,..., N} and N = 128 samples, on a family of basis functions ¢; x (1)
and ; (n). The family of basis functions is obtained from the translations and dilations of the scaling
function ¢(n) and mother wavelet (), which are defined as:

dix(n) =279 (27— k) M
Yiu(n) = 2729 (27 — k) @)

where k represents discrete translations and 2 are dyadic dilations. The DWT on signal a(n) can be
given as:
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Ai(k) =Y a(n)pix(n) ®3)
Di(k) =) a(n)y;x(n) 4)

n
where 4; and D; are wavelet approximation and detail coefficients for the sum vectored and zero mean
accelerometer signal a(n), respectively at level i. Index k of wavelet coefficients corresponds to the
shift index of the scaling and mother wavelet functions. The approximations also known as low pass
wavelet coefficients A; are used as an input signal in Equations (3) and (4) multiple times to produce
4-level DWT approximations A4 and details Dy. The final approximations A4 and details Dy are a
vector of size [1 x 8 ] each, as shown in FDS overview in Figure 1. The 4-level DWT approximations
Ay are directly used as features for classification in the FDS system, while the D, details are used to
compute fractal dimension features for the signal as illustrated in Figure 1. The use of fractal features in
the fall classification model is based on a fractal analysis of falls and activities, which show that fractal
dimension can be used as an irregularity metric of the signal to discriminate between falls and activities.
Sections 4.2 and 4.3 discuss stationarity tests and the fractal analysis of falls and activities, respectively.

4.2. Stationarity Tests

While there are many fractal analysis methods, such as Detrending Fluctuation Analysis (DFA)
and Power Spectral Density (PSD), the ARFIMA method has been demonstrated to be superior to
other methods for complex processes [6]. AFRIMA, however requires a process to be stationary or
converted to a stationary process for analysis. Therefore stationarity testing of falls and ADLs signals
or conversion to a stationary process in case of non-stationarity is imperative for computation of
fractal parameters. The stationarity and non-stationarity test are discussed below, and a fractal analysis
with ARFIMA is presented in next section. The ADF and KPSS tests are used for stationarity testing.
ADF assumes the signal is non-stationary and tests for the presence of unit root. The test for unit
root [54] determines if the process is non-stationary with stationary increments, i.e., first order
difference stationary. The sum vectored, zero mean signal a = {a(n)} can be viewed as a unit
root process with stationary increments in an ADF test. While KPSS test assumes that the signal
is level stationary and tests whether the assumption is correct or not, which results in a double
validation strategy.

4.2.1. Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller (ADF) test [54] determines the stationarity of the process,
which represents the human body movements responsible for signal variations. Different types
of ADF tests are available. The form evaluated here is the ADF constant stationary with no trend,
since signal values in our case do not exhibit long term time trends. However, the non-stationarity of
signals against trend stationarity are also confirmed with the KPSS test in the next Section 4.2.2 for
rigorous treatment. ADF test provides a rejection decision for a unit root process hypothesis Hy of the
form given in (5) against an alternative hypothesis H; in (6):

Ho:an)=an—1)+nda(n—1)+---+e(n) )
Hy:a(n)=ya(n—1)+0cAa(n—1)+---+e(n) 6)
where,

e Ais the difference operator with Aa(n) = a(n) —a(n —1).
* ¢(n)is an innovation process.

*  isan autoregressive coefficient with value < 1.
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The test gives a value of 0 or 1. A value of 0 means failure to reject the null hypothesis, while
1 means rejection of the null hypothesis. A p-value of less than 0.05 (5%) is used for the rejection
decision and represents 95% confidence level for accepting the alternative hypothesis of stationarity.
The hypothesis are as follows:

Null Hypothesis Hyp: v = 1 indicated by a test output of 0 means failure to reject the null
hypothesis of a unit root process. The accelerometer signal generating process is considered to
be non-stationary.

Alternative Hypothesis Hy: ¢ < 1 indicated by a test output of 1 means rejection of a unit root
process in favor of alternative model. The accelerometer signal generating process is considered to
be stationary. The Shwert rule for determining maximum lags for the ADF test [55] is given as:

N 1/4
Pmax,ADF = [12 X <100) ‘| (7)

where N is the total number of samples. The tests were performed with lag values according to
two criteria. Firstly, the ADF test was performed with the maximum lag value py,.x. Ng et al. [56]
suggested a lag length selection procedure based on first selecting the maximum lag value pu,x for p.
If the t-statistic representing the significance is greater than 1.6 then p,y is used as the final lag value
for the test, otherwise the lag was reduced by one and the process repeated. Secondly, the lag values
were obtained from Akaike Information Criterion (AIC) [57] and used for ADF tests. Different criteria
may provide different lag values for the test, since there is no single criteria which may apply to
all cases, we tested stationarity against both lag selection criterias, which confirmed same results for
the stationarity /non-stationarity tests.

4.2.2. Kwiatkowski-Phillips-Schmidt-Shin Test

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test assumes a signal is trend stationary and tests
for non-stationarity. The null hypothesis in KPSS test that the accelerometer signal generating process
is stationary is opposite to the ADF test. The null hypothesis Hj is given in Equation (8) representing a
stationary process. While, the alternative hypothesis of unit root H; is given in Equation (10).

Hy: a(n) = c(n) + An +v1(n), where 8)
c(n) = c(n—1) +va(n) ©
Hy:an)=an—1)+d.+An+e(n) (10)

where,

*  Anrepresents a deterministic trend with coefficient A and the number of samples 7.

*  d. represents drift constant.

e ¢(0) for n = 0 is fixed and represents an intercept. The subsequent values are calculated from (9).
e ¢(n)is an innovation process.

*  v1(n) represents a stationary process.

*  vy(n) is a distributed process which is identically distributed and independent with 0 mean.

The test gives a value of 0 or 1. A value of 0 means failure to reject the null hypothesis, while 1
means its rejection. A p-value of less than 0.05 (5%) is used for the rejection decision and represents
95% confidence level for accepting the alternative hypothesis of non-stationarity. The hypothesis are
as follows:

Null Hypothesis Hyp: indicated by a test output of 0 means failure to reject the null hypothesis of a
stationary process. The signal generating process is therefore considered to be stationary.
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Alternative Hypothesis H;: indicated by a test output of 1 means rejection of the null hypothesis
in favor of the alternative model. The signal generating process is considered to be non-stationary.
The rule for determining maximum lags is given by Kwiatkowski et al. [58] as:

Pmax,KPSS = \/N (11)
The tests were performed with fewer lags and the sensitivity was measured by adding more lags.

4.2.3. Stationarity Results

The results of both the ADF and KPSS tests show that both the fall and ADL signals
are non-stationary, which is indicated by positive results for the ADF tests and inability to reject
the null hypothesis. While, the KPSS tests were negative and rejected the null hypothesis with a
high confidence value of more than 95%, corresponding to a p-value of less than 0.05. Furthermore,
applying first order difference filter results in stationary signals, as supported by the results of ADF test
which rejects the null hypothesis with confidence of greater than 95% and a p-value of less than 0.05.
For ARFIMA based fractal analysis in Section 4.3.1, which requires conversion to a stationary signal, the
first difference filter operation is considered sufficient for conversion to stationary signal and is used
for computing fractional difference parameter d, related to the Hurst exponent and fractal dimensions.

4.3. Fractal Analysis: ARFIMA

The fractal parameter analysis ARFIMA is based on the modelling for better accuracy of results.
In [59], Box et al. presented a family of Autoregressive Integrated Moving Average (ARIMA) models to
introduce short-term relationships in time varying processes. ARFIMA models are a generalization of
ARIMA models based on fractional calculus. ARFIMA models can be used to find fractal dimensions
and provide a fractional value of the differencing parameter d, which is directly related to the Hurst
exponent H. The fractional value of d is bounded by [—0.5,0.5] and applies only to a stationary process.
ARFIMA can be applied to a non-stationary signal a(n) by initially converting to a stationary process
through the difference operator, s(n) = a(n) — a(n — 1). In contrast, the fractional parameter d for the
non-stationary process a(n) can then be obtained by adding 1 to the fractional parameter d for the
stationary process s(n) [7]. ARIMA models have three components: Autoregressive AR(r), Moving
Average MA(g) and the Integrated part I(d). The autoregressive AR(r) term describes the value s(n)
by a weighted-sum of previous r values and a random variable e(n):

T
s(n) =a+ Z@ls(n—l)—ke(n) (12)
=1
where 1,0, - - -, {r are autoregressive coefficients and « is a constant. The autoregressive terms decay

over time for stationary processes. The MA(g) term describes the current value s(n) by a weighted-sum
of previous q random perturbations e(n —1),--- ,e(n —1).
9
s(n) =pus+ ) 6Oe(n—1)+¢e(n) (13)
I=1

where 61,6, - - - , 0, are moving average coefficients and y; is the mean of s(1n). The integrated I(d)
part represents the order of difference d required for the ARIMA Model. It specifies whether the

observed values are directly modelled; d = 0 or their differencesd = 1,2, - - - are modelled. Given a
lag operator Ls(n) = s(n — 1) for all n > 1, where L's(n) = s(n — I).
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As(n) =s(n) —s(n—1)
= (1-L)s(n) (14)
As(n) = (1 —1L)%s(n) (15)
The ARIMA model can be described as:
r q
(1- ZZ GLN (1 =L)*(s(n) — ps) = (1 + 12 0L )e(n) (16)
-1 =1

In ARIMA models d is an integer, while in fractional ARFIMA (7, d, ) models capture fractal dynamics
with real values for d. An ARFIMA(r,d, q) model for the accelerometer difference signal s(n) can be
described by Equation (16), where the fractional difference operator A? = (1 — IL)? can be represented
by a binomial expansion for real number d with Gamma function as:

-1 =¥ (7))

1=0
= I(d+1)
_gr(l+1)r(d+1—l)

(L) (17)

with general form of ARFIMA (7, d, q) process defined as:
O(L)(1 - L)%s(n) = ©(L)e(n) (18)

where d is between —0.5 to 0.5 and represents the self-similarity of the ARFIMA process.
For non-stationary process a(n), the fractional difference value d, signal spectral exponent B,
Hurst exponent H and fractal dimension fd can then be calculated from d as:

d=d+1 (19)

B=2d (20)
_p-1

H="—— (21)

fd=2—-H (22)

4.3.1. Fractal Dimensions of Falls with ARFIMA

Estimation of fractal dimensions was performed after application of the first order difference
filter to the activity signals to convert the non-stationary process into a stationary process for ARFIMA
modelling. We fitted 20 ARFIMA (r,d, q) models with r € [0,4] and q € [0, 4] to the output of the first
difference filter and retained fractional difference d with the lowest log likelihood and AIC values for
accuracy and parsimony along with the model fitness values. For illustration purposes, the original
signals for fall, walking and picking up objects along with their first difference signals are shown
in Figure 3. While, the selected ARFIMA models for falls, walking and picking up objects with the
lowest log likelihood and AIC values are illustrated in Table 1. The fractional difference d values
of the selected ARFIMA models with best goodness of fit statistics are then utilised for computing
fractional integration coefficient d for the original non-stationary process and the corresponding
fractal dimension using Equations (19)-(22). The mean values for fractional integration coefficient
d, Hurst parameter H and fractal dimensions fd are given in Table 2 for all the falls and ADLs.
The value of Hurst exponent H = 0.49 and fractal dimension 1.01 for falls demonstrates a clear
distinction in irregularity characteristics of falls compared to ADLs. ADLs show higher irregularity
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w.r.t. the dimension parameter. It is clear from analysis that the value of fractal dimension for falls at
1.01 can act as a good discriminant for fall classification, since all other activities have relatively higher
values. The fractal dimension was not calculated for “lying” in Table 2 because of an unreliably high

11 of 29

Standard Deviation (SD) greater then the mean value, which results in a fractal dimension of 2.
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Figure 3. Original and first difference signals.
Table 1. ARFIMA model for falls, walking and picking up objects.
Activity ARFIMA AR(1) MA@1)/MA@4) Likelihood AIC d d H
Falling (1,d,1) 0.64 0.46 1144.5 —3.94 049 149 099
Walking (1,d,4) 086 21,23,19,0.8 2785 -9.27 —-048 0.52 0.02
Picking up (1,d,4) 0.9 15,1.6,1.2,04 2353 —-10.13 —-0.32 0.68 0.18
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Table 2. Hurst exponent from ARFIMA analysis.

Activity d d=d+1 H=d+05 fd=2—H
Mean SD Mean Mean Mean
Falls 1.490 0.003 1.49 0.99 1.01
Walking 0.518 0.002 0.518 0.018 1.982
Kneeling down 0.554 0.258 0.554 0.054 1.946
Sitting down 0.999  0.000 0.999 0.499 1.501
Standing up 0.99 0.007 0.990 0.490 1.51
Picking up objects  0.699  0.091 0.699 0.199 1.801
Lying 0.225 0.347 - - -

While, ARFIMA is more rigorous and robust for computation of fractal parameters for complex
processes [5,6]. The use of stationary signals, higher computations and selection of ARFIMA models are
not feasible for an embedded approach, where signals are non-stationary or stationarity characteristics
of the process are not known. DWT based computation of fractal dimensions does not suffer from the
limitations of ARFIMA and can be directly applied to non-stationary signals for real-time computation
of fractal dimensions.

5. Proposed Fall Classification with Fractal Features

This section discusses the proposed fall classification algorithm based on fractal features for an
embedded wearable device. The previous Section 4.3.1 utilises ARFIMA analysis to establish that
fractal dimension for falls is distinct with a mean value of 1.01, as compared to other activities which
have a mean fractal dimension of at least 1.5, as illustrated in Table 2. While, ARFIMA analysis is
robust and less prone to error for complex processes [5,6]. ARFIMA is computationally expensive and
requires computing various ARFIMA models for a number of different parameters before a selection
of the best-fit could be made based on goodness of fit statistic functions. Hence fractal dimension
computations based on ARFIMA analysis are not suitable for an embedded system to compute and
utilise fractal features for detection of falls in a low latency wearable device with real time constraints.
We show that such a system can utilise DWT based method for computation of fractal dimensions
for non-stationary falls and activities signals in an embedded system with low latency requirements.
The proposed reconfigurable embedded FDS therefore utilises DWT for computation of fractal features.
The mathematical basis for the DWT based method are given in next Section 5.1 and the classification
algorithm used in the FDS is discussed in Sections 5.2. While, classification accuracy improvements
with fractal features are presented in Section 5.3.

5.1. DWT Based Fractal Features

The fractal dimensions can be computed from the Hurst exponent H, which can be calculated
for non-stationary accelerometer signals by use of DWT detail coefficients [9,10]. In the DWT method,
high pass wavelet decomposition filter has a frequency band of f;/2i*1 < w < f;/2! for the ith level
wavelet detail coefficients D; for a sampling frequency of fs. The variance of the detail coefficients can
therefore be used as the power spectrum density S(w) of the original signal. The power spectrum
density of the signal can be given in terms of variance ¢ of the non-stationary, sum vectored and zero
mean signal a(n) and the power spectrum exponent B, as:

0.2

- _a
lew]lP

Replacing the above with variance of the detail coefficients results in the following equation:

S(w) (23)

2
var(D;) = (;ﬂ)ﬁ (24)
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The power spectrum exponent  can be calculated from the above equation as:

log, [02/var(D;)]

= : 25
p logs[2'] ()
The Hurst exponent H and fractal dimension fd can be calculated as:
_B-1
H= 5 (26)
fd=2-H (27)

5.2. Proposed Algorithm

The proposed algorithm performs fall detection and classification from ADLs based on features

obtained from multi-wavelet transform, mean of the signal, variance of the signal and the subsequent
computation of fractal dimensions at each level of the multi-level wavelet transform. The feature
extraction part is performed in hardware, where the classification is done on the ARM core in software.
The steps of the proposed algorithm are given below and the flow chart is illustrated in Figure 4 with
hardware and software implemented components. The following steps are performed on 128 sample
windows of accelerometer readings with 50% overlapping between the windows for each of the three

accelerometer axis.

1.

10.

11.

12.

13.

14.

15.
16.

Compute the sum vectored signal a’ using, a’ = /ax? + ay? + a,2 of the tri axis accelerometer
signals, ax, ay and a.

Compute the mean p, of the sum vectored signal a’ and convert to a zero mean signal,
a=a —p,.

Compute variance (73, of the sum vectored signal a’ to use as a feature.

Compute variance o2 of the sum vectored and zero mean signal a for computation of
fractal dimensions.

Perform Periodic padding of the zero mean signal a and compute first-level wavelet transform
approximations A; and details D;.

Compute the mean yp, and variance (71231 of the detail coefficients and use the variance ¢ of the
signal a in step 4 to compute the fractal dimension fd1 at level 1.

Perform Periodic padding of the first-level wavelet detail coefficients and compute second-level
wavelet transform approximations A and details D,.

Compute the mean yp, and variance 01232 of the second level detail coefficients and use the
variance o2 of the signal a in step 4 to compute the fractal dimension fd2 at level 2.

Perform Periodic padding of the second-level wavelet detail coefficients and compute third-level
wavelet transform approximations A3 and details Dj.

Compute the mean yp, and variance (71%3 of the third level detail coefficients and use the variance
02 of the signal a in step 4 to compute the fractal dimension fd3 at level 3.

Perform Periodic padding of the third-level wavelet detail coefficients and compute fourth-level
wavelet transform approximations A4 and details Dj.

Compute the mean yp, and variance 0%4 of the fourth level detail coefficients and use the variance
o2 of the signal a in step 4 to compute the fractal dimension fd4 at level 4.

Assemble a feature vector of wavelet approximations at level 4, A4 [1x8], mean of the sum
vectored signal, y,/ [1x1], variance of the sum vectored signal, (75, [1x1] and instantaneous fractal
dimensions, { fd1, fd2, fd3, fd4} of dimensions [1x4] at all four levels of wavelet transform.
Perform classification with LDA machine learning algorithm between falls and no falls.

In case of a fall, transmit fall event occurrence for medical aid response.

Repeat from step 1 for the next 128 sample window with 50% overlap.
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Figure 4. Flow chart of the proposed scheme.

5.3. Classification Performance of Fractal Features

14 of 29

The classification performance of the DWT based fractal features was determined by implementing
the feature extraction process and the LDA machine learning algorithm in Matlab. The algorithm
was tested and evaluated on a public fall dataset by Kwolek et al. [8]. The fall dataset [8] is discussed
previously in Section 3. The classification performance for different set of features and the proposed
scheme are evaluated in Table 3. LDA classification algorithm finds the maximum separation between
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falls and other activities by maximising between the class variance and minimising the variance within
the classes. The fractal features alone can provide high performance with significant classification
accuracy of 91.84% with LDA classifier, as compared to level 2, 3 and 4 wavelet coefficients as illustrated
in Table 3. In addition, combining fractal and wavelet coefficients results in higher accuracy of 95.61%.
Classification accuracy further increases to 99.38% for the proposed scheme, when mean and SD of the
signals are added to the feature set, as illustrated in Table 3.

Table 3. Classification accuracy for features.

LDA Classifier

Features

Accuracy (%)
Wavelet Transform Lv] 2 79.77 (£0.08)
Wavelet Transform Lvl 3 83.09 (40.08)
Wavelet Transform Lvl 4 85.76 (+0.09)
Fractal Features 91.84 (4+0.21)
Fractal, Wavelet Lvl 4 95.61 (40.09)
Fractal, Wavelet Lvl 4, Mean, SD 99.38 (+0.19)

Table 4 compares the performance of the proposed system features and classifier with
state-of-the-art work. The latest works on FDS have utilised a number of machine and deep learning
classifiers including SVM, Quadrature SVM (QSVM), Random Forest (RF), K-Nearest Neighbour
(KNN), Decision Tree (DT), Ensemble Bagged Tree (EBT), Artificial Neural Network (ANN) and deep
hybrid Random Neural Network (RNN) as illustrated in Table 4. The systems presented in [60-63]
use a large number of features as compared to our system, which utilises only four features namely,
fractal dimensions, DWT level 4 coefficients, mean and SD. The works in [60,62,63] leverage additional
gyroscopic sensors apart from the tri-axes accelerometer, while [61] uses multiple accelerometer
sensors attached to waist, chest and thigh. Our proposed system utilises only one accelerometer
sensor attached to the pelvis to achieve the best performance results. The systems in [60,62,63] utilise
ensemble learning techniques to achieve their best results along with other classifiers, such as SVM,
QSVM and KNN. The work in [64] utilises raw accelerometer values with a deep hybrid RNN classifier,
however suffers from the complexity of a deep neural network and provides 7.1% less accuracy than
our proposed scheme. The proposed system utilises the LDA classifier and fractal features to give the
best performance results in terms of accuracy, sensitivity and specificity of 99.10%, 99.90% and 99.38%,
respectively, while utilising low number of features.

Table 4. Classification Performance Comparison.

Authors KSE’18 [60] IEEE Sensors’18 [61]  PEIS19 [64]  IEEE Access’19 [62] IEEE Sensors'19 [63] Proposed FDS
Dataset Self-simulated SisFall Data [65] Fall Data [8] Public Datasets SisFall Data [65] Fall Data [8]
Tri-axes Acc., Tri-axes Acc. Tri-axes Acc. Tri-axes Acc., Tri-axes Acc., Tri-axes Acc.
Sensor
Gyro. Gyro. Gyro.
Sensor Location Hip Waist, Chest, Waist Thigh, Chest Waist Pelvis
Mean, SD, Mean, SD, Mean, Maxima, Mean, Maxima,

Energy, Entropy, Maxima, Minima, X, Y, z Axes Minima, Auto Minima, SD, Fractal and
Features Hjorth Mobility Kurtosis, Acceleration Cross Correlation Sum Vector, Wavelet Lvl

and Complexity, Skewness, Corr. Peak PSD etc. Kurtosis, 4 Features,

Sum Vector etc. Coefficients etc. Skewness etc. Mean, SD

. SVM, KNN, DT, Deep Hybrid ANN, KNN, KNN, SVM,

Classifier SVM, RF Naive Bayes RN EBT, QSVM RF LDA
Sensitivity 94.37% 98.30% - - 80.07% 99.10%
Specificity - - - - 98.27% 99.90%
Accuracy - 97.60% 92.23% 97.70% 96.82% 99.38%

6. Proposed Algorithm Performance Analysis

The software performance of the proposed algorithm with DWT based fractal feature extraction
and LDA classification algorithm was determined on an embedded ARM cortex A9 at 666 MHz with
C/C++ implementation. Xilinx SDK was used for running and evaluating embedded code.
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The multi-level wavelet transform and fractal dimension algorithms were observed to be more
computationally intensive than the LDA classification algorithm. The DWT algorithm consumed the
highest percentage of the total runtime at 51%, slightly higher than the fractal computations which
were also computationally expensive at 47% of the total runtime cost. The higher computational load
of DWT algorithm resulted from four convolution operations performed for each of the four levels
of wavelet transform. Overall, the four convolutions consume more cycles compared to the entire
algorithm with approximately 6700 cycles of the embedded ARM core, where the first convolution is
computed for 128 samples, second for 64, third for 32 and fourth for 16. The fractal algorithm computes
means and variances from the obtained DWT coefficients at each level and utilises the signal variances
to compute fractal dimensions, which is also computationally expensive. The fractal algorithm
consumes approximately 5000 cycles of the embedded ARM core. The computationally intensive part
of the fractal algorithm is the computation of variances of the wavelet detail coefficients obtained from
the four convolutions, where variance computations involve subtraction of each accelerometer sample
with the mean of the signal and calculation of the square of each term, corresponding to product of
each term with itself. The overall computational complexity of the algorithm is O(n?), which is due to
the variance computations performed in the algorithm. Moreover, the machine learning classification
performed with the LDA algorithm consumed only 2% of the total runtime cost, which was not
considered significant enough for hardware acceleration. The relative execution times are illustrated in
Figure 5a, while the run times of the proposed algorithm are shown in Figure 5b.

Due to significantly higher computational requirements, fractal computations and multi-level
wavelet transforms were accelerated with custom designed reconfigurable hardware architecture
to achieve higher dividends for power, latency and performance per Watt metrics. While LDA
classification algorithm was executed as embedded software program on the ARM processor.

Relative Run Times

Linear . )
Classifier Run Time Analysis

2%

n
=3
=1
=1

ARM Core Cycles

10711 J SO | S

Linear Classifier Fractal Dimensions DWT Level 4

(a) Relative run times (b) Run times
Figure 5. Run time analysis of the proposed algorithm.
7. FDS Hardware/Software Co-Design

The hardware/software co-design along with the hardware architecture, design and optimizations
are discussed in this section. The design flow consists of synthesizing the high level C++ code with the
Xilinx Vivado high level synthesizer to an equivalent Register Transfer Language (RTL). The RTL is
then exported in the form of a Vivado Intellectual Property (IP). The IP along with other peripherals
and the ARM core IP block are imported in the Vivado block diagram environment. The system is
synthesised and exported to the Xilinx SDK for running embedded code. The SoC consists of the
Processing System (PS) and the PL part. The PS with the ARM cores, caches, ports and controllers
is connected to the PL with the IPs provided by Xilinx as illustrated in Figure 6. The IPs required
for SoC design are Xilinx proprietary AXI protocol interconnects for AXI buses, AXI timer, the AXI
Direct Memory Access (DMA) and a PS reset module. The AXI stream interface allows the hardware
accelerator to connect to the PS through the AXI DMA IP. The DDR memory has higher throughput
than the L2 cache and L2 cache provides lower latency. Due to low latency requirements associated
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with a real-time classification task, our SoC design connects the DMA to the L2 cache through the
Accelerator Coherency Port (ACP). The ACP connects to the L2 cache via the Snoop Control Unit (SCU)
which keeps all reads and writes coherent between the accelerator and the ARM cores. A number of
synthesis optimizations were utilised for design optimisations.

ZYNQ SYSTEM ON CHIP
PROCESSING SYSTEM (PS) PROGRAMMABLE LOGIC (PL)
& Core e AXI-Lite N
g X GPO {;_J Timer
= T
8 L1
S Cache
g Accslarator M AN Wavelet &
g Snoop ) A-LLN Fractal
Cache .
ache Unit Port (ACP) DMA Accelerator
L

Figure 6. Zynq SoC design for a fall detection system.

The major parts of the design were implemented in the C/C++ high level programming language.
The algorithm implementation in C/C++ is synthesized in Xilinx Vivado HLS design suite to verify
the timing and design parameters, such as operating clock frequency and design latency. The high
level code is then further optimised by manual code restructuring/rewriting and introduction of HLS
optimization directives such as PIPELINE, LOOP UNROLL etc. The synthesis parameters are again
verified for timing and design parameters, until satisfactory results are achieved.

7.1. Hardware Acceleration

Multi-Level Wavelet Transform Hardware: The low pass filter and high pass filter wavelet coefficients
are calculated from the original signal with periodic padding and the process is repeated for
4-level wavelet transform. Next level wavelet transform is computed from the previous low pass
wavelet coefficients. The final level-4 low pass wavelet coefficients are used as features in the
classification, while the detail coefficients from each stage are used to determine the fractal dimensions.
The hardware DWT implementation is based on signal convolution with filter coefficients and
subsequent down sampling of signal values. Our implementation stores the filter coefficients in the
reverse order in block RAM and does not require flipping the filter coefficients for convolution. It allows
us to access 8 simultaneous signal samples as well as filter coefficients for Daubechies 4 wavelet from
the block RAM partitioned into 8 blocks with two reading ports each. A single loop computes both
set of wavelet coefficients low pass approximations and high pass details. The computation for every
alternate coefficient is skipped instead of down sampling later to save computation time and power.
The unoptimised and optimised DWT algorithms are illustrated in Algorithms 1 and 2, respectively.
The computation of a single coefficient is done with an eight sum of products pipelined operation
for low latency processing. The arithmetic tree for computation of wavelet transform is illustrated
in Figure 7.

Fractal Feature Hardware: The fractal dynamics is calculated for each level of wavelet detail
coefficients. The fractal dimension is based on an an efficient log to the base 2 operation of the ratio
of variance of wavelet detail coefficients to the original zero mean signal. The computation of mean
and variance is performed through arithmetic trees and the fractal dimension is calculated with the
synthesized circuit operations given in Figure 8. The algorithm is illustrated in Algorithm 3.

LDA Classifier: The coefficients obtained from LDA training are used in the classifier to evaluate
a discriminant function between falls and no falls. The classifier is implemented in software on the
processing system ARM core. The set of feature values are received from the hardware accelerator
through the ACP port connected to the AXI bus. The features are read by the ARM core and the
discriminant function is computed and the output is fed to a simple decision tree for a fall or a no
fall decision, which determines if the value is > 0 for a fall decision or not. The hardware accelerator
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is based on five design iterations. The final design is proposed as an efficient feature extraction
accelerator for classification. The latency of the proposed arithmetic circuits varied from 8.6 to 9.2 nsec

during the synthesis phase, hence a clock period of 10nsec, corresponding to the frequency of 100 MHz
was utilised for the entire design. The designs with their optimizations and code restructuring are
explained below:

Design I: The design I consists of embedding the wavelet filter coefficients in local memory,
to allow hardware to perform fast operations with low latency access to filter coefficients and
reduced main memory access operations. The intermediate result arrays used in the algorithm
are also embedded in local memory for fast read and write access. Furthermore, the functions are
inlined to take advantage of synthesis optimizations with their surrounding code.

Design II: The design Il is further optimised by adding pipelines to the padding implementation,
wavelet transform and variance calculation for computation of fractal dimensions.

Design III: The design III consists of unrolling the loops over and above design II. The loops
representing convolution operations in wavelet transform and variance computations are unrolled
by a factor of 8.

Design IV: The design IV is implemented with arithmetic trees. It only assumes elements
of design I for its implementation. The computations of wavelet transform and variance for
fractal dimensions are resolved into tree structures. It requires code restructuring and rewriting.
The loops are manual unrolled to accommodate computational arithmetic tree structures.

Final Design: The final design is based on pipelining the arithmetic trees implemented in design
IV and manual unroll. Along with the optimizations of design I and IV, here we propose the
technique of skipping the alternative computations of the wavelet filter convolutions instead of
downsampling after the convolution operation is performed. The downsampling is embedded in
the convolution computation rather than implemented separately. The integration reduces latency
and number of stages within the algorithm, resulting in savings to execution time, logic and
memory resources.

128 Sample Window

Periodic Padding
& Copy

High Pass

Low Pass Wavelet Coefficient :l High Pass Wavelet Coefficient ]
Compute Next Level Wavelet Transform Compute Fractal Dimensions

Figure 7. Hardware arithmetic pipeline of wavelet transform.



Sensors 2020, 20, 2322 19 of 29

High Pass Wavelet Coefficients for Mean Computation  High Pass Wavelet Coefficients for Variance Computation Computation of Fractal Dimensions

Signal Variance

Details Variance

DWT Level

Figure 8. Logic circuit for mean, variance and fractal dimension computations.

Algorithm 1: Discrete Wavelet Transform Algorithm.

1
2

3
4

10

11

12

13
14

15

16
17
18
19

20

Input: i <~ DWT level;
a[n] < sum vectored, zero mean signal;
N < sum vectored, zero mean signal length;
¢fny] « flipped low pass filter coefficients;
$rlny] < flipped high pass filter coefficients;
N e wavelet filter coefficients length;
ap[ny] < padded signal a[n];
Np <= N + Ny — 1, padded signal length;
out 4,[k] < low pass filter output;
outp,[k] < high pass filter output;
Aj[k] < final low pass output: Approximations;
D;[k] + final high pass output: Details;
Output: A, [k], D;[k] wavelet coefficients
Function DWT (a[n], ¢¢[ns], p¢lnsl, Ai[k], Dj[k]):
out 4 [k], outp,[k] <~ WAVELET_CONVOLUTION(a[n], ¢¢[ns], ¢ ¢[nf]);
A;[k], Dj[k] <— DOWNSAMPLING (out 4,[k], outp, [k]);
return A, [k], D;[k];
unction WAVELET_CONVOLUTION (ay [np], s [nf], s [ns]):
k< 0;
forn, € [0,1,...,Np — Nf] do
macy <— 0, macy; < 0;
fornf S [O,...,Nf*l] do
macy < macy + ap[ng +np| x glnyl;
macy < macy +ap[ng +npl X Yengl;

=

out 4.[k] <= macy;
outp, [k] < macy;
k<« k+1;

return out 4. [k], outp, [k];

Function DOWNSAMPLING (out 4, [k], outp, [k]):
forke [0,1,...,[¥] —1] do

Ailk] < out 4.[k x 2];
L Dl[k} — Outpi [k X 2];

| return A;[k], D;[k];
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Algorithm 2: Proposed Optimised Discrete Wavelet Transform.

1
2
3

'

® 9 o

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Input: i < DWT level

a[n] < sum vectored, zero mean signal

N < sum vectored, zero mean signal length

¢slng] < flipped low pass filter coefficients

p¢lng] < flipped high pass filter coefficients

Ny < wavelet filter coefficients length

ap[np] < padded signal a[n]

Np < N + Ny — 1, padded signal length

out 4, [k] < low pass filter output

outp, k] < high pass filter output

A;lk] < final low pass output: Approximations

D;[k] + final high pass output: Details

Output: A, [k], D;[k] wavelet coefficients

Function DWT(Q[H}, (Pf [T’Zf}, l[Jf [Tlf])

#pragma HLS array_partition ap[n,| cyclic 8

#pragma HLS array_partition ‘Pf[”f] cyclic 8

#pragma HLS array_partition §y[ns] cyclic 8

#pragma HLS array_partition A;[k] cyclic 8

#pragma HLS array_partition D;[k] cyclic 8

k<0

prodg[] < 0, prody[] < 0, sumgy[] < 0,sumy[] + 0

sumé7 [ 0,sumi [ « 0,sum$ [ < O,sumi <0

while 1, € [0,...,Np — Ny] do

#pragma HLS pipeline

/* Independent arithmetic trees for low and high pass filter convolutions */

prody[0] < ap[0+np] x ¢¢[0], prody[0] < ap[0+ np] x (0]

prodg[1] < ap[l+mnp] x Pr[l], prody[l] < ap[l+np] x ¢[l

prode(2] < ap[2 +np] x ¢f[2], prody[2] < ap[2+np] x Pr[2

prody (3] < ap[3 +np| x ¢¢[3], prody[3] < ap[3 +np| x Ps[3

prodp[4] < apld +np| x Pr[4], prodyl4 [4+mnp] x s[4

prode[5] < ap[5 +np] x r[5], prody[5] < ap[5+np] x P¢[5

prody[6] < ap[6 + np| x ¢¢[6], prody6] < ap[6 +np| x Pr[6
7] ] % ¢¢[7] [ [ [

]

]

]

| < ap

]

]

prody(7) < ap[7 +np| X ¢f[7], prody[7] < ap(7 + np| X P¢[7

]
]
]
]
]
]
]

| < prody[0] + prody[1], sumllp[O] < prody[0] + prody[1]
| = prody 2] + prody (3], sum}p[l] < prody 2] 4 prody[3]
| < prody[4] + prody[5], sum%b[Z] < prody[4] + prody (5]
| < prody[6] + prody(7], sumllp[3] < prody 6] + prody[7]

sumg[0] <= sumy0] + sumy[1], sum[0] < surmy[0] + sumy[1]
é (}, }’[3], sum‘?-p 1] sumllp[Z] + sum%b[B]

ny <= Np +2 // Downsampling embedded in loop

| return A;[k], D;[k]
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Algorithm 3: Proposed FRACTAL_DIM.

1
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28
29
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37

38

45

46

49

50
51

52

53
54

Input: i < DWT level

N < sum vectored, zero mean signal length
np < wavelet detail coefficients length

a[n] < sum vectored, zero mean signal
D;[k] + wavelet detail coefficients

Output: fd fractal dimensions

Function FRACTAL_DiM(a[n], D;[k], i):

#pragma HLS inline

pp < MEAN(D;[k], np)

03 + VARIANCE(D;[k], np, pip)
02 < VARIANCE(a[n], N, yy = 0)

B 1 x logy(02/0p)

H<+—(p—1)/2
fd+—2-H
return fd

Function MEAN(D;[k], np):

sumy[] < @, sumy[] < @, sums[] + @
fork €10,8,...,np — 8] do

#pragma HLS pipeline

/* Arithmetic tree with width 8 */

sumq[0] < D;[k] + D;[k + 1]

sumy D;lk + 2] + D;[k + 3]

sumq[2] < Dj[k + 4] + D;[k + 5]
3] « D[k + 6] + D;[k + 7]

sumip[0] <— sumq[0] + sumq[1]

1
[
sumy [
[
sumy[1] < sumy [2] + sumy [3]

] <
]
]+
]
]
]

sumg[0] < sumy[0] + sumy[1]

pup < sums[l]/np
return yip

Function VARIANCE(D;[k], np, up):

suby[] < @, prodq[] <+ @

sumq[] < @, sumy|] < @,sumz[] @
forke€0,8,...,np — 8] do

#pragma HLS pipeline

/* Arithmetic tree with width 8 */
suby 0] < D;i[k] — up

sub1 [7] — D,[k + 7] — UD
prody [0] <= subq[0] x subi01]

prodq[7] < suby[7] x suby[7]
suml[O]  prod1[0] + prodq[1]

Sumy [3

0
1

sums 0] <— sumy[0] + sumy[1]

<« prody[6] + prodq[7]

sumy[0] < sumy [0] + sumq [1]
sumy (1] < sumy [2] + sumy [3]
[ ]

o3 « sum3[0]/(np — 1)

2
return op,

#pragma HLS array_partition a[n] cyclic 8
#pragma HLS array_partition D;[k] cyclic 8
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Synthesis Results: The resources required for the proposed hardware accelerators are given
in Table 5. The final design uses around 3 x more resources than the design I. However, the overall
resource utilization remains relatively low at 28.67%, which is a significantly low value keeping in view
a decrease of 10x in latency compared to design I and keeps logic area low for power efficient design.

Table 5. Hardware designs resource utilization and latency.

Hardware Resources Design I Design II Design III Design IV Final Design
Used % Used %  Used % Used % Used %
LUT Logic 2516 473 2775 522 4394  8.26 5403 10.16 7222 13.58
CARRY4 141 1.06 141 1.06 139 1.05 139 1.05 139 1.05
Register 3328 313 3637 342 7370 693 10,161 955 12,853 12.08
LUT Shift Reg. 112 0.64 121 0.7 1419 816 132 0.76 147 0.84
LUT Dist. RAM 160 0.92 160  0.92 224 1.29 288  1.66 192 11
Muxes 10 0.02 10 0.02 15 0.03 10 0.02 10 0.02
Total 6902 105 7459 1134 14,265 2572 17,353 232 21,649 28.67
Block RAM 7 5 7 5 85  6.07 10 714 12 714
DSP48E 10 455 10 455 10 455 10 455 10 455
/0 119 595 119 595 119 595 119 595 119 595
Latency cycles at 100 MHz 17381 9070 3841 5423 1629

8. Hardware System Results

Power Consumption: The power consumption of the design iterations and the final design is given
in Table 6. The final optimised design consumes 0.23 W power, an increase of 4.8% over design I
with 10x improvement in latency. Furthermore, it shows an improvement of 6.52 x over the power
consumption of the ARM core at 666 MHz. The dynamic, static and total power of all designs is
illustrated in Figure 9a, while the current intake of the hardware designs is shown in Figure 9b.
The dynamic power consumption of the final design remains almost the same, however there is a
small increase in static power consumption. The current consumption verifies this since there is an
increase in static current.

Speed-Up: The final design shows a speed-up of 7.3 x over software execution as illustrated
in Figure 10. The design III with pipelining and unrolling of loops in wavelet transform and
variance computations gives around 3 x improvement over software execution, however further
improvements to design does not result in any considerable advantage but incurs high area overhead
costs. The arithmetic tree design decision with clever optimizations to code structure and flow were
deemed necessary for good results.

Performance & Performance per Watt: The performance of the design in Million Samples Processed
per Second (MSPS) is shown in Figure 9c and performance per Watt in MSPS per Watt is illustrated in
Figure 9d. The final design has the highest performance at 7.86 MSPS, an improvement of 10.68 x over
design I and a performance per Watt of 34.16 MSPS per Watt, an improvement of 10.11x over design I.
The improvements in performance per Watt over software execution are 47.6 .
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Figure 9. Power and performance results of hardware designs.

The proposed FDS is compared with current and comparable work in Table 7. The
proposed FDS demonstrated the highest accuracy, sensitivity and precision with 99.38%, 99.10%
and 99.96%, respectively. The proposed system has the lowest latency of 0.1 us/sample compared
to all the given systems. Our system achieves the lowest latency of 0.1 us/sample by utilising
pipelined arithmetic tree structures, which can process an entire window segment of 128 samples
in 1629 cycles at 100 MHz operating frequency. The processing of entire window segment with
arithmetic trees results in a higher throughput and an effective latency of 0.1 pus/sample with 128
sample bursts of data streaming into the proposed hardware design. The latest works in [66,67] have
a higher latency of 1 s, while [47,50,51] have latencies in microseconds, however they suffer form
lower classification performance. Furthermore, the proposed system also consumes relatively low to
moderate resources over all hardware implementations from design I to final design, which allows
flexibility in performance and area trade-off requirements for processing. The final design consumes
lower LUT resources than [67,68], and final optimised design in [47] with 17.63%, 18.43% and 26.29%
of the LUT resource consumption of the designs, respectively. While our final design consumes higher
LUT resources at 167% and 292% of [50,51] respectively, but has 10% higher sensitivity and 2.9% higher
specificity than both the designs. The first design iteration design I of our proposed system can be
utilised for low area/resource consumption and consumes the second lowest LUT resources of all the
designs in Table 7 with only [51] consuming 2% less resources. Design II also consumes low resources
in Table 7 with [51] consuming 10.9% less resources. Design III and IV are placed in the middle of
Table 7, in terms of LUT resource consumption, lower than [67,68], but higher than [50,51].
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Figure 10. Hardware speed-up relative to software execution.

Table 6. Hardware designs power consumption.

Hardware Resources Designl DesignIl  DesignIII Design IV  Final Design

(Watts) (Watts) (Watts) (Watts) (Watts)
Clocks 0.029 0.029 0.044 0.056 0.047
LUT Logic 0.013 0.014 0.019 0.025 0.015
CARRY4 0.001 0.001 0.001 0.001 <0.001
Register 0.001 0.001 0.002 0.003 0.001
LUT Shift Reg. <0.001 <0.001 <0.001 <0.001 <0.001
LUT Dist. RAM <0.001 <0.001 <0.001 <0.001 <0.001
Muxes <0.001 <0.001 <0.001 <0.001 <0.001
Total 0.016 0.016 0.022 0.03 0.017
Signals 0.022 0.022 0.037 0.052 0.029
Block RAM 0.02 0.013 0.018 0.026 0.016
DSP48E 0.006 0.006 0.006 0.005 0.002
I/0 0.019 0.011 0.012 0.02 0.012
Static Power 0.107 0.107 0.107 0.108 0.107
Total Power 0.218 0.202 0.246 0.297 0.23

Similarly, the proposed design consumes lower number of signal processing blocks DSP48E at 10,
while the other designs in [51,68] and the final optimised design in [47] consume 12, 28 and 70 blocks,
respectively. The unoptimised initial design in [47], however consumes half the number of signal
processing blocks but suffers from lower fall detection performance. The proposed design consumes
higher RAM blocks in order to simultaneous provide data samples and filter coefficients to pipelined
arithmetic trees, which results in the lowest latency of all designs.

All of the current and comparable works in Table 7 except the proposed system suffer from lack
of reproducible classification results. The classification performance and accuracies of the proposed
system in Table 7 are reproducible due to validation through a public dataset, while all the remaining
works lack reproducibility of results due to the use of self-simulated experiments for which data is not
available publicly. While the system in [67] also utilises the Mobifall dataset [26], however the dataset is
combined with self-simulated experiments and provides combined results which are not reproducible.
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Table 7. Proposed algorithm system comparison with current comparable work.

AICCSA’14 [47] SATI'16 [68] AICCSA’16 [50] IDT"16 [51] BHI'17 [66] TBioCAS'19 [67] Proposed System
Sensor Tri-axes Acc. ECG + Acc. Tri-axes Acc. Tri-axes Acc. Tri-axes Acc. Tri-axes Acc. Tri-axes Acc.
Method PCA + DT K-NN Thresholding Thresholding ~ Thresholding Thresholding Fractal Features

and SVM and SVM

Processor Zynq Zynq Z-7000 Zynq Z-7010 Zynq Z-7010 FPGA Virtex5 Zynq Z-7020
Frequency 121-298 MHz 100 MHz - - - 1KHz 100 MHz
Latency 97.86-2 us - 0.86 us 6.34 us 1s 1s 0.1 ps/sample
LUT 3381-27465 40955 4314 2470 - 39190 2516-7222
Flip Flops 1352-10129 24015 3815 2539 - 21750 3328-12853
BRAM 40 2 1 2 - - 12
DSP48E 5-70 28 - 12 - - 10
Validation Self-simulated  Self-simulated  Self-simulated  Self-simulated Self-simulated Self-simulated Fall Dataset [8]
Reproducibility X X X X X X v
Sensitivity - - 89.50% 89.50% 98.10% 98.60% 99.10%
Specificity - - 97.00% 97.00% 99.20% 99.10% 99.90%
Accuracy 88.40% 82.14% - - - - 99.38%

9. Conclusions

This work presents the hardware/software co-design of a novel fall detection system based on
fractal features for learning and classification. Fractal dimensions capture irregularity characteristics of
the signal and provide good discriminant capability for falls against ADLs with a high classification
accuracy of 99.38%. While, wavelet transforms can be used to compute fractal dimensions of
non-stationary signals, the process is computationally intensive. An embedded wearable SoC for our
proposed fall detection based on fractal features can provide higher accuracy at low performance per
Watt through reconfigurable design innovations. The computationally intensive wavelet transform
and fractal dimension computations are accelerated on reconfigurable hardware through clever
design optimizations, while LDA based machine learning algorithm is implemented in parallel
on the ARM Cortex A9 chip. The 100 MHz design frequency provided high throughput and low
latency with a good trade-off between performance and power consumption, which was sufficient
for our case. The final hardware design gives 7.3x speed-up and 6.53 x improvements in power
consumption, compared to the software only execution. The final design also provides the lowest
latency of 0.1 us/sample processed as compared to all the current FPGA based implementations
of FDS. Overall the performance per Watt yields advantage of 47.6 x. The proposed FDS provides high
throughput with a high classification accuracy, sensitivity and precision of 99.38%, 99.10% and 99.96%
respectively. Additionally, the classification performance of the proposed system is reproducible
due to validation through public dataset, unlike current embedded FPGA implementations of FDS
which utilise self-simulated experiments. Moreover, the proposed FDS consumes relatively low
programmable logic resources of the Zynq device at 28.67%. Furthermore, the achieved performance
provides the sustainability and scalability for multiple multichannel sensors for future work.
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Mathematical Notation

Sum vectored, zero mean acceleration signal vector

a' Sum vectored, acceleration signal vector
ax Acceleration signal vector along x-axis
ay Acceleration signal vector along y-axis

a Acceleration signal vector along z-axis

a(n)  Acceleration signal at sample n

Aj Wavelet approximation coefficients at level i
B Signal spectral exponent
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d Fractional difference parameter

d Fractional integration coefficient

de Drift constant in stationary test

D; Wavelet detail coefficients at level i

e(n) Innovation process in stationary test

e(n) Random variable

fs Sampling frequency

fd Fractal dimension

¥ Autoregressive coefficient with value < 1

T Gamma Function

H Hurst exponent

Hy Null hypothesis in stationary test

Hy Alternative hypothesis in stationary test

i Wavelet transform level

1(d) Integrated part of ARIMA/ARFIMA model

k Shift/translation index

L Lag operator

A Deterministic trend with coefficient

Ha Mean of sum vectored, zero mean acceleration signal vector

o Mean of sum vectored acceleration signal vector

UD; Mean of wavelet detail coefficients at level i

Us Mean of accelerometer first order difference signal

n Signal sample number

N Total number of samples

w Angular frequency

p —value  Confidence value for unit root tests

Pmax,ApF ~ Maximum delay value for ADF test

Pmax,kpss Maximum delay value for KPSS test

$ir(n) Scaling wavelet function with shift index k, at level i

Pix(n) Mother wavelet function with shift index k, at level i

q Number of random perturbations

r Number of autoregressive terms

s(n) First order difference, accelerometer signal

S(w) Power spectrum density

Ug Variance of sum vectored, zero mean acceleration signal vector

(7,12, Variance of sum vectored acceleration signal vector

(7,%,_ Variance of wavelet detail coefficients at level i

0y General moving average coefficients

v1(n) Stationary process

vp(n) Independent and identically distributed process with 0 mean

Cr General autoregressive coefficients
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