ﬂ SCNSors m\py

Article
Counter a Drone in a Complex Neighborhood Area by
Deep Reinforcement Learning

Ender Cetin ** (), Cristina Barrado 2{* and Enric Pastor 2

1 Aerospace Science and Technology, UPC BarcelonaTECH, 08860 Castelldefels, Spain
2 Computer Architecture Department, UPC BarcelonaTECH, 08860 Castelldefels, Spain;
cristina.barrado@upc.edu (C.B.); enric.pastor@upc.edu (E.P.)

Correspondence: ender.cetin@upc.edu

t Current address: UPC BarcelonaTECH, Esteve Terrades 7, 08860 Castelldefels, Spain.

check for
Received: 9 March 2020; Accepted: 16 April 2020; Published: 18 April 2020 updates

Abstract: Counter-drone technology by using artificial intelligence (Al) is an emerging technology
and it is rapidly developing. Considering the recent advances in Al, counter-drone systems with Al
can be very accurate and efficient to fight against drones. The time required to engage with the target
can be less than other methods based on human intervention, such as bringing down a malicious
drone by a machine-gun. Also, Al can identify and classify the target with a high precision in order to
prevent a false interdiction with the targeted object. We believe that counter-drone technology with
AI will bring important advantages to the threats coming from some drones and will help the skies
to become safer and more secure. In this study, a deep reinforcement learning (DRL) architecture
is proposed to counter a drone with another drone, the learning drone, which will autonomously
avoid all kind of obstacles inside a suburban neighborhood environment. The environment in a
simulator that has stationary obstacles such as trees, cables, parked cars, and houses. In addition,
another non-malicious third drone, acting as moving obstacle inside the environment was also
included. In this way, the learning drone is trained to detect stationary and moving obstacles, and to
counter and catch the target drone without crashing with any other obstacle inside the neighborhood.
The learning drone has a front camera and it can capture continuously depth images. Every depth
image is part of the state used in DRL architecture. There are also scalar state parameters such as
velocities, distances to the target, distances to some defined geofences and track, and elevation angles.
The state image and scalars are processed by a neural network that joints the two state parts into a
unique flow. Moreover, transfer learning is tested by using the weights of the first full-trained model.
With transfer learning, one of the best jump-starts achieved higher mean rewards (close to 35 more)
at the beginning of training. Transfer learning also shows that the number of crashes during training
can be reduced, with a total number of crashed episodes reduced by 65%, when all ground obstacles
are included.

Keywords: counter drones; UAV; deep reinforcement learning; transfer learning; double deep
Q-network (DDQN); joint neural network (JNN)

1. Introduction

According to the European Air Traffic Management (ATM) master plan drone roadmap [1],
the unmanned aerial Vehicles (UAV), also known as drones, will scale their flights and their operations
beyond visual line of sight (BVLOS) will cover most of the air traffic by 2035. Internet of Things (IoT)
has shown to be very adequate for dealing with such growth, for instance by enabling distributed
approaches for collision avoidance [2]. However, this increase on the number of drones in the airspace
worldwide attracts people who can misuse the UAVs. Under the latest drone regulation it is stated

Sensors 2020, 20, 2320; d0i:10.3390/s20082320 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-9258-1919
https://orcid.org/0000-0003-0100-724X
https://orcid.org/0000-0002-7587-8702
http://dx.doi.org/10.3390/s20082320
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/8/2320?type=check_update&version=2

Sensors 2020, 20, 2320 2 of 25

that drones should not enter restricted zones, such as airports, but there is no clear countering drone
solutions yet. In 2018, a drone caused a huge problem in Gatwick London Airport. The flights were
canceled and around 140,000 passengers were affected [3]. The number of drones will increase and it
is obvious that they can cause more serious problems. The threat is coming and counter measurements
should be taken.

There are many study cases which investigate countering drones. In a study presented in defence
science journal [4], UAV detection and elimination are discussed. The terminology used in this
journal is based on The North Atlantic Treaty Organization (NATO). According to this terminology,
the problem of defence is divided into 3 main aspects: Air surveillance, command and control and
elimination. Air surveillance is used for detecting and identifying UAV. Command and control collects
data from sensors and acts as a decision maker mechanism when the actions are taken against the
aerial object. Elimination is a collection of methods for interdiction of the threats. Devices to detect
UAV, such as radar systems, sensors or acoustic devices, are existing technologies used for countering
drones. To eliminate these threats several methods are proposed. These methods include shotguns,
laser guns, nets, water cannons, birds trained for catching drones, jamming the command and control
radio signals and jamming the global navigation satellite system signals. In Table 1, counter-drone
methods and their number of cases available now are presented.

Table 1. Counter-drone techniques available according to [5].

Method Type The Number of Cases Available
Jamming 96
Net 18
Spoofing 12
Laser 12
Machine Gun 3

Electromagnetic Pulse
Water Projector
Sacrificial Collision Drone
Other

In recent years, researchers proposed some studies in the area of deep reinforcement learning
(DRL) and UAV. In this context, the studies are mostly focused on the topics of drone detection and of
navigation of drones in an unknown environment, avoiding obstacles.

Akhloufi et al. [6] propose deep reinforcement learning and deep search areas for drones’
pursuit-evasion problems. Firstly, DRL is used to follow a target drone, by predicting its actions
to follow the target. Also, supervised learning is applied by using a large dataset of drone images.
Another example is to predict the position of the target drone using deep object detector and search
area proposal. YOLO v2 [7] is used as an object detector.

Anwar et al. [8] studied the DRL for autonomous navigation. Transfer learning is applied to
reduce the training computation load. The environment is designed in Unreal Engine [9] and tested in
the real world, by using a low-cost drone (a D]I Tello), with the similar results obtained. This research
code was published as open source and contains the comparisons between the real environment results
and the simulation results.

In another research by Kouris et al. [10], it was proposed that a self-supervised Convolutional
Neural Network (CNN)-based approach can be used to navigate a drone autonomously and to avoid
collisions. A regression CNN is used to predict the distances between the agent and the obstacles.
The distances to the closest obstacle in different directions are estimated. The drone flight parameters,
such as the linear velocity and the yaw angle of the drone, are changed according to the predictions
made through the deep neural network.

DRL is also used against jamming. In a research by Lu et al. [11] DRL methods were applied
to choose the relay policy by using a drone as part of a cellular communication framework against
jamming. In this method, the cellular systems can resist the jamming without knowing the jamming

Sensors 2020, 20, 2320 3 of 25

model and the network model. In this article, it is stated that the optimal performance can be achieved
by adequately interacting with the jammer.

Rodriguez-Ramos et al. [12] proposed a DRL for the autonomous landing of drones on a moving
platform. The drone control during landing is performed using the deep deterministic policy gradients
(DDPG) algorithm and tested over a simulator interface.

In this paper, deep reinforcement learning is proposed to train a drone to counter another drone.
The learning drone is the DRL agent and is trained to counter the target drone by crashing against
it, but it is also trained to avoid any other obstacle. The remainder of the paper is organized as
follows. In Section 2, the theory about deep reinforcement learning and the basics of transfer learning
metrics are provided. Section 3 provides tools and methods, this is, the DRL model which includes
the environment, the states, the actions set and the reward function used in the DRL algorithm.
In Section 4, the performance of several training cases and their results are presented. In Section 5,
some further details of the models and their results are analyzed and discussed. Finally, in Section 6,
conclusions and the future work are presented.

2. Methods

Reinforcement learning (RL) is an approach to Al based on trial and error experiences by
interacting with the environment. In RL, the agent, or learner, can make a decision and take an action
which updates the environment. Environment state is updated by each action that the agent takes.
Also after each action the environment outputs a reward, in the form of a scalar value. Rewards reveal
information about an action, whether that action results in positive or negative feedback. The objective
of the agent is to maximize the cumulative reward. Each iteration between an action and the next
action is known as step. An action can lead the environment to a terminal state, which is also known
as the end of an episode. Thus, an episode is the set of steps starting at an initial state and finishing
with a terminal state.

In this paper, the agent is a quadcopter drone that is rewarded in each step by the environment.
A collision of the drone always ends the episode. Also a timeout of 300 s is set to end the episode.
The actions executed by the agent are the inputs to the environment and the states and rewards are
the outputs of the environment as shown in Figure 1. State is represented as S; and the State Space is
represented as S. The interaction between the agent and the environment is in discrete time steps ¢.
Action and Action Space are represented as A; and A(S;) respectively. Reward values are updated in
each time, R;1, and a new state becomes S; 1.

state reward action
S, R, A,
Rl+1 (

S.. | Environment]4—

\

\AJ

A?

Figure 1. The agent-environment interaction in reinforcement learning [13].

In RL, states are mapped with the probabilities of the next rewards for the possible actions in each
time step ¢ and it is called policy. In RL, the policy is chosen to maximize the cumulative reward over
time. The fundamental concepts for RL are explained in detail in surveys [13,14].

As a particular case of RL, the use of a (deep) neural networks to build the decision making
algorithm of the agent, is known as deep reinforcement learning (DRL). In a research by Mnih, V. et al.,
it is shown that DRL algorithms can beat human performance level in video and board games [15].
Several implementations of DRL, such as deep Q-network (DQN) [16] or double deep Q-network
(DDQN) [17] are being proposed and showed improved results. The main goal of DQN is to use a

Sensors 2020, 20, 2320 4 of 25

deep convolutional neural network to approximate the optimal action-value function. DQN provides
updating action values and target values iteratively. Moreover, it proposes the experience replay;,
which randomizes the data and improves the data distribution. Experience replay is demonstrated and
explained in several research works [18-20]. The DDQN method, initially proposed in [21], is basically
decoupling the action selection from the evaluation. Although one estimate is updated per step, two
estimates are learned in a random selection. DQN and Double DON algorithms were previously tested
for drones learning in our simulator environment [22], showing that both algorithms were successful
to reach a fixed destination. In this work the authors have decided to use DDQN as this algorithm
showed the best performance among those tested.

Deep reinforcement learning is capable of handling difficult complex problems. However, learning
can be too slow or even infeasible. For this reason, researchers in DRL have focused on improving the
time spent on learning by implementing various approaches. The most successful is transfer learning
(TL). The main purpose of TL is to improve the learning performance by using the experience from
successfully pre-trained models [23].

Transfer learning can be used for different goals and in different situations. Several evaluation
metrics can be addressed in order to evaluate the TL algorithms. In Figure 2, common parameters
for measuring TL performance are shown. The difference between the initial reward values, with
and without TL, is called jump-start. The final performance of the agent is named as asymptotic
performance and the time required to achieve a pre-defined level is called time to Threshold. These
metrics are explained in detail in [23].

24 ¢

Time to Threshold 7 Asymptotic
22 - | ,—F—"/i—_’ i Performance

Performance

i
101 |/ Jumpstart
/ Transfar =———
al No Transfer
) .) Threshold Performance — — -
0 5 10 15 20 25 20 35 40

Training Time (sample complexity)
Figure 2. Different metrics for measuring TL [23].

3. DRL Model Definition

3.1. Tools

This section presents the tools and tool-kits used for developing, training and comparing the
proposed DRL algorithms: the AirSim simulator, OpenAI-Gym and Keras-RL.

AirSim is a platform for Al research to experiment with deep learning, computer vision and
reinforcement learning algorithms for autonomous vehicles [24] such as cars or drones. AirSim it is
built as a Unreal Engine [9] plugin. Unreal Engine provides ultra realistic rendering and strong graphic
features for the Airsim. The quadcopter used in the Airsim simulator can be seen in Figure 3.

Sensors 2020, 20, 2320 5of 25

Figure 3. Quadcopter used in AirSim.

AirSim has many environments available to be used in reinforcement learning. These
environments are mountains, blocks, cities, etc.

It is important to mention that AirSim is not deterministic. The simulator has its own physics and
dynamics, which can be affected by simulated environmental conditions, such as wind, but it is also
affected by some random white noise. For this reason, as in real life, the same actions give not exactly
the same response when applied in different simulations.

OpenAI-Gym [25] is an open source interface to reinforcement learning tasks. It is a toolkit for
developing and comparing reinforcement learning algorithms. It is compatible with most common
neural networks tools, such as Tensor Flow [26] or Theano [27]. The gym library has a collection of
environments to test reinforcement learning algorithms. These environments have a shared interface
which allows writing general algorithms.

Keras-RL [28] implements some state-of-the art deep reinforcement learning algorithms in Python
and seamlessly integrates with the deep learning library Keras. Keras can work with OpenAl Gym
and is built according to the developer needs, giving the ability to define own callbacks and metrics.

3.2. Model

This section presents the decisions taken when building the DRL model. These decisions include:
The selected data to capture from the environment and how these data need to be processed to create
the state of the agent; The architecture of the neural network used to process such state and to return
the action with the most expected reward; The set of actions available to the drone; And the reward
function formulation.

3.2.1. Environment

From the number of AirSim environments available for Al research to experiment with deep
reinforcement learning algorithms, we decided to select a small urban neighbourhood. The reason is
that currently some drones operators are starting to operate in similar environments, which may
be used by malicious drones to enter the area too, and to become a thread for its inhabitants.
A counter-drone system is needed to avoid this not desired incomers. The tested neighborhood
environment is shown in Figure 4. A two-dimensional representation of the environment is shown by
using the x and y axis at the origin point of the agent. The agent starts at (0,0,0) position in the NED
coordinate system.

We assume that the counter-drone system must remain always within the neighbourhood that
has contracted it. The limits of the area of the contract are given in the form of a geofence [29], which
limits are shown in shaded blue region of Figure 4. A geofence is defined as a technology that creates a
virtual barrier around a geographical area. The geofence technology is used in drone navigation in
order to create constraints for drones, with the purpose to keep the drones within the predefined area
(also known as geocage, as in our proposed environment) or out of it. For instance, in a study about a
generic and modular geofencing strategy for civilian drones [30], geofence is proposed as a means to
avoid entering controlled airspace areas and even to avoid collisions with the environment, people,
or other flying vehicles. If the geofenced area is violated, the operator and/or the authorities can be
notified and actions can be taken to prevent further incursions into the area.

Sensors 2020, 20, 2320 6 of 25

Figure 4. The neighbourhood environment.

3.2.2. State Representation

The state of the model is composed by an image and several auxiliary scalar values:
e Image

Most drones have one or more cameras facing front, able to capture the objects situated in the
flying direction. AirSim provides three virtual front cameras: visual, thermal, and depth. For the state
we selected the image received from the depth camera. According to the AirSim [31], the depth camera
output is received by using Airsim API “Depth Perspective” image type, which simulates the return of
a projection ray that hits its pixels. The depth image received from the camera is a 256 x 144 pixels
image as shown in Figure 5. From this image we crop a central part and create the state image. This
state image is set as 30 x 100 pixels and is shown in Figure 6. The bottom of the image includes the
cropped central part of the depth image (20 x 100 pixels). Then, the top 10 rows of the state image is
white (no obstacles), except for the 3 x 10 pixels black line. This black line is used to represent the
track angle, this is, the suitable direction to find the target drone [22]. This 3 x 10 pixels black line
moves left and right according to the relative movements of the target and the catching drones.

256

144

Figure 5. The Depth Image.

Additionally, as Figure 7 shows, a grid is drawn on top of the state image when the drone is close
to cross the geofence. The thickness of the grid increases as the drone moves towards the geofence
limits. The grid appear when the separation distance between the drone and the geofence limits
becomes lower or equal to 4 m.

Sensors 2020, 20, 2320 7 of 25

20

100

Figure 6. The State Image and Encoded Section.

1

1
2

Figure 7. Fences drawn on the State Image.
e Auxiliary Inputs

Additionally to the images, AirSim provides, though its application programming interface,
the capability to retrieve data of the environment. For example, data provided by AirSim includes the
Euler angles, the position and the orientation of any drone flying in the environment, their linear and
angular velocities, and also the linear and angular accelerations. For the purposes of our agent we
selected as relevant the following data: the Euclidean distance, the track angle and the elevation angle
of the target drone from the current position of the training drone. Other auxiliary data selected as
relevant for the state is the distances to geofence limits.

The summarize, the auxiliary data, aggregated to the state image as part of the agent state, is:

The velocity of the agent in x and y directions: vyv,

The distance from the agent to the goal in x and y directions and the Euclidean distance: dd,d;
Track and the elevation angles between the agent and the goal: ¢

The distances to the four geofence limits

3.2.3. Agent’s Neural Network

The full state, composed by the image and the auxiliary data, is processed with a neural network,
which architecture is shown in Figure 8. The image is the input of a convolutional neural network
(CNN), followed by a flatten layer. Then a concatenation layer joints the flatten output of the CNN
with the scalar auxiliary data of the state.

The first layer of the CNN consists of RELU activated 32 kernel 4 x 4 with stride 4. This layer is
followed by RELU activated 64 kernel 3 x 3 with stride 2. The output of the sequential CNN model is

Sensors 2020, 20, 2320 8 of 25

concatenated with the reshaped scalar values and the concatenated tensor becomes the input of three
RELU activated consecutive 256 kernel dense layers. The output layer is a dense layer and the outputs
are the action values. Neural network model summary can be seen in Figure 8 and with more detail
about the layers and their parameters in the Appendix A Figure Al.

Convolutions

Concatenation

Fully Connected Fully Connected Fully Connected
Layers Layers Layers

_ 1

. b

| B

Image Input
30x100

N
808

Move
. Forward

Yaw
Left

Yaw

Right
Auxiliary Inputs

The velocities of the drone

The distances to the goal :,‘:

Track and Elevation angles

The distances to the geofence limits

Figure 8. The Agent.

3.2.4. Actions

In this paper, the drone agent is flying always in the same plane in which the target drone is found,
this is, without changing altitude during the training. To move the learning drone we have selected,
from AirSim available interfaces to control vehicles autonomously, the following three simple options:

Straight: Straight movement in direction of the heading with speed equal to 4 m/s
Yaw left: Rotate clockwise around z axis with a 30 deg/s angular speed
Yaw right: Rotate counter-clockwise around z axis with a 30 deg/s angular speed

Figure 9 shows the representation of the three actions.

+Vx

Right Yaw Left Yaw
il '\!

Figure 9. Action Space.

As a consequence, the output layer of the agent’s neural network consists of three activation
values, one for each possible action. The neural network will predict which of the three actions has a
higher probability of obtaining the maximum cumulative reward.

Sensors 2020, 20, 2320 9 of 25

3.2.5. Rewards

The proposed reward function is shown in Table 2. At the end of an episode the agent is rewarded
+100 if the episode is successful, this is, it has ended by catching the target drone. On the other hand,
the agent is penalized and it is given a reward —100 if the episode was unsuccessful, this is, it has
ended because the agent had a collision with a visible obstacle of the environment or because had
violated the geofence. Additionally, every intermediate step returns a reward of —1 to penalize delays
on achieving the agent’s objective. The reward of an intermediate step has two bonus: plus ADistance,
which is distance-to-the-goal reduction with respect to the previous step, and plus trackangle which
represents the zero-deviation towards the target direction.

Table 2. Rewards.

Reward The Reason
+100 Goal reached
—100 Collision: Obstacle (stationary or moving) or geofence

—1 + A Distance + TrackAngle = Otherwise

4. Training Analysis & Results

4.1. Training Setup

The proposed DRL model is trained on a desktop with NVIDIA GeForce GTX 1060 with 6 GB
RAM graphic co-processor and Intel i7 processor, 16 GB of memory. A full training phase, for instance,
the case named below as Baseline, lasted for 125, 000 steps, and spent around 48 to 56 h. The Adam
optimizer is used in the feed backward of the neural network. The same resources are used in both
training and testing. The tests, run much faster, and are used to evaluate the learned capabilities of the
agent training.

Figure 10 shows the simulation setup, with the starting location of the three involved drones:
The agent, also known as learning drone, in in the bottom of the image; On the top of the image we
find the target drone, this is, the malicious drone that the agent has to catch; In between both some
simulations include a third drone, named as random drone. This is used as a moving obstacle that the
agent shall avoid. The target and the random drones move randomly from their starting point, inside
the shaded areas of Figure 10: red for the target drone (sized 25 x 8 m), yellow for the random drone
(sized 10 x 8 m). Target drone and random drone can change positions up to 1 m in each step.

Figure 10. The environment with Random Drone, Target drone and the Learner Drone.

Sensors 2020, 20, 2320 10 of 25

The learning drone is always started in the same (0,0, 0) location, but its yaw angle is random.
This aims to increase the exploration capabilities of the learning drone from the first step.

4.2. Definition of Cases

Several training experiments are defined and categorized into two groups. The first group of
training experiments are performed at 30 m height, above trees, houses and cars. In this first group
the only obstacles in the environment are the geofence, the random drone and the target drone.
The second group of training experiments are performed at low altitude, at an altitude of four meters.
The main reason is that the drone can interact with all kind of obstacles such as trees, houses, and
electrical wires found at this level. More detail about the obstacles in the environment can be seen
in videos from youtube (https:/ /www.youtube.com/watch?v=wFDGZANAcfQ&feature=youtu.be).
In each group of training, cases with and without transfer learning are implemented to analyze and
compare the performance of the models. All transfer learning models use a unique pre-trained model.
The pre-trained model is built in the first presented case and named Baseline.

Table 3 summarizes the different cases explained through the section.

Table 3. Training cases summary.

Case Training Steps Annealing Geofence Obstacles
Baseline FULL 125K 50K YES NONE
Case 1.1 FULL 75K 50K YES stationary 3rd drone
Case1.2 Transferred 50K 25K YES stationary 3rd drone
Case 1.3 FULL 75K 50K YES non-stationary 3rd drone
Case1.4 Transferred 50K 25K YES non-stationary 3rd drone
Case 2.1 FULL 125K 50K YES houses, trees, electrical, etc.
Case 2.2 Transferred 50K 10K YES houses, trees, electrical, etc.

4.3. Training Results

In this section the performance of the training cases are analyzed.

4.3.1. Case 1: Training at 30 m Height

The following figures show the training performance relating the number of step (in the x-axis)
with its cumulative reward (in the y-axis). The light blue represents the actual reward value of the step
and the dark blue represents the mean rewards of the every 100 steps. The time steps are discrete and
equal to one second. The vertical dotted line represents the end of the annealing training part. There is
a linear epsilon-greedy exploration before the annealing points, starting from full random down to
10% random. After the annealing point, the 10% random is maintained until the end of the training.
There is no random during the exploitation (tests).

The training episodes are finished when the drone catches the target or when the learning drone
collides with any stationary or non-stationary obstacle (random drone) or when the learning drone
overpasses the geofence limits.

e Baseline: Training including geofence and target drone

In Figure 11, the training results for 125K steps are shown. This training is set at 30 m altitude,
where both the learner drone and target drone are flying. This training is known as “Baseline” because
it is used as a pre-trained model for training by transfer learning which will be explained in the next
cases. At the beginning of the training, the learner drone explores the environment and the rewards
are mostly around —300 which is a very low reward. The main reason is that at the beginning of the
training the random behavior is very high and the drone has not yet knowledge of how to catch the
target, thus, it exceeds the episode time limit. However, the learning curve sets a higher slope at 20K
steps and the cumulative reward reaches the highest values around 40K steps, before the annealing

https://www.youtube.com/watch?v=wFDGZANAcfQ&feature=youtu.be

Sensors 2020, 20, 2320 11 of 25

point. Although there are 61 episodes crashed during training, there are no crashed episodes happened
after annealing. This training shows that after a certain time the drone learns how to avoid geofence
limits and how to catch the target as soon as possible.

200
150 A
100 4 -

—

—100 A

—200 A

Accumulative reward R

—300 A

—400 T T T T T T
0 20000 40000 60000 80000 100000 120000
Time Step t

Figure 11. Training result for Baseline.
e Case 1.1: adding a stationary third drone

This training is set at 30 m height with a stationary drone is placed in the environment at this
same altitude, same as the learner drone and target drone. In Figure 12 the full training results for 75K
steps can be seen. At the beginning of the training, the learner drone explores the environment as it is
seen in the previous training and the rewards are mostly around —300. The main reason is the same as
before, a very high initial random behavior. However, this case has the stationary drone placed just
5 m away from the learning drone. As a result, it is observed that the behavior of the learning drone
is different than the training shown in Figure 11. There are more crashed episodes in this training
because of the stationary drone placed in the environment. The learning drone eventually learns how
to avoid this stationary drone but it takes a while. For example, the number of crashes against the
random drone decreases after 65K steps. The cumulative reward reaches the highest values around
70K steps.

e (Case 1.2: adding a stationary third drone and using pre-trained model from Baseline

In Case 1.2 the training is performed by using transfer learning. In this training the Baseline
pre-trained model, which is shown in Figure 11, is already trained to catch the target while avoiding
the geofences, and the new training focus only on the new knowledge: the avoidance of the stationary
drone. The training time is finished after 50K steps and annealing point is set at 25K steps in this
training. The last layer of the model is frozen and the other layers are trained. In Figure 13 the training
results for transfer learning are shown. As it is seen in this figure, at the beginning of the training,
the cumulative reward reaches positive values very fast, if compared to the training seen in Figure 12.
There are still some crashes but these are caused by the stationary drone and the high random behavior
of the learning drone before the annealing point. After the annealing point, the learning drone is in
general able to catch the target drone and to successfully avoid the stationary drone and the geofences.

Sensors 2020, 20, 2320

Accumulative reward R

Accumulative reward R

Figure 13. Training result for Case 1.2 by Transfer Learning.

200

150 A
100 A

—100 4

—200 1

—300 1

—400

200

150 A
100 A

—100 +

—200 1

—300 1

—400

e
Pt ad N

el TN
s, 2 T

0

10000 20000 30000 40000 50000 60000 70000

Time Step t

Figure 12. Training result for Case 1.1.

- ”
L PO
_— W1
P

10000 20000 30000
Time Step t

40000 50000

12 of 25

Figure 14 shows the transfer learning metrics: there is no jump-start, but the threshold time can be
observed. Both training start their curve with —160 mean reward. However, during the training with
TL, the agent reaches a pre-specified performance level faster (at around 30K steps) than the model

without TL. The asymptotic performance level is zero at the end of 50K steps.

Mean rewards R

200

125

SN .

e

—160
—200 1

—300 1

—400

—— Without Transfer Learning, Case 1.2
—— With Transfer Learning, Case 1.3

10000 20000 30000
Time Step t

e (Case 1.3: adding movement to the third drone

40000 50000

Figure 14. Training mean rewards for Case 1.1 and Case 1.2.

In this case, a third drone moving randomly is placed into the environment, at the same altitude
than the learner drone and target drone. In Figure 15 the training results for 75K steps can be seen.
At the beginning of the training, the rewards are mostly around —300 because the learning drone
still explores the environment. It is observed how the behavior of the drone changes before and after

Sensors 2020, 20, 2320 13 of 25

identifying the non-stationary third drone. Before, the mean rewards curve goes up until 20K steps
since the drone seems to learn how to avoid geofence and the non-stationary drone at the beginning,
but after the curve starts going down for a while and the rewards are mostly around —300 which are
mostly considered time-limit. The main reason is that the drone starts exploring again until catching
the target drone. After annealing, the mean rewards looks stable, but there are still episodes that crash
because of the non-stationary drone moving randomly.

e Case 1.4: adding movement to the third drone and using pre-trained model from Baseline

In this training, the Baseline model, which is shown in Figure 11, is used as the pre-trained
model of transfer learning, to train the learning drone to avoid geofences and the non-stationary drone
and to catch the target drone. The last layer of the model is frozen and the other layers are trained.
The training time is 50K steps and annealing point is at 25K steps. In Figure 16, the training result for
transfer learning is shown.

At the beginning of the training, the cumulative rewards start at —115 and but reach high values
after the annealing point. The cumulative reward is more stable during the training with TL compared
to the training seen in Figure 15. This is because the crashes caused by the non-stationary drone
after annealing point in the second case. Thanks to transfer learning, the number of crashes with
the geofence are reduced by almost 75%. The non-stationary drone is a hard challenge for the agent,
because it can hit the agent during the training and thus the learning takes longer.

200

150
100 |
« b 2T \\
B Lt (K A il
© 0 I v o
2 | - 1
] of s e
PLd Y -
o ¢ L)
2 -100 7 i
-~ 4
K]
g
S —200
o]
<
~300 1
-400 . . . r r .
0 10000 20000 30000 40000 50000 60000 70000
Time Step t
Figure 15. Training result for Case 1.3.
200
150
100 4 PO PNVI oty
PSS -
«)| el Ko
° Lerliim
© 0 B
o -
2 -100 4/
©
E
5 —200 1
9
<
~300
—400
0 10000 20000 30000 40000 50000

Time Step t

Figure 16. Training result for Case 1.4 by Transfer Learning.

Figure 17 compares the reward curves for training with and without the transfer learning. Training
without transfer learning is not smooth. Both curves start the training with mean reward around —115.
However, with TL, the agent reaches a pre-specified performance level, which is at 100 mean reward,
and does it faster (at around 35K steps), as expected. On the contrary, without TL the curve is not

Sensors 2020, 20, 2320 14 of 25

stable, with many up and downs caused by the unexpected random movement of the non-stationary
drone. Since the target drone have the same image and also moves randomly, the situation creates
confusion and the full training is not successful.

200
150 A
..... LoarsrT

i e

—200

Mean rewards R

-3009 Without Transfer Learning, Case 1.4

—— With Transfer Learning, Case 1.5

—400

T T T T
0 10000 20000 30000 40000 50000
Time Step t

Figure 17. Training mean rewards for Case 1.3 and Case 1.4.
4.3.2. Case 2: Training at Low Altitude, with Many Obstacles

° Case 2.1: without Transfer Learning

In Figure 18 the results for 125K steps full training are shown. The training is set at 4 m altitude
and in addition to the obstacles, such as trees, houses, power cables and cars, the learning drone
and target drone are added to the environment. At the beginning of the training, the learning drone
explores the environment and the rewards are mostly around —300. This is a very low reward during
all training session in this case. However, the learning curve goes up after 25K steps and the cumulative
reward reaches higher values around 35K steps, before the annealing point. This training shows that
after a certain time, the drone learns how to avoid all kind of obstacles including geofence limits, and
how to catch the target as soon as possible.

o Case 2.2: with Transfer Learning, using pre-trained model from Baseline

In this training, the Baseline model, shown in Figure 11, is used as pre-trained to transfer to the
learning drone the knowledge on how to catch the target drone. The last layer of the model is frozen
and the other layers are trained. The training time is set to 50K steps and the annealing point to 10K
steps. In Figure 19 the training results for transfer learning are shown. After the annealing point, as
shown in Figure 18, the training with TL shows better results compared to the training without TL.

200

150 - a) IFeyea s ey A AN S e s

100 i

~100 4,

—200 +

Accumulative reward R

—300 1

—400

0 20000 40000 60000 80000 100000 120000
Time Step t

Figure 18. Training result for Case 2.1.

Sensors 2020, 20, 2320 15 of 25

200
150 -
100 - /

- L I o P e

—100 A

—200 1

Accumulative reward R

—300 1

—400

0 10000 20000 30000 40000 50000
Time Step t

Figure 19. Training result for Case 2.2 by Transfer Learning.

In Figure 20 the transfer learning metrics are shown in terms of jump-start and threshold time. TL
starts training with mean reward around —85 while the training without TL is worse, around —120.
The jump-start achieved is almost 35 more mean reward with transfer learning. Moreover, the TL also
reaches a pre-specified performance level faster (at around 10K steps), while the model without TL
reaches the threshold point just after 40K steps.

_133{{.///

—200 A

Mean rewards R

—300 —— Without Transfer Learning, Case 2.1

—— With Transfer Learning, Case 2.2

—-400

T T T T
0 10000 20000 30000 40000 50000
Time Step t

Figure 20. Training mean rewards for Case 2.1 and Case 2.2.

5. Further Model Results and Discussion

5.1. Comparison of the Effects of Different Annealing Points in TL

Transfer learning training with different annealing lengths are compared for Case 1.2. The linear
annealing policy is the same in all cases (from 1 to 0.1 randomness). However, different responses are
found for different annealing points. For example, in Figure 21, it is seen that the annealing starts at
10K steps and the total training covers 50K steps. Before the annealing, the agent learns slowly and
reaches higher rewards in 20K steps, but there are still crashed episodes. However, in Figure 22 the
annealing is set at 25K steps. Although mean rewards are very low at the beginning of the training,
after the agent explores more the environment, for around 15K steps, and it is able to reach high reward
values. After the annealing, there are still crashes but the number of crashed episodes is lower than the
crashed episodes compared to Figure 21.

Figure 23 shows that from a total of 167 crashed episodes by annealing at 10K steps, only seven
episodes crashed with the geofence while 160 episodes crashed with the stationary third drone.
In Figure 24 the number of crashed episodes and their crashed obstacles are shown for annealing at
25K steps. There are 178 crashed episodes in total, 85 episodes crashed on geofence and 93 episodes
crashed on drone. The total number of crashed episodes are slightly higher than before, but the number
of episodes crashed on stationary drone are reduced in half. The main reason is that a longer annealing

Sensors 2020, 20, 2320

16 of 25

allows the agent to explore more at the beginning of the training, learning about both type of obstacles

at the same time.

Accumulative reward R

Figure 21. Training result for Case 1.2, Annealing at 10K steps.

Accumulative reward R

Figure 22. Training result for Case 1.2, Annealing at 25K steps.

Figure 23. Crash report chart for Case 1.2, Annealing at 10K steps.

Figure 24. Crash report chart for Case 1.2, Annealing at 25K steps.

200

150 4
100 4

Le

net et

RUSTER
L

Y ——— oIy

patmeaPan

SOV Y

—100 4

—200 -

—300 -

—400

200

10000

20000 30000
Time Step t

40000

50000

150 4
100 4

P

Y Ty 1

’
Pl P

e N ——a

e

—100 -

—200 4

—300 -

—400

10000

Geofence

Geofence
Drone

Geofence

20000 30000
Time Step t

160

93

85

40000

Geofence
Drone

Drone

Drone

50000

Sensors 2020, 20, 2320 17 of 25

5.2. Comparison of the Explored Areas with or without TL

In this section, a map was built to show the drone positions during all the training steps. As in
the previous comparison, the details of the crashed obstacles are also given. The map of the drone
positions is limited by the coordinates of the geofence, these limits are [—5, 150] for the x-axis and
[—70, 20] for the y-axis. The blue dots represent the agent position in each time step during training.
The red dot is the initial position of the target drone.

In Figure 25 the learning drone position map for Baseline is shown. It can easily be seen that the
agent drone learns how to focus on targeting the goal, avoiding exploring areas that do not face the
target. Also it is observed that geofence limits are not approached.

Dronel_Positions

140
120
100
80
60 -
40

20 4 <l o , ,v

0_
-70 -60 -50

Figure 25. Drone Position Map for Baseline.

In Figure 26 the number of total crashes and the crashed obstacles for the Case 1.1 are shown.
As it is seen in Figure 26, there are 145 episodes crashed against the stationary drone. Moreover, it is
observed that the number of crashes with the geofence are also higher in this training. The geofence
limits are exceeded 81 times in this training, although it was 61 in the training without adding the
stationary drone shown in Baseline.

In Figure 27 the number of total crashes and the crashed obstacles for Case 1.2 are shown. As it is
seen in Figure 27, there are 93 episodes crashed against the stationary drone. Moreover, it is observed
that the number of crashes with the geofences is 85. The geofence limits are violated four times more
with transfer learning compared with the full training of Case 1.1.

Geofence
Drone

Drone

145

81

Geofence

Figure 26. Crash report chart for Case 1.1.

Sensors 2020, 20, 2320 18 of 25

Geofence
Drone Drone

93

85

Geofence

Figure 27. Crash report chart for Case 1.2 by Transfer Learning.

Figures 28 and 29 show maps of the learning drone position for Case 1.1 and Case 1.2 respectively.
Observe that with transfer learning (Figure 29) the drone is mostly directed to the target, while without
transfer learning, the drone is distracted and moves far away from the goal (see Figure 28).

Dronel_Positions

140 4
120 4
100 4
80 1
601
404 Al

20 -

Figure 28. Drone Position Map for Case 1.1.

Dronel_Positions

140

120

100 -

80

60 -

40 A

20 A

y

Figure 29. Drone Position Map for Case 1.2 by Transfer Learning.

In Figure 30 the number of the total crashes and the crashed obstacles for Case 1.3 are shown.
There are more crashed episodes in Case 1.3 compared to the other cases because of the non-stationary
drone. There are 193 episodes crashed this drone. Also, the number of episodes of crashing with the
geofence (150) is high compared to the cases before. In summary, the learning drone does not learn
how to avoid this non-stationary drone in a considerable time as expected in this case.

In Figure 31 the number of total crashes and the crashed obstacles for Case 1.4 are shown. A similar
number of episodes failures (200) are also due to the non-stationary drone. However, the crashes with
the geofence (45) is lower than in Figure 30 without transfer learning.

Sensors 2020, 20, 2320 19 of 25

Geofence
Drone
Drone

193

150

Geofence

Figure 30. Crash report chart for Case 1.3.

Geofence
Drone

Geofence 45

Drone

Figure 31. Crash report chart for Case 1.4 by Transfer Learning.

In Figures 32 and 33 the maps of the learning drone positions during the training sessions can
be seen. With transfer learning (Figure 33) the drone is better focused on the target, while without
transfer learning, the drone is moving left and right side of the environment in order to find a way to
avoid non-stationary drone (Figure 32) but fails in reaching its goal.

Dronel_Positions

1404
1204

100 A JE

Figure 32. Drone Position Map for Case 1.3.

Dronel_Positions

140 A

1204

100 4

80 -

60 -

Figure 33. Drone Position Map for Case 1.4 by Transfer Learning.

Sensors 2020, 20, 2320 20 of 25

In Figures 34 and 35 the number of total crashes and the crashed obstacles for Case 2.1 and
Case 2.2 are presented respectively. Although the number of crashed episodes is 177 for the transfer
learning Case 2.2, the number is even higher (503 crashed episodes) in Case 2.1. The total number of
crashed episodes was reduced by 65% with transfer learning. The crashed obstacles are categorized as
geofences, trees, power lines, and houses.

Powerline

Tree

227 House

Geofence

Figure 34. Crash report chart for Case 2.1.

Powerline

Geofence 42

House

Figure 35. Crash report chart for Case 2.2 by Transfer Learning.

In Figures 36 and 37 the learner drone position maps in the environment during the training
sessions are shown. In both figures, the shape of obstacles such as houses can be observed. For example,
in Figure 36, the learner drone tries to explore the environment by moving around the house, as seen
with a white rectangular shape. In addition, one of the trees (in front of the house) can also be seen as
a white area surrounded by many blue dots. In Figure 37 the shape of the house can also be observed,
but with transfer learning the learning drone does not need to explore all around the house.

Dronel_Positions

140 A

1204

100 A

80 -

x

601

40

20 -

0 . : 4 SR
-70 -60 -50 -40 -30 -20 -10 0
y

Figure 36. Drone Position Map for Case 2.1.

Sensors 2020, 20, 2320 21 of 25

Dronel_Positions

140
120 -
100 -
80

x
60 q

40

20 A

0
-70 -60 -50 -40 -30 -20
y

Figure 37. Drone Position Map for Case 2.2 by Transfer Learning.

5.3. Testing the Models at Low Altitude

In this section the tests results for Case 2.1 and Case 2.2, and are discussed. During a test, the agent
is not learning anymore, but applies the learnt model with no more random behaviour. For this reason
in this section we will not call the agent the learning drone, but the agent drone.

Each test set is made of 100 episodes, starting from the take-off and ending by catching the target
drone (successful), by colliding (failure) or by time-out. Failures can happen by crashing with a visible
ground obstacle (tree, house, wires, poles, etc.) or with the virtual geofence.

Test results are shown in Figure 38 for full training (Case 2.1), and in Figure 39 for transfer learning
(Case 2.2). In all 100 episodes of Case 2.1, the agent drone was successful and able to catch the target
drone without any crash. The cumulative reward plot is almost a straight line, with a few oscillations.
On the contrary, with transfer learning (Case 2.2) the agent drone crashed 6 times out of 100 episodes.
The main reason for these crashes is that the agent drone had learned only some of the obstacles
in the environment, and thus, it missed some of the distant obstacles. However, even if there were
failure episodes, the transfer learning showed a 94% success rate, which is good performance when
considering the short time spent on training.

-

N

o
°

,§

-
o
S

Cumulative reward

20 40 60 80 100
Episode

Figure 38. Test Result for Case 2.1 (Without TL).

175
150 menmw.
125{ © ®
100 -
b
5
2
g
o
2
8 09
>
£
=50
© °
~1001 e o o ° .
-150 T T T v T
20 40 60 80 100

Episode

Figure 39. Test Result for Case 2.2 (With TL).

Sensors 2020, 20, 2320 22 of 25

6. Conclusions

With the expansion of drones flying in the airspace, the availability of an effective counter-drone
technology is a must. This counter-drone technology consists on several systems, on ground and on air,
from which the solution presented in this paper is just one part. For this to work, it is necessary to have
a support system that detects the target drone, classifies its activity as malicious, and estimates the
position to the target drone. The Internet of Things solutions will be helpful in these tasks. The paper
shows that deep reinforcement learning is a promising approach for the interception of the target drone
moving randomly. However, the full system is still to be developed. In particular the final interception
method, which is here achieved by crashing into the target drone, could use a more sophisticated
approach to capture it.

The paper showed how the learning process can be improved by step-by-step learning. Initially,
the drone learns the basic objective of its mission: head towards the target drone while moving inside
an invisible geo-cage. Then, new secondary objectives can be further introduced using transfer learning.
Our additional objectives were to avoid colliding with another (non-malicious) drone, or to avoid
multiple but fixed obstacles (houses, trees, electrical wires, etc.). Transfer learning showed much better
performance that starting a longer full training: It was faster in reaching a threshold reward and it did
with a higher asymptotic performance.

Future improvements to the proposed method need to be made. In a future with many drones
flying legally in the air, the correct discrimination of the target drone needs to be better ensured.
The proposed agent’s state, with the front depth image and the target heading is too ambiguous when
a third drone is in between the agent drone and the target drone. New ways to represent the state
have to be tested. Moreover, the mix of fixed and movable obstacles has not yet been resolved. Finally,
the very challenging 3D space needs to be addressed too.

Artificial intelligence improves itself very quickly and new methods and tools are being introduced
at every moment. However, there is still little knowledge about how the predictions of artificial
intelligence models work. In other words, it is not clear what makes them to choose the most convenient
action. In the future, the methods for visualizing, explaining and interpreting deep reinforcement
learning models need to be investigated [32]. Explainability of artificial intelligence is mandatory to
address the certification of any avionics device. Moreover, artificial intelligence explainability can also
help to improve the performance of the deep neural networks by detecting and eliminating parts of
the state parameters that are not relevant.

Author Contributions: Conceptualization, E.C. and C.B.; methodology, E.C.; software, E.C. and C.B.; validation,

C.B., E.P; writing, E.C. and C.B.; funding acquisition, E.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded by the Ministry of Science, Innovation and Universities of Spain under Grant
No. TRA2016-77012-R, TRA2019.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

UAV Unmanned Aerial Vehicle

Al Artificial Intelligence

DRL Deep Reinforcement Learning
CNN Convolutional Neural Network

RL Reinforcement Learning

TL Transfer Learning

NED North East Down

BVLOS Beyond Visual Line of Sight

Apl Application Programming Interface

Sensors 2020, 20, 2320 23 of 25

Appendix A. Neural Network Parameters

Layer (type) Output Shape Param # Connected to
input_1 (InputlLayer) (None, 1, 38, 100) ©

convl (Conv2D) (None, 32, 7, 25) 544 input_1[@][0]
conv2 (Conv2D) (None, 15, 3, 64) 14464 convl[@][e]
vel (InputLayer) (None, 1, 2) 2]

dst (InputLayer) (None, 1, 3) 2]

geo (InputlLayer) (None, 1, 2) 2]

ae (Inputlayer) (None, 1, 2) 2]

flatl (Flatten) (None, 2880) 2] conv2[@][0]
reshape_1 (Reshape) (None, 2) 2] vel[@][@]
reshape_2 (Reshape) (None, 3) 2] dst[@][e]
reshape_3 (Reshape) (None, 2) 2] geo[@][0]
reshape_4 (Reshape) (None, 2) 2] ae[@][0]
concatenate_1 (Concatenate) (None, 2889) 2] flati[e][e@]

reshape_1[@][@]
reshape_2[@][8]
reshape_3[@][@]
reshape_4[@][@]

dense_1 (Dense) (None, 256) 739840 concatenate_1[0][0]
dense_2 (Dense) (None, 256) 65792 dense_1[@][@]
dense_3 (Dense) (None, 256) 65792 dense_2[0@][@]
dense_4 (Dense) (None, 3) 771 dense_3[@][@]

Total params: 887,203

Figure A1. Neural Network Model Summary.

References

1. European ATM Master Plan: Roadmap for the Safe Integration of Drones into All Classes of Airspace.
Available online: https://www.sesarju.eu/node/2993 (accessed on 26 May 2019).

2. Fabra, F; Zamora, W.; Sangtiesa,].; Calafate, C.T.; Cano,]J.C.; Manzoni, P. A Distributed Approach
for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors 2019, 19, 2404.
[CrossRef] [PubMed]

3. Flights Diverted after Gatwick Airport. Available online: https://www.bbc.com/news/uk-england-sussex-
48086013 (accessed on 23 August 2019).

4. Kratky, M,; Farlik, J. Countering UAVs—The Mover of Research in Military Technology. Def. Sci. |. 2018,
68, 460-466. [CrossRef]

5. Michel, A.H. Counter-Drone Systems; Center for the Study of the Drone at Bard College, 2018. Available
online: https:/ /dronecenter.bard.edu/counter-drone-systems (accessed on 17 April 2020).

6. Akhloufi, M.A; Arola, S.; Bonnet, A. Drones Chasing Drones: Reinforcement Learning and Deep Search
Area Proposal. Drones 2019, 3, 58. [CrossRef]

7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV,
USA, 27-30 June 2016; pp. 779-788.

https://www.sesarju.eu/node/2993
http://dx.doi.org/10.3390/s19102404
http://www.ncbi.nlm.nih.gov/pubmed/31130706
https://www.bbc.com/news/uk-england-sussex-48086013
https://www.bbc.com/news/uk-england-sussex-48086013
http://dx.doi.org/10.14429/dsj.68.12442
https://dronecenter.bard.edu/counter-drone-systems
http://dx.doi.org/10.3390/drones3030058

Sensors 2020, 20, 2320 24 of 25

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.

Anwar, A.; Raychowdhury, A. Autonomous Navigation via Deep Reinforcement Learning for Resource
Constraint Edge Nodes using Transfer Learning. arXiv 2019, arXiv:1910.05547.

Unreal Engine 4. Available online: https://www.unrealengine.com/en-US/what-is-unreal-engine-4
(accessed on 29 January 2019).

Kouris, A.; Bouganis, C.S. Learning to Fly by MySelf: A Self-Supervised CNN-based Approach for
Autonomous Navigation. In Proceedings of the 2018 IEEE/RS] International Conference on Intelligent
Robots and Systems (IROS), Madrid, Spain, 1-5 October 2018; pp. 1-9.

Lu, X.; Xiao, L.; Dai, C.; Dai, H. UAV-aided cellular communications with deep reinforcement learning
against jamming. arXiv 2018, arXiv:1805.06628.

Rodriguez-Ramos, A.; Sampedro, C.; Bavle, H.; De La Puente, P.; Campoy, P. A deep reinforcement learning
strategy for UAV autonomous landing on a moving platform. J. Intell. Robot. Syst. 2019, 93, 351-366.
[CrossRef]

Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press Cambridge: London, UK, 1998.
Kiumarsi, B.; Vamvoudakis, K.G.; Modares, H.; Lewis, FEL. Optimal and autonomous control using
reinforcement learning: A survey. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 2042-2062. [CrossRef]
[PubMed]

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.;
Fidjeland, A K.; Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015,
518, 529. [CrossRef] [PubMed]

Mnih, V.,; Kavukcuoglu, K ; Silver, D.; Graves, A.; Antonoglou, I.; Wierstra, D.; Riedmiller, M.A. Playing
Atari with Deep Reinforcement Learning. arXiv 2013, arXiv:1312.5602.

Van Hasselt, H.; Guez, A; Silver, D. Deep Reinforcement Learning with Double Q-Learning. In Proceedings
of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12-17 February 2016.
McClelland, J.L.; Mcnaughton, B.L.; O’Reilly, R.C. Why there are complementary learning systems in the
hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning
and memory. Psychol. Rev. 1995, 102, 419-457. [CrossRef] [PubMed]

Riedmiller, M. Neural fitted Q iteration-first experiences with a data efficient neural reinforcement learning
method. In Proceedings of the 16th European Conference on Machine Learning, Porto, Portugal, 3-7 October
2005; pp. 317-328.

Lin, L.J. Reinforcement Learning for Robots Using Neural Networks. Ph.D. Thesis, Carnegie-Mellon
University, Pittsburgh, PA, USA, 6 January 1993.

Hasselt, H.V. Double Q-learning. In Proceedings of the Advances in Neural Information Processing Systems
23: 24th Annual Conference on Neural Information Processing Systems 2010, Vancouver, BC, Canada,
69 December 2010; pp. 2613-2621.

Kersandt, K. Deep Reinforcement Learning as Control Method for Autonomous UAVs. Master’s Thesis,
Universitat Politecnica de Catalunya, Barcelona, Spain, 2017.

Taylor, M.E.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res.
2009, 10, 1633-1685.

Shah, S.; Dey, D.; Lovett, C.; Kapoor, A. AirSim: High-Fidelity Visual and Physical Simulation for
Autonomous Vehicles. In Field and Service Robotics; Springer: Cham, Switzerland, 2017; pp. 621-635.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang,].; Zaremba, W. OpenAl Gym
2016. Available online: https://arxiv.org/abs/1606.01540 (accessed on 17 April 2020).

Abadi, M.; Agarwal, A.; Barham, P; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. arXiv
2015, arXiv:1603.04467.

Theano Development Team. Theano: A Python framework for fast computation of mathematical expressions.
arXiv 2016, arXiv:1605.02688.

Plappert, M. keras-rl. Available online: https://github.com/keras-rl/keras-rl (accessed on 17 April 2020).
Von Bothmer, F. Missing Man: Contextualising Legal Reviews for Autonomous Weapon Systems.
Ph.D. Thesis, Universitdt St. Gallen, St. Gallen, Switzerland, May 2018.

Gurriet, T.; Ciarletta, L. Towards a generic and modular geofencing strategy for civilian UAVs. In Proceedings
of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7-10 June
2016; pp. 540-549.

https://www.unrealengine.com/en-US/what-is-unreal-engine-4
http://dx.doi.org/10.1007/s10846-018-0891-8
http://dx.doi.org/10.1109/TNNLS.2017.2773458
http://www.ncbi.nlm.nih.gov/pubmed/29771662
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1037/0033-295X.102.3.419
http://www.ncbi.nlm.nih.gov/pubmed/7624455
https://arxiv.org/abs/1606.01540
https://github.com/keras-rl/keras-rl

Sensors 2020, 20, 2320 25 of 25

31. AirSim Documentation. Available online: https://microsoft.github.io/AirSim (accessed on 1 May 2019).
32. Samek, W.; Wiegand, T.; Miiller, K.R. Explainable Artificial Intelligence: Understanding, Visualizing and
Interpreting Deep Learning Models. arXiv 2018, arXiv:1708.08296.

@ (© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

https://microsoft.github.io/AirSim
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	DRL Model Definition
	Tools
	Model
	Environment
	State Representation
	Agent's Neural Network
	Actions
	Rewards

	Training Analysis & Results
	Training Setup
	Definition of Cases
	Training Results
	Case 1: Training at 30 m Height
	Case 2: Training at Low Altitude, with Many Obstacles

	Further Model Results and Discussion
	Comparison of the Effects of Different Annealing Points in TL
	Comparison of the Explored Areas with or without TL
	Testing the Models at Low Altitude

	Conclusions
	Neural Network Parameters
	References

