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Abstract: With the rapid development of autonomous vehicles, the demand for reliable positioning
results is urgent. Currently, the ground vehicles heavily depend on the Global Navigation Satellite
System (GNSS) and the Inertial Navigation System (INS) providing reliable and continuous navigation
solutions. In dense urban areas, especially narrow streets with tall buildings, the GNSS signals are
possibly blocked by the surrounding tall buildings, and under this condition, the geometry distribution
of the in-view satellites is very poor, and the None-Line-Of-Sight (NLOS) and Multipath (MP) heavily
affects the positioning accuracy. Further, the INS positioning errors will quickly diverge over time
without the GNSS correction. Aiming at improving the position accuracy under signal challenging
environment, in this paper, we developed an MIMU(Micro Inertial Measurement Unit)/Odometer
integration system with vehicle state constraints (MO-C) for improving the vehicle positioning
accuracy without GNSS. MIMU/Odometer integration model and the constrained measurements are
given in detail. Several field tests were carried out for evaluating and assessing the MO-C system.
The experiments were divided into two parts, firstly, field testing with data post-processing and
real-time processing was carried out for fully assessing the performance of the MO-C system. Secondly,
the MO-C was implemented in the BeiDou Satellite Navigation System (BDS)/integrated navigation
system (INS) for evaluating the MO-C performance during the BDS signal outage. The MIMU
standalone positioning accuracy was compared with that from the MIMU/Odometer integration
(MO), MO-C and MIMU with constraints (M-C) for assessing the Odometer, and the influence of the
constraint on the positioning errors reduction. The results showed that the latitude and longitude
errors could be suppressed with Odometer assisting, and the height errors were suppressed while the
state constraints were included.

Keywords: GNSS; MIMU; odometer; state constraints

1. Introduction

Unmanned Ground Vehicles (UGV) with complete automatic operation are regarded as the
most promising technology to be available in the near future [1,2]. Precise and reliable position and
navigation information are fundamental for the autonomous driving vehicles [3]. Currently, the
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Global Navigation Satellite System (GNSS) and the Inertial Navigation System (INS) are the most
popular solutions for providing comparatively reliable positioning information [4]. GNSS is usually
integrated with INS since they are highly complementary. The GNSS works by relying on the geometry
distribution of the in-view satellites and signal quality, however, if the satellite signals are blocked by
the surrendered buildings or obstacles, the GNSS will fail to generate precise positioning results [5].
Under this condition, the INS could provide moderate navigation solutions in a short time. However,
due to the complex noises contained in the raw measurements from the gyroscope and accelerometer,
the INS errors will accumulate quickly over time [4–6].

In the past decade, there has been a lot of literature focusing on improving the positioning accuracy
under GNSS signal-challenging environments. These methods could be divided into two categories.
The first solution is to suppress the INS noise and compensate for its positioning errors. The INS
generates navigation solutions through processing the raw accelerator and gyroscope outputs. Limited
by the manufacturing technology, there are complex noises contained in the raw measurements. Sheimy
employed the Allan Variance method to characterize and quantify the noise [7,8]. Grip proposed
an exponentially stable attitude and gyroscope bias estimation method in GNSS/INS integration [9].
Machine learning (LS-SVM, LSTM-RNN) methods were employed for modeling the errors [10–13].
Some calibration methods were also proposed to improve positioning accuracy [14–18]. Wu investigated
the self-calibration of the Inertial Measurement Unit (IMU)/odometer integrated system for land vehicle
navigation [14]. In addition, in the GNSS/INS integrated navigation system, some machine learning
methods were employed and investigated to compensate for the INS errors during the GNSS signal
outage [15–18]. These machine learning methods were well trained while the GNSS signal was normal.

The second solution is to employ more sensors in the GNSS/INS integration system and construct
a multi-sensor fusion system. Among these sensors, LiDAR, vision cameras, altitude barometers,
Chip Scale Atomic Clock (CSAC), and the odometer are the most popular sensors [19–24]. LiDAR is a
sensor collecting the point cloud of the surrounding environment. With the continuous matching of the
point cloud sequences, LiDAR can generate relative displacements and attitudes [19–25]. In aspects
of the vision sensors, with the matching of the image’s sequences, attitude changes could also be
extracted. With two well-calibrated vision cameras or depth cameras, this method could also provide
positioning information [23,24]. An altitude barometer and odometer could provide height and
odometer information, respectively. GNSS/LiDAR/HD-Map/INS integration system is a popular
solution for autonomous driving vehicle positioning and navigation [25]. In addition, with the size
and accuracy improvement, the CSAC is employed for augmenting the GNSS accuracy by providing a
more precise frequency base [21].

In general, ground vehicles are usually equipped with an odometer for measuring the traveled
distance. Therefore, it is convenient to develop a GNSS/MEMS-INS/odometer fusion system. Some
works have revealed and demonstrated its effectiveness in improving positioning accuracy [26–29].
Georgy investigated the stochastic drift model of a MEMS (Micro-Electro-Mechanical System) gyroscope
in a gyroscope/odometer/GPS integrated navigation system [26]. A mixture of particle filter and fuzzy
neural network was employed for enhancing the MEMS-IMU/odometer/GPS integration for land
vehicle applications [27,28]. An odometer and MEMS IMU were also employed for enhancing Precise
Point Positioning (PPP) under weak satellite observability environments [29]. However, these studies
were conducted while the GNSS was available, and the influence of the constraints and odometer on
the positioning errors were not presented respectively and clearly.

Scientists have explored and investigated this issue using the vehicle trajectory constraints to
reduce the INS errors while the GNSS is unavailable [30–33]. Non-Holonomic Constraints (NHC) were
employed as the measurements for suppressing the INS errors while GNSS was unavailable. While the
vehicle is driving on the road, the velocity of both the up direction and perpendicular to the direction of
vehicle traveling are almost zero [33]. The observability of the NHC was analyzed for demonstrating
its effectiveness in land vehicle navigation systems [33]. However, NHC could not suppress the
positioning errors in the forward direction. Therefore, in this paper, apart from the NHC, an odometer
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was also employed to suppress the positioning errors in the forward direction. We developed an
MEMS-IMU/odometer integration navigation system considering the vehicle state constraints (MO-C)
for ground vehicle positioning without GNSS. Both data post-processing and real-time processing
experiments were carried out for assessing the navigation solution accuracy. Comparisons between
MO-C, MO, and M-C were presented for evaluating and validating the odometer and constraints
influence on the navigation solution accuracy. The contribution and innovation of this paper are
summarized as follows:

(1) The model of the IMU/odometer with constraints is comprehensively given, detailed equations
are listed and analyzed, and the influence of the odometer and constraints on the positioning
errors were numerically compared and evaluated, which might be a reference for implementing
these algorithms for different conditions.

(2) The odometer and constraints were firstly implemented in a BeiDou Satellite Navigation
System (BDS)/MIMU loosely-integrated navigation system for evaluating its performance and
effectiveness in reducing and suppressing INS positioning errors while GNSS was unavailable,
and positioning errors were presented for assessing these methods’ feasibility in a GNSS/INS
integration framework.

(3) In the experiments, both post-processing and real-time filed tests were carried out for assessing
the odometer and NHC performance in improving the positioning accuracy, respectively, and the
NHC and odometer were employed in the BDS/MIMU integrated navigation system, which was
of great significance for improving the positioning accuracy during the BDS signal outage.

The rest of the paper is organized as follows: Section 2 introduces the model of the MO, MO-C
(state measurement equations), the integration filter, and the vehicle state detection method. Section 3
presents the results and numerical analysis of the field tests. Then, we discuss and conclude the paper,
and the limitations and the future work are detailed.

2. Model

2.1. GNSS/MIMU Loose Integration Model

The state vector of the GNSS/MIMU loose integration model contains 15 states, and the state
vector XI is defined as:

XI = [δφ, δv, δp, δε, δ∇]T (1)

where δφ = [α, β,γ] denotes the three-axis attitude errors (pitch, roll, and yaw angle errors),
δv = [δve, δvn, δvu] denotes the three-axis velocity errors (east, north, and up velocity errors) in the
ENU navigation frames, δp = [δL, δλ, δh] denotes the three-axis positioning errors (latitude, longitude,
and height errors), δε =

[
εx, εy, εz

]
denotes the bias errors of the three-axis gyroscopes in body frame,

and δ∇ =
[
∇x,∇y,∇z

]
denotes the bias errors of the three-axis accelerometers.

The state equation GNSS/MIMU loose integration can be written as:

.
XI(t) = FI(t) ·XI(t) + GI(t)WI(t) (2)

where FI(t) is the state transferring matrix; WI denotes the state model noise matrix [18–21]. Specifically,
the detailed description of the state equation is as:

δ
.
p3×1
δ

.
v3×1

δ
.
φ3×1.
ε3×1.
∇3×1


=


Fpp Fpv 03×3 03×3 03×3

Fvp Fvv Fvφ 03×3 Cn
b

03×3 03×3 Fφφ Cn
b 03×3

03×3 03×3 03×3 Fεε 03×3

03×3 03×3 03×3 03×3 F∇∇




δp3×1
δv3×1

δφ3×1

ε3×1

∇3×1


+


03×3 03×3 03×3 03×3

Cn
b 03×3 03×3 03×3

03×3 Cn
b 03×3 03×3

03×3 03×3 I3×3 03×3

03×3 03×3 03×3 I3×3




wv

3×1
wφ

3×1
wε

3×1
w∇3×1


(3)
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Further, the first-order discrete form of the state equation is as:

.
XI(k + 1) = (I + FI · T) ·XI(k + 1) + GI · T ·WI(k + 1) (4)

δ
.
p3×1
δ

.
v3×1

δ
.
φ3×1.
ε3×1.
∇3×1


=


I3×3 + Fpp FpvT 03×3 03×3 03×3

FvpT I3×3 + FvvT FvφT 03×3 Cn
b T

03×3 03×3 I3×3 + FφφT Cn
b T 03×3

03×3 03×3 03×3 I3×3 + FεεT 03×3

03×3 03×3 03×3 03×3 I3×3 + F∇∇T




δp3×1
δv3×1

δφ3×1

ε3×1

∇3×1


+


03×3 03×3 03×3 03×3

Cn
b T 03×3 03×3 03×3

03×3 Cn
b T 03×3 03×3

03×3 03×3 I3×3T 03×3

03×3 03×3 03×3 I3×3T




wv

3×1
wφ

3×1
wε

3×1
w∇3×1



(5)

where T denotes the integration filter updating interval.
Then, the measurement model of the GNSS/MIMU integration is expressed as:

Zk+1 = Hk+1Xk+1 + µk+1 (6)

where Zk+1 denotes the measurement matrix, Hk+1 denotes the observation matrix, and µk+1 denotes
the measurement noise. In the loose integration model, the measurement vector is composed of GNSS
and MIMU position and velocity difference, and the detailed description is as:

Zk+1 =



(
LMIMU

k+1 − LGNSS
k+1

)
· (RM + h)(

λMIMU
k+1 − λGNSS

k+1

)
· (RN + h)cos(L)

hMIMU
k+1 − hGNSS

k+1
vMIMU

e,k+1 − vGNSS
e,k+1

vMIMU
n,k+1 − vGNSS

n,k+1
vMIMU

u,k+1 − vGNSS
u,k+1


(7)

A detailed description of the observation matrix Hk+1 is:

Zk+1 =

[
diag[RM + h(RN + h) cos(L) 1] 03×3 03×3

03×3 03×3

]
Xk+1 + µk+1 (8)

2.2. State Constraints

The definition of the vehicle body coordinates is presented in Figure 1. In the coordinates, the
origin is the center of gravity of the vehicle body, the Y axis points to the direction of the vehicle
traveling, the X axis points to the right side of the vehicle body, and the Z axis points to the up direction
of the vehicle.

According to the driving characteristics of the vehicle on the road, while the vehicle is running
normally on the road without sideslip or jump, e.g., the vehicle is driving on an expressway, the X-axis
and Z-axis speeds of the vehicle in the defined vehicle frame are approximately zero. The characteristic
is modeled as: {

Vv
x ≈ 0

Vv
z ≈ 0

(9)

In the dynamic trajectory, vehicle kinematic constraints are employed for suppressing the diverging
positioning errors under the GNSS-denied environment. Vehicle kinematic constraints are constructed
in the vehicle body coordinates. Although the Inertial Measurement Unit (IMU) is installed on the
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vehicle body, there is usually a misalignment angle between the IMU body coordinates and the vehicle
body coordinates. The misalignment angles will affect the velocity constraints listed in Equation (1).
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Figure 1. Illustration of the vehicle body coordinates.

Assuming the conversion matrix between the IMU body coordinates and the vehicle body
system is Cb

v. The heading misalignment angle is αψ, the pitch misalignment angle is αθ, and the roll
misalignment angle is αγ. Converting the velocity in the IMU body system to the vehicle body system
can be modeled as:

Vb = Cb
vVv (10)

where Vv is the velocity vector in the IMU body coordinates, and Vb is the velocity vector in vehicle
body coordinates.

Specifically,

Vb =


Vb

x
Vb

y
Vb

z

 = Cb
v


Vv

x
Vv

y
Vv

z

 =


sinαψ cosαθ
cosαψ cosαθ

sinαθ

Vv
y (11)

While the vehicle is moving, the Vv
y is not zero. The Vv

y will be projected to the Vb
x and Vb

z through
the heading and pitch misalignment angle. The roll angle does not influence the Vb

x and Vb
z . The

influence of the misalignment angle on the velocity Vb
x and Vb

z can be described as

δCv
b = −


δαθ

0
δαψ

×Cv
b = −δα×Cv

b (12)

While employing the constraints in the GNSS/MIMU loose integration, the misalignment angle
between the MIMU body frame and the vehicle body frame should be considered and added to the
state vector. The new state vector is as:

X =
[

XI Xα
]T

(13)

where XI is the same as that in Equation (1), Xα =
[
δαθ δαψ

]T
, δαθ is the misalignment heading angle,

and the δαψ is the misalignment pitch angle.
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Once the IMU is fixed on the vehicle, the misalignment angles can be regarded as constant values.
Therefore, the first-order derivative of the misalignment angles is zero.{

δ
.
αθ = 0
δ

.
αψ = 0

(14)

Then, the state equation of the MIMU can be as:

.
X(t) =

 .
XI(t).
Xα(t)

 =

[
FI(t) 0

0 Fα(t)

][
XI(t)
Xα(t)

]
+

[
GI(t) 0

0 Gα(t)

][
WI(t)
Wα(t)

]
= F(t) ·X(t) + G(t) ·W(t)

(15)

where FI(t) is the state transformation matrix of the IMU’s states,Fα(t) is the state transformation
matrix of the misalignment angles, WI(t) is the IMU state noise matrix, and Wα(t) is the misalignment
angle state noise matrix.

Commonly, the MIMU and GNSS loose integration model is constructed in East–North–Up
(ENU) coordinates. Positioning and velocity information from the GNSS and INS are subtracted and
employed as the measurement information. Converting the SINS velocity from the ENU coordinates
to the vehicle body frame.

Vv = Cv
bCb

nVn (16)

where Cv
b means the velocity conversion from the vehicle body frame from the IMU body coordinates,

Cb
n is the velocity transformation matrix from the ENU navigation frame to the vehicle body coordinates,

and Vn is the velocity vector in the ENU navigation frame.
Combining Equations (11)–(16), the differential equation is

δVv = Cv
b

(
Cb

nϕ×Vn + Cb
nδVn

)
− δα×Cv

bCb
nVn

=
(
−Cv

bCb
n(V

n)×
)
ϕ+ Cv

bCb
nδVn +

((
Cv

bCb
nVn

)
×

)
δα

= M1
3×3ϕ+ M2

3×3δVn + M3
3×3δα

(17)

The measurement equation is

ZV =

[
Vv

x − 0
Vv

z − 0

]
= HVX + VV (18)

where HV is the measurement matrix, and the VV is the noise matrix.

HV =

[
M1

3×3(1,×) M2
3×3(1,×) 01×11 0 M3

3×3(1, 3)
M1

3×3(3,×) M2
3×3(3,×) 01×11 M3

3×3(3, 1) 0

]
(19)

where M1
3×3(1,×) is the first row of the matrix M1

3×3, M3
3×3(1, 3) is the element in the first row and third

column, M1
3×3(3,×) is the third row of the matrix M1

3×3, and M3
3×3(3, 1) is the element in the third row

and first column.

2.3. MIMU/Odometer Measurement Model

The state vector of the MIMU/Odometer integration model is the same as Equations (13)–(15),
however, the measurement equation is different. The odometer output is listed as:

V̂b
odo =

[
0 V̂b

odoy 0
]T

(20)
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We then convert the odometer velocity from the IMU body frame to the ENU navigation frame,
then subtracting them with the velocity from the MIMU. The equation is listed as:

ZO = Vn
I −Cn

b V̂b
odo =


VIE −Vn

odoE
VIN −Vn

odoN
VIU −Vn

odoU

 = HOX + VO (21)

where Vn
I is the velocity from the MIMU, and V̂b

odo is the velocity from the odometer, HO is the
measurement matrix, and VO is the noise matrix.

HO =


01×3 1 0 0 01×11

01×3 0 1 0 01×11

01×3 0 0 1 01×11

 (22)

2.4. MIMU/Odometer Measurement Model with Constraints

Combining Equations (8)–(14), the MIMU/odometer measurement model with constraints is as:

ZOV =


Vv

x − 0
VIN −Vn

odoN
Vv

z − 0

 = HOVX + VOV (23)

where Vv
x is the X-axis velocity in the vehicle body coordinates, Vv

z is the Z-axis velocity in the vehicle
body coordinates, HOV is the measurement matrix, and VOV is the measurement noise matrix.

HOV =


M1

3×3(1,×) M2
3×3(1, 1) M2

3×3(1, 2) M2
3×3(1, 3) 01×11 0 M3

3×3(1, 3)
01×3 0 1 0 01×11 0 0

M1
3×3(3,×) M2

3×3(3, 1) M2
3×3(3, 2) M2

3×3(3, 3) 01×11 M3
3×3(3, 1) 0

 (24)

2.5. Integration Method

The state model is listed in Equations (5)–(7), and the measurement models under different
conditions are given in Equations (10), (14), and (15). Here, a Kalman filter is employed for carrying
out the integration. The Kalman filter is as:

The Kalman filter state vector and state covariance prediction are as:

X̂−k = Φk|k−1X̂k−1 (25)

P−k = Φk|k−1Pk−1ΦT
k|k−1 + Qk−1 (26)

The updating of the gain matrix, state vector, and the covariance are as follows:

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1

(27)

X̂k = X̂−k + Kk(Zk −HkX̂−k ) (28)

Pk = (I−KkHk)P−K (29)

where Φk|k−1 is the state transformation matrix; X̂−k is the predicted state vector through the state
transformation matrix and the state vector at previous epoch; P−k is the covariance matrix; Kk is the
gain matrix at the kth epoch, which decides the updating weight between the predicted state vector and
the new measurements; X̂k is the estimated state vector at the kth epoch; Pk is the covariance matrix.

Based on the above model, Figure 2 shows the structure of the integration system with constraints.
When the GNSS is available, the GNSS/MIMU integration system can provide satisfying navigation
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solutions. While GNSS is unavailable, constraints are employed in the integration system for estimating
the IMU state errors and compensating them.
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Figure 2. Structure of the Global Navigation Satellite System (GNSS)/Inertial Navigation System
(INS)/odometer/Non-Holonomic Constraints (NHC) integrated system.

3. Results

For fully testing and assessing the performance of the MO-C system, two different field tests were
carried out. The equipment employed in the field testing are given in Figure 3, the employed MIMU is
presented in Figure 3a, and the vehicle is shown in Figure 3b,c. In the first field test, the MIMU and
Odometer dataset was collected and post-processed through the software implemented in Matlab [34].
In the second field test, the algorithm was implemented using the hardware platform DSP+FPGA
(Digital Signal Processor, DSP; Field Programmable Gate Array, FPGA), and the results were obtained
from real-time processing of the data. The MO-C was also implemented in the BDS/MIMU integrated
navigation system for improving the effectiveness during BDS signal outage.
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Parameters of the employed MIMU were given in Table 1. The gyroscope bias stability was 3
degrees/h, and the accelerometer bias stability was 0.1 mg. The MIMU sampling frequency was 400
Hz, and the odometer data output frequency was 20 Hz. The integration filter operation period was
one second.

Table 1. Inertial Measurement Unit (IMU) specifications.

Gyroscope
Bias stability (degree/h) ≤3 degree/h

Scale factor nonlinearity (ppm) ≤200 ppm
White noise (degree/h) 0.1 degree/h

Accelerometer
Bias stability (mg) 0.1 mg

Scale factor nonlinearity (ppm) ≤150 ppm
White noise (mg) 0.05 mg

3.1. Field Testing with Data Post-Processing

MIMU and Odometer data were collected with the equipment presented in Figure 3. Following
positioning values comparisons ( GNSS, MIMU, MIMU/odometer (MO), and MIMU/Odometer with
constraints (MO-C) are presented in Figures 4–6. Trajectories obtained from different methods were
presented in Figure 4. The MO-C and MO results were similar in this trajectory. The positioning
curves in Figure 5 are plotted as the trajectory. Velocity results comparisons are presented in Figure 6.
Positioning and velocity error analysis including the Root Mean Square Error (RMSE) and 90-s errors
without GNSS are listed in Table 2. Through a comparison of the results of the GNSS, MIMU, MO, and
MO-C, it could be seen that:

(1) Compared with the MIMU standalone, the positioning errors were suppressed with the odometer
and constraints included, the latitude and longitude curves were almost consistent with the GNSS
curves. The east and north velocity were also consistent with the GNSS results. The height and
up velocity were also converging over time.

(2) Compared with the MIMU standalone, within 90 s, the MO and MO-C latitude errors reduced
by 98.8% and 98.9%; the MO and MO-C longitude errors reduced by 95.1% and 95.5%; the MO
and MO-C height errors decreased by 81.1% and 95.9%. In aspects of the velocity errors, both
MO and MO-C east velocity errors reduced by 87.2%; the MO and MO-C north velocity errors
decreased by 96.8% and 96.9%; the MO and MO-C up velocity obtained a 63.4% and 99.2%
improvement. Among them, the up direction position and velocity errors obtained the largest
reduction compared with that of other directions.
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Table 2. Positioning and velocity error comparison.

Latitude (m) Longitude (m) Height (m) East Velocity (m/s) North Velocity (m/s) Up Velocity (m/s)

MIMU
90s error 480.1 −150.6 −95.37 −1.189 7.144 −2.544

RMSE 234.56 81.31 40.36 0.715 6.121 1.365

MO
90s error −5.55 −7.30 18.06 −0.152 −0.225 0.931

RMSE 8.59 7.01 10.34 0.330 0.286 0.416

MO-C
90s error −5.28 −6.74 3.90 −0.152 −0.223 0.020

RMSE 8.54 6.93 2.08 0.304 0.286 0.101

3.2. Field Testing with Real-Time Data Processing

After the post-processing field testing, we carried out real-time data processing-based field testing
for further evaluation of the performance of the method. The algorithm was implemented using the
DSP+FPGA hardware platform with real-time processing data fusion. This sub-section is divided
into four parts. In the first part, we evaluate the MIMU with constraints; in the second part, the
MIMU/odometer integration is assessed; in the third part, the MO-C results are presented and analyzed;
in the last part, the MO-C was integrated into GNSS/MIMU integrated navigation system, and the
navigation solutions are presented and compared during a signal outage.

3.2.1. MIMU with Constraints

The field-testing trajectory was presented in Figure 7, and the positioning errors and velocity errors
were presented in Figures 8 and 9. The latitude and longitude errors of M-C gradually accumulated,
but gradually tended to be flat, the altitude errors gradually stabilized, and the errors were small;
although the three-dimensional speed errors were stable, the east and north speed errors were relatively
large, and the up speed errors were small. Without GNSS, the position and velocity errors within
90 s were as follows: latitude error was −25.85 m, longitude error was −28.80 m, altitude error was
−3.06 m, east velocity error was −0.91 m/s, north velocity error was 0.27 m/s, up velocity error was
−0.38 m/s. The results showed that the constraints were effective for suppressing the errors of the
MIMU in the dynamic trajectory. However, the M-C 90-s error values were still not ideal, which
was also affected by the heading angle. The heading angle was presented in Figure 10, and it varied
between 40◦ and 42◦. The vehicle kinematics constraints could only suppress the X-axis and Z-axis
position and velocity errors.
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3.2.2. MIMU/Odometer Integration

Three-axis position errors and velocity errors were presented in Figures 11 and 12, and it could
be seen that the MO latitude and longitude errors were stable and small, the altitude errors firstly
decreased and then increased; the east and north speed errors were stable, and kept within 0.2 m/s, the
up velocity errors gradually increased, and it trended to diverge. The 90-s position and velocity errors
were as follows: latitude error was 1.74 m, longitude error was 4.73 m, altitude error was −13.35 m, east
velocity error was 0.03 m/s, north velocity error was −0.06 m/s, and the up velocity error was −0.85 m/s.
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The results showed that the MO was effective for reducing the MIMU positioning errors. It was worth
of noting that the error of up velocity increased gradually without good constraints, which was the
same as the results in Section 3.1. If we wanted to obtain high-precision three-dimensional positioning
and speed measurement under GNSS-denied environments, additional sensors or methods were
necessary to suppress the height and up-direction velocity errors.Sensors 2020, 20, x FOR PEER REVIEW 14 of 20 
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3.2.3. MIMU/Odometer Integration with Constraints

In Figures 13 and 14, the three-dimensional position and velocity errors of MO-C were stable
and small. The height errors and the up velocity errors were significantly smaller than that of the
MC. The added kinematic constraints information performed well in suppressing the up velocity
errors and height errors. The 90-s position and velocity errors were as follows: latitude error was
1.72 m, longitude error was −1.36 m, altitude error was −4.38 m; east velocity error was 0.02 m/s,
north velocity error was −0.04 m/s, and up velocity error was −0.23 m/s. The position and velocity
errors comparison for MINS/BDS, M-C, MO, and MO-C are listed in Table 3. It could be seen that the
latitude and longitude errors were suppressed while the odometer was included in the system. With
the odometer assisting, the MO-C 90-s latitude and longitude errors decreased over 90% compared
with that of M-C. While adding the constraints to the MO, the MO-C longitude and height errors
performed with a 71.2% and 67.2% decrease, and the north and up velocity decreased by 33.3% and
72.9%. These results demonstrated the effectiveness of the odometer and constraints in position and
velocity error suppression.
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Table 3. Position and velocity error comparison.

Latitude (m) Longitude (m) Height (m) East Velocity (m/s) North Velocity (m/s) Up Velocity (m/s)

M-C
90s −25.85 −28.80 −3.06 −0.91 0.27 −0.38

RMSE 16.662 18.761 4.931 0.686 0.567 0.367

MO
90s 1.74 4.73 −13.35 0.03 −0.06 −0.85

RMSE 0.876 2.910 7.301 0.162 0.060 0.503

MO-C
90s 1.72 −1.36 −4.38 0.02 −0.04 −0.23

RMSE 1.911 2.112 5.487 0.142 0.077 0.168

3.2.4. Implementation of MC-O in MIMU/BDS during Signal Outage

In this part, we integrated into the BDS/MINS coupled navigation system for improving its
positioning accuracy during a signal outage. Figure 15 presented the field-testing trajectory in Google
maps. The BDS satellite amount of change was presented in Figure 16. The red line represented
the in-view satellite amount of GPS and BDS, which was employed as the reference. The blue line
represented the BDS satellite amount employed in the experiment. At 75 s, the antenna was removed
to simulate the signal outage. Therefore, the satellite amount was zero after 75 s.

Position and velocity errors were presented in Figures 17 and 18. During 0–75 s, the system
worked on BDS/MINS integration mode, and the position and velocity errors were within the normal
range. The system worked on GNSS/MIMU/Odometer mode during 0–75 s, the benefits could be
summarized as follows: firstly, the GNSS provided the initial position and velocity information for the
MIMU, and the GNSS velocity was helpful for the attitude estimation; secondly, the odometer could
also help the navigation solutions estimation, and in this mode, some parameters of the odometer
could be estimated from the reliable navigation solutions.
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After the 75 s, the BDS antenna was removed to simulate the signal outage and to assess the
performance of the MC-O. During 75 s and 165 s, the position errors experienced a minor decrease;
however, the position errors still kept within 10 m. After 165 s, the odometer was disconnected for the
assessment of the M-C performance. The position and velocity errors obtained a dramatic decrease.
The latitude and longitude errors were over 20 m. However, the height errors still kept within 10 m,
which demonstrated the effectiveness of the up velocity constraint. After 180 s, the odometer was
re-connected to the system, and the positioning and velocity errors converged quickly to normal range.
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4. Discussion

Our experimental results demonstrated that the odometer and the state constraints were effective
for suppressing the positioning errors of the MIMU while GNSS was unavailable. The odometer was
effective for reducing the errors of the vehicle moving direction, and the constraints also performed
well in reducing the height errors. During the 90 s testing time, the MO-C three-dimensional position
errors could keep within five meters above IMU. However, we thought the following work was worthy
of further investigation:

(1) In the above experiments, the testing time was 90 s, and the position errors would diverge due to
the odometer errors and the heading angle errors. In the MO-C, there were no constraints for
the heading angle. Other sensors or methods, providing better heading angles, could certainly
improve the MO-C position accuracy while GNSS was unavailable for a long time.

(2) In the experiments, we removed the GNSS antenna for simulating the signal outage for assessing
the MO-C, in fact, in urban areas, although part of the GNSS satellites were blocked by the
surrounding buildings, there were still a few satellites in view. However, there were not enough
for generating precise three-dimensional navigation solutions, the remaining satellites might be
helpful in the MO-C for aiding the navigation solutions estimation.

(3) Although the NHC and odometer were effective during the GNSS signals outage, it was still
necessary for GNSS/MIMU/odometer integration system, while the GNSS was normal, some
MIMU and odometer parameters could be estimated and calibrated, which could help reduce the
positioning errors during GNSS signal outage.

5. Conclusions

In this paper, we present a comprehensive investigation of the MIMU/odometer integrated
navigation system with vehicle state constraints. The algorithm is described and listed in detail.
Abundant experiments were conducted for evaluating and comparing the performance of the MO,
M-C, and MO-C methods. We could conclude that:

(1) Odometer was effective for reducing the latitude and longitude errors, however, it has almost no
influence on height accuracy.

(2) These constraints were effective for the height error reduction, but its influence on the latitude
and longitude errors were related to the moving direction of the vehicle.

(3) With the odometer and constraints aiding, the heading angle heavily affects the accuracy of the
navigation solutions. If the heading angle could be determined precisely, the multi-sensor fusion
method could provide long-time three-dimensional navigation solutions without GNSS.



Sensors 2020, 20, 2302 17 of 18

(4) This paper firstly presented the implementation and evaluation of these methods in the BDS/MIMU
loose integration system, and the satisfying results could support the BDS for vehicles in
urban areas.

(5) The methods discussed in the paper could also be implemented in a BDS chip receiver, and MIMU
could be connected to the BDS chip-scale receiver for improving the reliability and robustness of
the navigation solutions.
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