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Abstract: Speech emotion recognition often encounters the problems of data imbalance and
redundant features in different application scenarios. Researchers usually design different recognition
models for different sample conditions. In this study, a speech emotion recognition model for
a small sample environment is proposed. A data imbalance processing method based on selective
interpolation synthetic minority over-sampling technique (SISMOTE) is proposed to reduce the
impact of sample imbalance on emotion recognition results. In addition, feature selection method
based on variance analysis and gradient boosting decision tree (GBDT) is introduced, which can
exclude the redundant features that possess poor emotional representation. Results of experiments of
speech emotion recognition on three databases (i.e., CASIA, Emo-DB, SAVEE) show that our method
obtains average recognition accuracy of 90.28% (CASIA), 75.00% (SAVEE) and 85.82% (Emo-DB) for
speaker-dependent speech emotion recognition which is superior to some state-of-the-arts works.

Keywords: speech emotion recognition; data imbalance processing; feature selection; SISMOTE

1. Introduction

With the rapid development of human-computer interaction systems, the emotional intelligence
has been paid much attention in recent years, by which both the emotional state and implied intentions
of the human could be obtained [1]. Primary challenge for realizing human-computer emotional
interaction is to identify emotional state of humans accurately and effectively [2,3]. Cues for human
emotion recognition can be found from various modalities, including speech, facial expression,
and physiological signals, etc. As a main component of emotional intelligence, speech emotion
recognition (SER) draws researchers’ attention extensively [4,5].

It is widely accepted that speech conveys not only the semantic meaning but also the emotional
information of speakers [6,7]. In recent years, emotions are generally described by discrete models in
the form of emotional labels, thus various deep learning architectures were frequently used due to SER
being often modeled as a static or dynamic classification problem [8–10]. However, most application
environments of SER are small sample environments such as patient’s emotional monitoring.
A deep learning network that demands massive emotional tagging data has certain limitations in
SER [11–13], thus SER based on emotional feature engineering and machine learning algorithm
plays an important role. Both speaker-dependent (SD) and speaker-independent (SI) SER for small
sample environment have attracted much attention [14–16], in which SI SER always achieved lower
recognition accuracy for small sample environment. In addition, it is time and cost demanding to
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prepare a certain amount of training data for SD SER, and even more severe in SI SER in some scenarios,
e.g., multi-human–multi-robot interaction system in a household environment [17]. Thus, we mainly
focus on SD SER in this paper.

As a utility science, the data of SER obtained in the actual application environment are not
standard and the acquisition and labeling of emotional speech samples requires massive cost, in which
the data imbalance of each emotion category appears frequently [18]. In response to such problem,
some researchers have processed the data to reduce the degree of imbalance among samples in means of
synthesis, screening, and so on [19,20]. The common methods include subsampling and oversampling.
The subsampling method is generally applied to the case where the data imbalance is small and
the subset of the majority are sufficient, but it causes a certain degree of emotional information
loss. Oversampling can reduce the degree of data imbalance at the data level by constructing new
samples, but artificially synthesized minority samples may increase the risk of overlearning in minority
samples [21]. In addition, some learning models have been improved to reduce the impact of data
imbalance on the learning process [22–25]. Neural network is also a way to deal with data imbalance.
R. Alejo et al. improved the BP neural network, combining cost-sensitive learning methods and
Gabriel Graph Editing (GGE) to deal with data imbalance [26]. W. Zong et al. proposed a weighted
ELM algorithm, which assigns extra weights to each sample to eliminate the impact of imbalance on
traditional algorithms [27]. However, due to the long duration of the neural network convergence [26],
neural networks have rarely been used to deal with data imbalance in recent years. SMOTE algorithm
has been widely used in data imbalance processing, and some improved SMOTE algorithms have been
put forward. For example, H. Han et al. proposed the borderline-SMOTE algorithm, which generates
synthetic data only for those minority sample data at the decision boundary [28]. H. He et al.
proposed the adaptive synthetic sampling approach for imbalanced learning (ADASYN) algorithm,
which can adaptively generate different numbers of synthetic data based on data distribution [29].
C. Bellinger et al. proposed a general framework for manifold-based synthetic oversampling that
helps users to select a domain-appropriate manifold learning method [30]. However, these algorithms
depend too much on the number of nearest neighbors selected, so that some small samples are easily
mistaken for noisy data. In SER, unbalanced emotional speech samples often exhibit multi-category,
small-scale, and high degree of emotional confusion [31]. At present, only a few data imbalance
processing methods have been studied for SER.

One of the major issues of SER is acquiring an optimal emotional feature set from initial signals [3].
Most of the related works have been devoted on the extraction of speech spectral information and
prosodic features [32]. In addition, some new feature parameters such as Fourier parameters were
used for SER [33]. Most speech emotion features proposed in recent years have been proved to posses
emotional representational validity. However, the stability of these features under different speech
sample conditions is often not guaranteed [34,35]. Thus, some researchers tend to adopt hybrid
emotional feature set containing different categories of features [36]; however, there may exist a great
deal of redundant features for different speech samples, which will increase the learning difficulty and
computational cost of emotional classifier. Feature selection is indispensible for SER [37,38], in which
some linear dimensionality reduction methods have been applied for reducing the dimensionality of
speech features [39,40]. In addition, correlation analysis and the wrapped feature selection method
that selects the optimal subset in various combinations through different strategies were used in
SER [41–43].

In summary, there are two main problems with SER in small sample environment.
Firstly, data imbalances always exist in the emotional corpora, which impact the learning of different
emotional categories in the decision space by the classifiers [44]. Secondly, excessive high-level
emotional feature sets have massive redundancy under different sample conditions, which have a great
influence on the overall emotional description ability of the feature set.

To solve these problems, a framework of SER in small sample environment is presented to
reduce the influence of individual differences and enhance the practicability of SER, in which
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a selective interpolation synthetic minority over-sampling technique (SISMOTE) is proposed to
reduce the imbalance of emotional information. Feature selection based on variance analysis
and gradient boosting decision tree (GBDT) is introduced to reduce the feature redundancy.
Comparative experiments are performed to verify the effectiveness of the proposed method using
CASIA (Chinese emotional corpus) [45], Emo-DB (German emotional corpus) [46], and SAVEE
(English emotional corpus) [47]. The unprocessed samples and the samples processed by different
methods, i.e., the subsampling algorithm, the random oversampling algorithm, SMOTE algorithm,
ADASYN algorithm, borderline-SMOTE algorithm, and SISMOTE algorithm are tested using the
same classifier respectively. Different feature selection methods such as Pearson, Random Forest (RF)
are compared using standard samples. Furthermore, experiments on speaker-dependent emotion
recognition on different databases are performed, which demonstrate better accuracy as compared to
state-of-the-art works on the tested databases.

The main contributions of this paper are twofold. Firstly, selective interpolation synthetic minority
over-sampling technique (SISMOTE) is proposed to reduce data imbalance, in which the decision
space of minority class is expanded as much as possible while reducing the influence of the synthetic
samples on the decision space of majority class. Secondly, feature selection based on variance analysis
and gradient boosting decision tree (GBDT) is introduced, which could eliminate the redundancy
between features and obtain optimal feature set with stronger characterization.

The rest of paper is organized as follows. Feature extraction and data imbalance processing in SER
are presented in Section 2. Feature selection of speech features is introduced in Section 3. Experiments
on SER and discussion are given in Section 4.

2. Data Imbalance Processing in SER

Flowchart of the proposed SER model is shown in Figure 1. After obtaining the initially extracted
features from preprocessed speech signal samples based on the low-level emotional descriptors
(LLEDs) [48–50], the remaining procedure mainly consists of three blocks, i.e., data imbalance
processing, feature selection, and emotion classification.
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Figure 1. Flowchart of the proposed speech emotion recognition.
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As shown in Figure 1, in the actual implementation of the recognition model, it is necessary to
calculate the average imbalance ratio of the emotion categories of the initial feature data after feature
extraction, thereby determining whether to perform the data imbalance processing on the sample data.

In data imbalance processing, a selective interpolation synthetic minority over-sampling
technique (SISMOTE) is proposed for solving the problem of unbalanced data appearing in emotional
classification. In feature selection, a new method based on variance analysis and gradient boosting
decision tree (GBDT) is introduced to gain the lower redundancy features, in which the variance test
as a feature pre-selector can quickly remove redundant features while reducing the calculation of the
post-order process and GBDT can obtain the importance rank of emotional features through the fitting
of the learner. Support Vector Machine is adopted to classify the emotion categories such as neutral,
happy, sad, surprised, and angry.

2.1. Deficiency of Traditional SMOTE in Data Processing

The designed samples from standard recorded database are generally used to train models for
emotion recognition. However, the observation samples collected in the actual application environment
are not ideal and often have sample imbalances which causes recognition problems for machines.
For imbalanced data sets, samples of minority class are sparsely distributed in sample space compared
with the overwhelming amount of majority class.

Synthetic minority over-sampling technique (SMOTE) is a classical oversampling algorithm that
constructs corresponding new samples from minority class information obtained by neighbor relations,
which is a scheme based on random oversampling algorithm [51]. The implementation of SMOTE
is mainly to find k nearest neighbors by Euclidean distance for each sample xi in minority classes,
and randomly select a neighbor in the set of neighbors to perform linear interpolation, by which the
extension of minority classes is relized. Figure 2 is the schematic diagram of the traditional SMOTE
algorithm for two-dimensional feature set. In the example shown in the figure, a few speech sample
points from group “a” perform the synthesis of new sample points after linear interpolation of random
selections including neighboring points such as “b”, “c”, and “e”. A visual representation of the
interpolation process of SMOTE synthesis of minority class in unbalanced emotional speech samples is
shown, in which the displayed synthetic sample points are all new samples that may be synthesized.

a

b

c

e
Majority class samples

Minority class samples

Synthetic samples

Figure 2. Diagram of the traditional SMOTE algorithm.

In spite of synthetic samples being obtained, some shortcomings of the traditional SMOTE may
appear. Firstly, the new sample interpolated between sample points “a” and “b” interferes with the
decision space of most types of speech samples, and even the new sample may coincide with the
majority of samples. The sample point “b” is used as the neighbor of “c”, and the same problem occurs
when the sample point “c” is interpolated. Then, the synthesized sample points can only be in the line
between them when the sample points “a” and “e” are interpolated.

When SMOTE is applied to emotional speech sample processing, it needs to be improved to
overcome these shortcomings. Firstly, it uses all the minority samples in the sampling without
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considering whether there will be noise data in these samples [28]. Although the sampling space
can be expanded to increase the recognition accuracy of the minority class after completing the
sampling process, it will affect the decision space and recognition accuracy of majority class. Secondly,
it is considered as an interpolation method. If the feature dimension of the sample is two, the new
sample xij synthesized by the algorithm is limited to the line xi is connected to its neighbor point xnn.
This interpolation method is limited by the way of extension of minority samples.

2.2. Imbalance Data Processing Based on SISMOTE

In view of the above analysis, a selective interpolation synthetic minority over-sampling technique
(SISMOTE) is proposed to solve the problem of data imbalance in SER, for which not all the minority
samples need to be upsampled, but only the corresponding target points are interpolated. Difference
from the traditional SMOTE is that the decision space of minority class is expanded as much as possible
while reducing the influence of the synthetic samples on the decision space of majority class. Figure 3
is the schematic diagram of the SISMOTE algorithm for two-dimensional feature set.

a

b

c

e

Majority class samples

Minority class samples

Synthetic samples

Figure 3. Diagram of the SISMOTE algorithm.

Combined with the schematic diagram in Figure 3, the SISMOTE can be divided into the
following steps.

Step 1: For each speech sample in minority emotional classes xi, k nearest neighbors of that sample
are calculated based on Euclidean distance and the set of neighbors is denoted as Si1. Besides, k nearest
neighbors in all speech samples for xi are obtained and its neighbor set is denoted as Si2.

Step 2: Let numi = count(Si1 ∩ Si2). If numi = 0, xi is marked as a noise point, eliminate it without
participating in any subsequent sampling operations. If 0 < numi <= k/2 + t, t is the regulatory
factor, xi is marked as a target point. If k/2 + t < numi <= k, xi is marked as a non-target point,
and mark the numi neighbors of xi as points in the security domain Q.

Step 3: Count the number of target points n, and determine the sampling magnification of the
algorithm N according to the imbalance ratio of the emotional sample and the number of target points,
i.e., N = (M− T)/(T − n), M is the number of speech samples of majority emotional class, and T is
the number of speech samples of minority emotional class.

Step 4: Interpolate all target points to construct a new sample. If the target point xo belongs to
the security domain, i.e., xo ∈ Q, randomly select two neighbors points x̃1 and x̃2 from the set of
neighbors of xo in minority class samples for one interpolation, i.e., xnew = xo + rand(0, 1)× (x̃1− xo)+

rand(0, 1)× (x̃2 − xo), as shown in the dotted line area in Figure 3. On the other hand, randomly select
one neighbor point x̃1 from the set of neighbors of xo in minority class samples for one interpolation,
i.e., xnew = xo + rand(0, 1)× (x̃1 − xo).

As shown in Figure 3, a small number of samples is under the same distribution of samples as
Figure 2. Sample point “a” chooses the nearest neighbor points to interpolate and construct a few new
samples. Sample point “b” is directly judged as noise sample points and no longer participates in any
post-order interpolation operations. This helps avoid the influence on decision space of most speech
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samples. In view of the different neighbor distributions of sample points “a” and “c”, the interpolation
space between sample point “a” and nearest neighbor points is no longer available in two-dimensional
speech feature space. Limited to the connection line, the region expands to a triangular region,
while the sample point “c” still adopts linear interpolation method, i.e., interpolation in the connection
area between the sample point “c” and its nearest neighbors due to the small number of neighbors.

At the same time, because SER is usually treated as a multi-classification problem, sampling rate
is determined by the most size of emotion categories and the number of other emotion class with
the “one-to-many” strategy. For each minority category, other emotion categories are treated as one
category, i.e., l class data imbalance processing is transformed into l − 1 two-class data imbalance
processing, so as to achieve multi-class speech data imbalance processing.

3. Feature Selection of Speech Features

Importance of each selected feature depends on the correlation between feature and emotional
category. The stronger the correlation is, the better the classification ability of representative feature
will be. A feature selection method based on variance analysis and gradient boosting decision tree
(GBDT) is introduced for SER.

3.1. Emotional Feature Pre-Selection Based on Variance Analysis

The idea of variance analysis [52] is to use the divergence indicator to evaluate each feature and
select the feature whose score is greater than the threshold. Specifically, the divergence of each feature
is calculated, and the feature with the divergence less than the threshold value before the selection is
removed. Feature selection is independent of the learner, which is equivalent to filtering the initial
features first. In this paper, variance is used as the feature scoring standard. If the difference of the score
of a feature is not large, it can be considered that the feature has little contribution to distinguishing the
emotional sample. Therefore, the feature with the variance less than the threshold is firstly removed,
by which it is possible to achieve rapid feature pre-selection in SER while reducing the feature set
dimension and the computational complexity of the subsequent sequence process.

The formula for calculating the variance of each dimension in pre-selection is

δ2
E =

m
∑

i=1

k×n
∑

j=1
(xij −

−
xi)

2

m× k× n
(1)

where m is the number of speakers in the emotional speech samples, k is the number of emotional
categories in the samples, and the n is the number of speech samples of each speaker in different
emotion categories in the sample set, which is randomly selected.

By setting the threshold of variance, the dimension which has variance less than the threshold is
considered to have little contribution in differentiating emotions, therefore such features are removed
in the process of constructing the feature set. The pre-selection process of speech emotional features
based on variance analysis is independent of the learner, which is equivalent to filtering the initial
features and training the learner with the pre-selected feature set.

3.2. Importance Evaluation of Emotional Features Based on GBDT

Feature selection based on gradient boosting decision tree (GBDT) is introduced to eliminate the
redundancy between features and obtain optimal feature set with stronger characterization. GBDT is
integrated learning method based on Boosting strategy [53], in which multiple weak learners with
strong dependencies are integrated to obtain the final strong learner through the collection strategy.

The procedure of it can be summarized as the following steps.
Step 1: Complete the extraction process of the speech emotional features, setting the maximum

number of iterations T and the number of leaf nodes J.
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Step 2: Initialize the estimated value of all speech samples for K categories, and the following
learning and updating process is iteratively performed T times.

Step 3: Perform a logistic transformation on the function estimates for each speech sample,
traversing the probability of each emotional class for all speech samples, and calculating the probability
gradient of each speech sample for the kth emotional class.

Step 4: Obtain the regression tree of J leaf nodes through the gradient method, calculating the
gain of each leaf node, and updating the estimated values of all speech samples under the kth
emotional class.

Step 5: Keep iterating until the terminating condition is reached, calculating the importance
ranking of the emotional feature set through the fitted decision tree group, and obtaining the
corresponding feature subsets by setting the importance threshold.

4. Experiments

The experiment was designed with the following steps. First of all, openSMILE toolkit and
MATLAB R2012b were used to extract speech acoustic features, in which multidimensional features
were extracted separately. And the proposed SISMOTE was carried out in data imbalance processing,
in which the unbalanced emotional data reaches equilibrium. Then redundancies in emotional data
were removed by the model of variance analysis and GBDT. Finally, Support Vector Machine (SVM) [54]
was used for speech emotion classification and a Radial Basis Function (RBF) was used as kernel
function, in which penalty coefficient C and kernel parameter gamma were obtained based on grid
search. The experimental process of SER was realized by Python3.5 and MATLAB R2012b program.
Experiments were carried out on a 32-bit Windows 7 operating system running on dual-core Intel i5
CPU clocked at 2.4 GHz and using physical memory of 3.16 G.

Using extracted speech features, three sets of experiments were conducted. First, using the same
initial feature set, the experiments by different data imbalance processing methods were performed to
verify the effectiveness of SISMOTE on Emo-DB and SAVEE. Then, using the same initial emotional
feature set and emotional classifier, experiments by different feature selection methods were performed
to verify the validity of the proposed feature selection method on CASIA, SAVEE, and Emo-DB
databases. Finally, speaker-dependent SER on CASIA, SAVEE and Emo-DB databases was carried
out, in which our method was compared with some state-of-the-arts works. To ensure the rigor and
fairness of the experiment, the average results are obtained after running experiments ten times.

4.1. Speech Database

4.1.1. CASIA Chinese Emotion Corpus

It is recorded by the Institute of Automation, Chinese Academy of Sciences. It has 9600 short
mandarin utterances, in which 6 emotional states (i.e., sad, angry, fear, surprise, happy, and neutral) are
contained in total, and the emotional samples of this database is recorded by four speakers (i.e., 2 males
and 2 females) in a noise-free setting with 16-bit PCM WAV at 16 kHz sampling frequency with about
35 dB [45].

4.1.2. Surrey Audio-Visual Expressed Emotion (SAVEE) Database

It consists of 480 short English utterances recorded by four speakers in seven basic emotions
(i.e., angry, fear, disgust, surprise, happy, sad, and neutral), in which the speech samples are picked
from the standard TIMIT corpus and each emotion is phonetically-balanced [47].

4.1.3. Berlin Database of Emotional Speech (Emo-DB)

It is a German emotional speech database recorded by the Technical University of Berlin, by the
10 actors (5 males and 5 females) of 10 statements (5 long 5 short) of seven emotions (i.e., happy, angry,
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anxious, fearful, bored, disgusted, and neutral) simulation, contains a total of 800 sentence corpus,
sampling rate of 48 kHz (16 kHz, 16 bit after compression) [46]. The speech recorded in a professional
studio, and the actors were required to interpret particular emotion before through the memories of
their true experience or experience of mood brewing, to enhance the sense of reality of emotions.

4.2. Emotional Data Imbalance Processing

The SISMOTE was tested using standard feature set INTERSPECH 2010 [50] on the Emo-DB and
SAVEE database because 2–5 times imbalance in the data of each emotional category exist, and seven
sets of experiments were performed using different kinds of data imbalance processing method
in total (i.e., None, Subsampling, Random Oversampling, SMOTE, ADASYN, borderline-SMOTE,
and SISMOTE). The original sample feature set and the feature set processed by different kinds of
data imbalance processing method were used in SD SER experiment respectively. SVM was used for
emotion classification.

All samples of each individual were used, in which 70% samples were randomly used for
training and the remaining 30% samples were used for testing. The experiment was divided into two
groups based on different databases. The first group, i.e., 535 emotional speech samples in Emo-DB
were randomly divided into training set and testing set in proportion (7:3), in which the emotional
samples in training set were divided into 90 “anger” samples, 58 “boredom” samples, 30 “disgust”
samples, 56 “anxiety” samples, 56 “happiness” samples, 36 “sadness” samples, and 36 “neutral”
samples. After these unbalanced training samples were processed in different ways and training the
SVM classifier, 161 test sets were used to test the classifier. The second group, i.e., 480 emotional
speech samples from SAVEE were randomly divided into 336 speech samples in training set and
144 speech samples in testing set, in which the training set consists of 43 “anger” samples, 44 “disgust”
samples, 38 “fear” samples, 42 “happiness” samples, 79 “neutral” samples, 48 “sadness” samples,
and 42 “surprise” samples. Table 1 shows the comparative results in the initial samples and the
samples after using SISMOTE on Emo-DB. Table 2 gives the comparative results in the initial samples
and the samples after using SISMOTE on SAVEE.

Table 1. Comparative results in the initial samples and the samples after using SISMOTE on Emo-DB.

Category
None SISMOTE

Count
Precision Recall F1 Precision Recall F1

Anger 0.76 0.95 0.84 0.76 0.95 0.84 37

Boredom 0.70 1.00 0.82 0.77 1.00 0.87 23

Disgust 0.92 0.75 0.83 1.00 0.75 0.86 16

Anxiety 0.64 0.69 0.67 0.75 0.69 0.72 13

Happiness 0.87 0.52 0.65 0.94 0.64 0.76 25

Sadness 0.86 0.83 0.84 0.84 0.91 0.87 23

Neutral 0.83 0.62 0.71 0.89 0.71 0.79 24

Avg/Total 0.80 0.78 0.78 0.84 0.83 0.82 161
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Table 2. Comparative results in the initial samples and the samples after using SISMOTE on SAVEE.

Category
None SISMOTE

Count
Precision Recall F1 Precision Recall F1

Anger 0.50 0.65 0.56 0.57 0.71 0.63 17

Disgust 1.00 0.31 0.48 1.00 0.38 0.55 16

Fear 0.82 0.41 0.55 0.81 0.59 0.68 22

Happiness 0.50 0.50 0.50 0.71 0.56 0.63 18

Neutral 0.74 0.98 0.84 0.82 0.98 0.89 41

Sadness 0.69 0.75 0.72 0.60 0.75 0.67 12

Surprise 0.62 0.72 0.67 0.65 0.83 0.73 16

Avg/Total 0.70 0.67 0.65 0.76 0.73 0.72 144

As shown in Table 1, through the unbalanced data processing, the accuracy and recall rate of
the “angry” category are 0.76 and 0.95, respectively. The former represents 76% of all the samples
identified by the learner as the category, 24% is actually other categories; the latter shows that 95% of
the test samples in this category are correctly classified, and 5% of the samples are misclassified into
other emotional categories.

The Emo-DB’s 374-sentence training set samples were processed in five different ways for
unbalanced emotional speech. After using up-sampling method, the training set samples included
210 sentences. The training set samples were expanded to 630 sentences after using other over-sampling
methods and the speech samples was balanced among emotional classes. In the same way,
SAVEE’s 336 speech samples were processed by different methods. The training set samples were
reduced to 266 sentences after using up-sampling method and the training set samples were expanded
to 553 sentences after using other over-sampling methods.

The classification model was trained using the processed data, and the test was performed using
the same testing set. Comparative results using different data imbalance methods on Emo-DB and
SAVEE are shown in Table 3.

Table 3. Comparative results using different imbalance processing methods on Emo-DB and SAVEE.

Database
Recognition Accuracy (%)

None Subsampling
Random

Oversampling SMOTE ADASYN
Borderline
-SMOTE SISMOTE

Emo-DB 78.26% 74.53% 81.75% 81.99% 82.09% 82.15% 82.61%

SAVEE 66.67% 57.64% 70.14% 72.22% 72.50% 72.53% 72.92%

The average imbalance rate of data between the Emo-DB and SAVEE training episodes of
emotional speech sample categories exceeds 100%. Table 1 shows the emotion recognition results
when no data imbalance is processed including the accuracy of each emotion category in the two sets
of data. Both the precision and the recall are greatly offset, and the corresponding F1 value is lower,
e.g., the precision of “happy” category on Emo-DB is 0.87, which indicates that 87% of the results
are correctly classified, and the recall rate is only 0.52, which means that the classifier only classifies
52% of the test samples of the category correctly, which results in an overall F1 value being only 0.62.
This shows that the data imbalance between the categories of speech data extremely affects the learning
of sentiment classifiers. Excessive attention to most types of speech samples leads to higher recall rates
and relatively lower accuracy in most emotional categories, such as “angry” and “neutral” in Table 1,
while the under-learning of a few categories leads to a lower recall rate and higher accuracy, which
affects the overall emotional recognition accuracy.
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As shown in Tables 1 and 2, the precision and the recall rate of each emotional category are
lower than that of the data unbalanced processing, and the F1 values of each category are given,
from which the data imbalance processing method improves recognition results obviously. The degree
of improvement indicates that data for different emotion categories in the training set are balanced
and supplemented, and the learner’s degree of over-learning for most types of emotion categories and
the degree of under-learning for a few classes are greatly reduced.

At the same time, the recognition accuracy of the learning model by different data imbalance
processing methods in Table 3 demonstrates the effectiveness of the SISMOTE algorithm for unbalanced
emotional speech data compared to other methods. The emotional data imbalance processing method
can extend the decision space of a few sentiment categories to achieve the inter-class balance while
reducing the influence of the synthesis of minority speech samples on the decision space of most
emotional classes.

4.3. Speech Emotional Feature Selection

In this section, the emotional feature selection method based on variance analysis and GBDT was
tested using standard feature set INTERSPEECH 2010 on CASIA, Emo-DB, and SAVEE databases,
in which the comparison among three feature selection methods (i.e., Pearson correlation analysis, RF,
and our method) by seven kinds of classifiers (i.e., Naive Bayes classifier (NB), K-NearestNeighbor
(KNN), Logistic Regression (LR), Decision Tree (DT), and SVM) was performed.

The experiments were divided into three groups according to the source of the emotional corpus.
The first group has 5400 training samples and 1800 test samples after dividing the data of CASIA.
Because the CASIA data are standard and the data imbalance rate among the emotional categories
of feature set is lower, the feature selection process was directly performed on the initial feature set
without data imbalance processing.

In the initial emotional feature set of CASIA speech sample data (1582 dimensions), the training
set was processed by different feature selection methods. The average dimension of the feature set
after variance analysis based feature pre-selection is 1253 dimensions, in which the threshold of
variance is set to be 0.001. The average dimension of the GBDT importance assessment completion
feature selection is 292 dimensions; the average dimension after RF feature selection is 230 dimensions.
Different classifiers (i.e., NB, KNN, LR, DT, SVM) were trained using the feature subsets generated by
different feature selection methods, and the testing sets were aligned at the same time. Table 4 shows the
recognition results using proposed method on CASIA. Table 5 shows the average recognition accuracy
of speaker-dependent emotion recognition on CASIA. Table 6 shows the UAR of speaker-dependent
emotion recognition on CASIA.

Table 4. Recognition results using proposed method on CASIA.

Category Precision Recall F1 Count

Anger 0.94 0.92 0.93 296

Fear 0.90 0.84 0.87 300

Happy 0.86 0.90 0.88 304

Neutral 0.96 0.95 0.96 288

Sadness 0.84 0.91 0.87 288

Surprise 0.93 0.91 0.92 324

Avg/Total 0.90 0.90 0.90 1800

The second group has 401 training samples and 134 testing samples after dividing the data of
Emo-DB. The training set samples were expanded to 679 sentences after the data imbalance processing.
Same as above, originating from the initial sentiment feature set of Emo-DB speech sample data
(1582 dimension), the average number of dimensions for pre-selected feature set selected by variance
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analysis is 1217, and the average dimension after the GBDT feature selection is 259 dimensions.
The average dimension after RF feature selection is 283 dimensions. Table 7 shows the recognition
results using proposed method on Emo-DB. Table 8 shows the average accuracy of speaker-dependent
speech emotion recognition on Emo-DB. Table 9 shows the UAR of speaker-dependent speech emotion
recognition on Emo-DB.

Table 5. Average recognition accuracy of speaker-dependent emotion recognition on CASIA.

Classifier
Recognition Accuracy (%)

None Pearson RF Our Method

NB 44.22 44.39 50.89 50.39

KNN 62.00 59.83 76.83 74.72

DT 59.83 55.00 62.83 62.11

LR 81.17 78.00 82.44 84.39

SVM 88.39 84.78 88.61 90.28

Table 6. Unweighted average recall of speaker-dependent emotion recognition on CASIA.

Classifier
Unweighted Average Recall (%)

None Pearson RF Our Method

NB 44.39 44.76 51.23 52.26

KNN 62.08 59.98 78.11 78.90

DT 59.13 53.93 61.15 63.27

LR 81.16 78.04 82.29 82.78

SVM 88.42 84.81 88.69 89.38

Table 7. Recognition results using proposed method on Emo-DB.

Category Precision Recall F1 Count

Anger 0.87 0.87 0.87 30

Boredom 0.83 0.83 0.83 18

Disgust 0.78 0.90 0.84 20

Anxiety 1.00 0.92 0.96 12

Happiness 0.78 0.78 0.78 22

Sadness 1.00 0.81 0.90 16

Neutral 0.86 0.90 0.88 20

Avg/Total 0.80 0.86 0.86 134

Table 8. Average recognition accuracy of speaker-dependent speech emotion recognition on Emo-DB.

Classifier
Recognition Accuracy (%)

None Pearson RF Our Method

NB 74.63 74.86 73.13 79.34

KNN 64.18 67.16 69.40 72.39

DT 56.72 50.00 52.99 59.70

LR 77.61 80.06 81.34 76.12

SVM 82.09 81.34 83.58 85.82
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Table 9. Unweighted average recall of speaker-dependent speech emotion recognition on Emo-DB.

Classifier
Unweighted Average Recall (%)

None Pearson RF Our Method

NB 73.12 73.93 74.46 80.06

KNN 67.08 69.88 69.19 76.07

DT 57.90 43.77 56.27 57.76

LR 77.46 79.78 81.33 80.52

SVM 81.53 81.53 83.27 85.04

The third group has 360 training samples and 120 test samples after dividing the data of SAVEE.
After the data imbalance processing, the training set samples were expanded to 609 sentences. Same as
above, originating from the initial sentiment feature set of SAVEE speech sample data (1582 dimension),
the average number of dimensions for pre-selected feature set selected by the variance analysis is
1137, and the average dimension after the feature selection is 303 dimensions based on the gradient
lifting tree importance evaluation, the average dimension after RF feature selection is 313 dimensions.
Table 10 shows the recognition results using proposed method on SAVEE. Table 11 shows the average
recognition accuracy of speaker-dependent emotion recognition on SAVEE. Table 12 shows the UAR
of speaker-dependent emotion recognition on SAVEE.

Table 10. Recognition results using proposed method on SAVEE.

Category Precision Recall F1 Count

Anger 0.56 0.71 0.63 14

Disgust 0.73 0.57 0.64 14

Fear 0.88 0.74 0.80 19

Happiness 0.69 0.56 0.62 16

Neutral 0.86 0.94 0.90 33

Sadness 0.67 0.75 0.71 8

Surprise 0.71 0.75 0.73 16

Avg/Total 0.76 0.75 0.75 120

Table 11. Average recognition accuracy of speaker-dependent speech emotion recognition on SAVEE.

Classifier
Recognition Accuracy (%)

None Pearson RF Our Method

NB 55.83 52.50 60.00 60.83

KNN 50.00 50.00 54.17 59.17

DT 43.33 49.17 45.83 46.67

LR 64.17 63.33 65.00 66.67

SVM 69.17 67.5 74.17 75.00

For the speech samples under different data distributions, the emotional representation ability
of the emotional feature set is improved after the feature selection. As shown in Table 4, “neutral” is
identified with the highest accuracy of 96%, and other emotions are classified with accuracies higher
than 80% on the CASIA database. Table 7 shows that the precision of “anxiety” and “sadness” reaches
to 100% on Emo-DB database. Table 10 shows that “fear” and “neutral” are identified with precision
of 88% and 86% respectively, while the precision of the other four emotions does not exceed 80%
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on SAVEE database. Compared with the experiments using the initial feature set, the proposed
feature selection method improves the efficiency while greatly reducing the feature set dimension.
The recognition results compared with other feature selection methods demonstrate the effectiveness
of the speech sentiment feature selection method based on variance analysis and GBDT.

Table 12. Unweighted average recall of speaker-dependent speech emotion recognition on SAVEE.

Classifier
Unweighted Average Recall (%)

None Pearson RF Our Method

NB 48.78 48.78 57.39 61.11

KNN 54.64 54.64 57.29 58.32

DT 42.47 45.21 49.40 40.07

LR 60.10 60.10 62.31 65.14

SVM 63.87 63.87 67.43 74.85

Tables 5, 8 and 11 show the recognition accuracy using different feature selection method and
different classifier on CASIA, Emo-DB and SAVEE database. It shows that our method obtains higher
accuracy than other feature selection methods, especially the performance using SVM improves by
5.83% on the SAVEE database.

Unweighted average recall (UAR) is a great evaluation index if various types of emotions have
an imbalance distribution [10]. Tables 6, 9 and 12 show the UAR using different feature selection
methods (i.e., None, Pearson, RF, and our method) and different classifiers (i.e., NB, KNN, DT, LR,
and SVM) on CASIA, Emo-DB and SAVEE database, respectively. It can be seen that our feature
extraction method achieves the optimal results using almost all classifiers. In the case of using the
SVM classifier, it achieved the optimal UAR on CASIA, Emo-DB, and SAVEE, which are 89.38%,
85.04%, and 74.85%, respectively.

4.4. Effect of the Number of Features on SER

In this section, the proposed method was tested using standard feature set INTERSPEECH 2010
on CASIA database, in which the recognition accuracy using different numbers of samples by SVM
classifier were given.

As seen in Figure 4, when the number of samples is less than 600, the recognition accuracy
increases along with the increase of sample size. While the sample size exceeds 600, the recognition
accuracy is close to 90% and tends to be stable.

 

Figure 4. Diagram of recognition accuracy for different sample sizes.
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4.5. Comparison with Some State-of-the-Art Methods

In this experiment, to verify the performance of our method, comparison between our method
(SVM is used as the emotional classifier) and some state-of-the-arts methods was carried out.
The average recognition accuracy of the proposed speech emotion recognition method on emotional
databases is collated, in which our method obtains average recognition accuracy of 90.28% (CASIA),
75.00% (SAVEE), 85.82% (Emo-DB) for speaker-dependent speech emotion recognition. Comparative
results of recognition accuracy is shown in Table 13, from which a specific sample environment is
modeled in this paper.

Table 13. Comparison between our method and some related works.

Database Reference Average Recognition Accuracy (%)

CASIA
[55] 85.08

[42] 89.6

Our method 90.28

SAVEE
[56] 61.25

Our method 75.00

Emo-DB
[57] 80.5

Our method 85.82

As shown in Table 13, our method achieved higher emotion recognition accuracy in SD SER than
others. According to the comparison above, our method obtains better results in the case of small
sample owing to two main reasons. Firstly, the information of minority emotional class is supplemented
while reducing the degree of data imbalance through the SISMOTE. Secondly, feature selection based
on variance analysis and GBDT obtains the order of importance of various speech features in emotion
recognition through the fitting of the learner, thereby effectively screening the features.

5. Conclusions

In this paper, a new framework of SER in small sample environment was put forward, in which
the data imbalance processing method based on the selective interpolation synthetic minority
over-sampling technique (SISMOTE) in small sample environment was proposed. The effectiveness
of the proposal was respectively validated in multiple comparative experiments under different
experimental conditions. The SISMOTE was demonstrated to be more suitable for solving data
imbalance in speech emotion recognition than the traditional SMOTE. The utility of the feature
selection based on variance analysis and GBDT was verified through the experimental comparison.

In future work, the optimization of the model under different conditions will be carried out.
For example, the sample size of the database used in this study is not large. If the data size of an
unbalanced sample set is large, the distribution of samples in emotional categories may get complicated.
The target domain division of a few sentimental classes may be affected, thus affecting the quality
of synthesis minority emotional samples. In view of the data imbalance problem in the large sample
environment, it is worthwhile to improve the existing algorithms or develop new ones.

In addition, the robustness of the proposed method will be studied. More situations such as noisy
environment and cross language environment will be concerned. Furthermore, data preprocessing and
feature selection are two indispensable steps for both soft classification and regression. Since SISMOTE
belongs to the data preprocessing and another method (i.e., variance analysis and GBDT) belongs to the
feature selection, we believe that our method can be applied to both soft classification and regression in
the future. To improve the applicability of our method further, we will study on speaker-independent
(SI) speech emotion recognition. Since SER is a promising work, the proposal can be applied to
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many occasions such as advanced driver assistant system (ADAS), remote education, human-robot
interaction (HRI). The proposed method in this paper will be applied to the multi-modal emotion
recognition system [17] and communication atmosphere modeling in human-robot interaction [58].
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