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Abstract: Traditionally, digital image forensics mainly focused on the low-level features of an
image, such as edges and texture, because these features include traces of the image’s modification
history. However, previous methods that employed low-level features are highly vulnerable, even to
frequently used image processing techniques such as JPEG and resizing, because these techniques add
noise to the low-level features. In this paper, we propose a framework that uses deep neural networks
to detect image manipulation based on contextual abnormality. The proposed method first detects the
class and location of objects using a well-known object detector such as a region-based convolutional
neural network (R-CNN) and evaluates the contextual scores according to the combination of objects,
the spatial context of objects and the position of objects. Thus, the proposed forensics can detect
image forgery based on contextual abnormality as long as the object can be identified even if noise is
applied to the image, contrary to methods that employ low-level features, which are vulnerable to
noise. Our experiments showed that our method is able to effectively detect contextual abnormality
in an image.
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1. Introduction

Digital images have become one of the most popular information sources in the age of
high-performance digital cameras and the Internet. Unlike textual information, images offer an
effective and natural communication medium for humans, because the visual nature of images
facilitates an effective understanding of the content. Traditionally, the integrity of visual data was
accepted with confidence, such that a photographic image in a newspaper was commonly accepted as
a certification of the news. Unfortunately, digital images are easily manipulated, especially since the
advent of high-quality image-editing tools, such as Adobe Photoshop and Paintshop Pro. Moreover,
as a consequence of the invention of generative adversarial networks [1], deepfake technology has
been posing a threat to the reality and integrity of image media [2] because this technology can easily
generate photo-realistic fake images. As a result, digital-image forensics, a practice aimed at identifying
forgeries in digital images, has emerged as an important field of research.

A number of forensic schemes were proposed recently to detect image forgeries. Most previous
digital image forensic methods [3,4] focused on low-level features that include traces of the
image modification history. Pixel photo response non-uniformity (PRNU) is also widely used
for detecting digital image forgeries [5–8]. Methods for detecting identical regions caused by
copy–move forgery [9–11] have also been developed. Approaches based on deep neural networks have
also delivered remarkable results. These approaches mostly focus on detecting local inconsistencies or
statistical features in images that have been tampered with [12–16].
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In this paper, we present a forensic scheme to detect whether images have been manipulated.
The proposed scheme detects contextual abnormality based on high-level objects in the target image.
For example, as shown in Figure 1a, the presence of the lamb in the office is quite an unusual
situation. Figure 1b, which shows a boat surrounded by cars and trees constitutes a contextual
abnormality. The manipulated parts (areas in the red box) can be detected because these objects caused
contextual abnormalities.

(a) (b)

Figure 1. Examples of image forgery detection based on contextual abnormality. The manipulated parts
(areas in the red box) can be detected because these objects caused contextual abnormalities. (a) a boat
surrounded by cars and trees constitutes a contextual abnormality, (b) the presence of the lamb in the
office is quite an unusual situation.

The work presented in this paper follows the concept we previously reported [17], which describes
a context-learning convolutional neural network (CL-CNN) that detects contextual abnormality in
an image. Here, we add detailed explanations and data that were not included in our previous paper.
The information about the relationship between objects in an image is used as a robust feature that is
not affected by general image processing. The context that frequently occurs in the original image has
a high contextual score. A context abnormality is a case that contains unexpected object combinations
or unexpected spatial context, and the context abnormality can be measured by the contextual score.
To measure the image context described above, various learning models for object relations have
been proposed. Existing context models [18–20] operate with co-occurrence statistics based on a tree,
and a graph-structured model. However, existing models mainly focus on co-occurrence; thus, the
opportunity to learn the spatial context is limited.

We propose a model that can identify the context by learning the image label that contains the
object class and the spatial coordinate. The main contributions of our approach are the context-learning
convolutional neural networks (CL-CNN), and the digital forgery detector in combination with
CL-CNN and the trained object detector, and more specific descriptions are as follows.

• We propose a CL-CNN that detects contextual abnormality in an image. The CL-CNN was trained
using a large annotated image database (COCO 2014), and was then used to learn the spatial
context that was not provided by the existing graph-based context models.

• In combination with a well-known object detector such as a region-based convolutional neural
network (R-CNN), the proposed method can evaluate the contextual scores according to the
combination of the objects in the image, and the spatial context among the objects. The proposed
detector in combination with CL-CNN and the object detector can detect image forgeries based
on contextual abnormality as long as the objects in the image can be identified by the R-CNN,
in contrast to the family of low-level feature-based forgery detectors.
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2. Related Work

2.1. Image Forensics

Image forensics algorithms can be categorized in many ways. In this section, we categorize
detectors into those with low-level features and those with high-level features. Previously, digital
image forensics [3,4] mostly focused on low-level features that include traces of the image
modifying history. These methods are designed to detect local inconsistencies such as resampling
artifacts [21], color filter array interpolation artifacts [22], camera response function [23,24] and
JPEG compression [25]. Pixel photo response non-uniformity (PRNU) is another family of low-level
feature-based detectors, which is widely used for detecting digital image forgeries [5–8] and camera
source identification [5]. Approaches based on deep neural networks have also been used to investigate
low-level image features. Methods that focus on low-level features mostly focus on detecting local
inconsistencies or statistical features relating to the manipulated images [12–16].

Most of the methods based on detecting local inconsistencies are vulnerable to general image
processing techniques such as JPEG and GIF compression, white balancing and noise addition. On the
other hand, high-level features such as the lighting condition [26,27], inconsistent reflections [28]
and shading and shadows [29] provide fairly robust clues for a forgery detection system against
general image processing as shown in Figure 2. Compared to algorithms based on local inconsistencies,
high-level features are not always effective in every case. However, successful identification of the
artifacts of image manipulation in real examples rarely occurs because of the general use of image
post-processing techniques such as JPEG and scaling.

(a)

(b)

Figure 2. (a) The low-level image features do not rely on the image contents that make them more
consistent [21]. (b) The high-level feature provides reasonably robust clues for the forgery detection
system against general image processing such as JPEG and scaling. One example is an image forgery
detection based on shading and shadows [29].

2.2. Object Detection Based on Deep Learning

Object detection is the task of locating an object and its label in an image. A variety of object
detectors based on deep neural networks have been developed. Because our experiments were
conducted using faster R-CNN, we only review three related methods here. Girchick et al. [30]
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proposed R-CNN: Regions with CNN (convolutional neural networks) features to detect an object
in an image. Their method applied high-capacity CNNs to carry out bottom-up region proposals to
localize and extract objects. They also found that when the labeled training set is sparse, supervised
pretraining for an auxiliary task followed by domain-specific fine-tuning results in significant
performance improvement.

Although they improved the object detection task significantly, the framework has to process
all of the proposals, thereby greatly increasing the computational cost. Therefore, Girchick et al.
subsequently improved the detection speed [31] by developing a method named fast R-CNN. Instead
of local proposals, the improved method processes the entire input image to extract the features.
Ren et al. [32] presented faster R-CNN, which includes a region proposal network (RPN) that shares
full-image convolutional features with the detection network. The RPN simultaneously predicts the
object bounds and objectness scores at each position. In this study, we used the faster R-CNN to extract
object labels and locations from a suspicious image.

3. Context-Learning CNN

In this research, we propose context-learning convolutional neural networks (CL-CNN) to learn
the co-occurrence and spatial relationship between object categories. The work presented here follows
the concept we previously reported [17], which describes a context-learning convolutional neural
network (CL-CNN) that detects contextual abnormality in an image. The proposed CL-CNN provides
an explicit contextual model by using deep learning with large image databases. The CL-CNN is
trained to return a high value for the natural (or learned) combination of the object categories, whereas
it returns a low value for atypical combinations or spatial contexts of the image labels.

3.1. Input Data Structure

The process of generating input data is as follows. We used an annotated image database for
object location and category information. Because the size of the image is too large to be used, the
size is reduced to N × N, where N is the height and width of the encoded data, to record the position
information of the object. The channel size of the input data structure is the total number of categories
that is necessary to distinguish each category. The part defining the label is padded with a value of 1
and the remaining blank area is filled with 0 values. This process is used to encode the location and
label information into the input data structure as shown in Figure 3.

Figure 3. Input data structure and encoding process of the proposed method. Annotated images are
used for providing labels and location information. The number of the channel of the input data
structure is the total number of categories from the dataset.

In this research, we reduced the size of the image to 8× 8 and chose 80 as the category. The final
input data size is 8× 8× 80 and the generation process is shown in Figure 3.

3.2. CL-CNN Structure

The structure of the CL-CNN is as follows (see Figure 4). It receives input data of 8× 8× 80,
which pass through two convolutional and three fully connected layers. Then the fully connected
layer finally outputs a 2× 1 vector. The first value of the output is a score that evaluates the extent
to which the label is natural in combination with the category and spatial context, and the second
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value is the score that evaluates the extent to which the category combination and spatial context of the
label are awkward.

The loss function uses the Euclidean loss L, which is defined by

L =
1
2 ∑

i
(yi − ai)

2, (1)

where y is the output of the CL-CNN, and a is the label of the data sample.

Figure 4. Overall structure of the context-learning convolutional neural networks. The network receives
the encoded input data that consists location and label information. The input passes through two
convolutional layers and three fully connected layers.

3.3. Dataset Generation

A large number of datasets needs to be acquired to enable the proposed network to learn.
We need both a collection of natural labels and a collection of unnatural labels. Moreover,
we also need data that show both the location and type of the object. A dataset that
meets these criteria is Microsoft COCO: Common Objects in Context [33]. Microsoft COCO
2014 provides 82,783 training image sets and label information and 40,504 validation images
and label information. The dataset was therefore constructed to aid in learning detailed object models
capable of precise 2D localization and contextual information.

Before we used the dataset, we excluded single-category images because they serve no useful
purpose for learning contextual information. Thus, we used 65,268 multi-category images, which were
divided into 80 categories, to train the CL-CNN. A positive set was constructed using label information
of multi-category images, using the approach described in Section 3.1.

We cannot use negative sets based on existing databases because they need to learn combinations
of unnatural labels that do not actually exist. Therefore, we generated the negative set in two
ways as shown in Figure 5. Negative set 1 was created by changing the size and position of
the object while maintaining the category combination. Negative set 2 was created by selecting a
combination of less correlated categories. Figure 6 shows the histogram of the co-occurrences between
object categories. Using the probability P(c1, c2) from the co-occurrence histogram, combinations
of classes c1, c2 with a low co-occurrence probability P(c1, c2), were selected to generate a negative
dataset. Next, negative set 2 was modified by changing the size and position of the object while
maintaining the category combination.
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(a) (b)

Figure 5. Sample illustration of the negative set generation. (a) Maintain category combination while
changing each position; (b) change category combination with changing each position.

Figure 6. Histogram of the co-occurrences between object categories. The negative set was generated by
selecting the combinations of the less correlated categories (e.g., combinations shown in circled regions).

3.4. Network Training

A simple learning approach was employed to train object combination and location shuffled
datasets at the same time. Next, we tested “combination and location shuffling” and “location shuffling,”
for which we obtained accuracies of 0.97 and 0.53, respectively. When learning “combination and
location shuffling” at the same time, “combination change” was strongly learned. As a result, the
spatial context was not learned because of overfitting of the CL-CNN. Therefore, we needed to improve
the learning method to ensure that “location shuffling” was sufficiently learned.

Therefore, we trained the CL-CNN by learning the “location shuffling” of an object first and then
fine-tuning the “combination and location shuffling” part sequentially. We set the learning rate to 0.001
for “location shuffling” and set the learning rate to 0.00001 for “combination and location shuffling”
learning. We also tested “combination and location shuffling” and “location shuffling,” for which we
obtained accuracies of 0.93 and 0.81, respectively. The test accuracy for “location shuffling” has been
greatly improved from 0.53 to 0.81 when compared with the simultaneous learning approach.

4. Detection of Contextual Abnormality of Target Image

We propose a method to detect the contextual abnormality of the target image using
CL-CNN. The proposed method functions in combination with the output of an existing object
detector [30–32]. Ultimately, we selected the faster R-CNN [32] from among these methods to solve the
object detection task. Using these object detection results and probability values, we developed a system
that detects the objects that are most inappropriate in the image context. The proposed method is
described as follows.
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Step 1. Extract objects from the suspicious image: Let I be a suspicious image. Using the image
object detector, we extract the area containing the object in the image and calculate the category score
in each area as follows:

Pri (c) = F(I), (2)

where the function F(·) is the region-based object detector such as faster R-CNN [32] for a single input
image I. P ∈ [0, 1]R×C is the probability of each object class c from the detected region ri. Figure 7
shows a sample of the object detection result and its details.

Figure 7. Step 1. Extract object region and calculate category score using the object detector such as the
faster region-based convolutional neural network (R-CNN) [32].

Step 2. Generate input sets for CL-CNN: After extracting objects from the image, candidates for
the contextual abnormality check are selected by:

P = {(ri, c) : Pri (c) > τi}, (3)

where τi is the selection threshold for the raw output. If Pri < τi, the corresponding object region ri is
not used. For example, when τi = 0.7, three candidates: lamb, keyboard, and mouse are selected in the
sample image in Figure 7. Then, the input sets Si for the CL-CNN are generated by:

Si = P\{(ri, c)}, (4)

where P\{x} denotes the set P excluding the element x. As shown in Figure 8, each object is excluded
from each of the generated input. For example, object 67 (keyboard) is excluded from the Input 1.
Figure 9 shows that the encoded inputs from the detected objects by R-CNN are processed through
CL-CNN. Each object from the output is respectively excluded as explained here to evaluate the
contextual score.

Figure 8. Generate input sets for context-learning convolutional neural networks (CL-CNN).
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Figure 9. The encoded inputs from the detected objects by the R-CNN are processed through the
CL-CNN. Each object from the output is respectively excluded as explained in Equations (4) and (5) to
evaluate the contextual score.

Step 3. Evaluate the context score of the inputs: The encoded inputs from the objects detected
by the R-CNN are processed by using the CL-CNN. Each respective object from the output is excluded
as explained in Equation (5) to evaluate the contextual score. Each of the input sets Si is passed to the
CL-CNN to generate the resultant value vector.

î = argmin
i

[C(Si)], (5)

where the return value of the function C(·) denotes the positive output value of the CL-CNN.
Before calculating C(·), the input Si is converted according to the input data structure described
in Section 3.1. Because Si is the set P that excludes the element ri, the object class c from the region rî is
the most unlikely object in the context of the target image I. Therefore, î indicates the index value of
the region that may cause the contextual abnormality.

In addition, we would need to consider the case in which the suspicious image does not contain
contextual abnormality. Reduction of the false positive error requires us to verify whether the value of
C(Sî) is larger than the user defined threshold τo.{

Forgery detected : if C(Sî) < τo,
No detection : otherwise.

(6)

We use the value 0.2 for τo.
The value of C(Sî) indicates the confidence value of CL-CNN. If the positive output value C(Sî)

of CL-CNN is lower than τo, the object from the detected region rî is determined as a manipulated
candidate by our detector. In cases in which multiple objects are forged, we can solve the above
problem by checking the top n results of Equation (5). In other words, n most confident detections
evaluated by CL-CNN were selected for the final result.
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5. Experimental Results

5.1. Implementation Details

The experiment was conducted by using sample images collected from Microsoft COCO: Common
Objects in Context [33]. We used 65,268 multi-category images, which were divided into 80 categories,
to train the CL-CNN. A positive set was constructed using label information of multi-category images,
using the approach described in Section 3.1. Two types of negative sets were synthesized as described
in Section 3.3. The entire dataset was split to form the test and training set at a 9:1 ratio.

The implementation of the CL-CNN is based on Caffe library [34]. The network was optimized
using a stochastic gradient descent optimizer (SGD) and an inverse decay learning rate policy with
the following hyper-parameters: gamma: 0.1, power: 0.75, weight decay: 0.0001, momentum: 0.9 and
batch size: 64. The CL-CNN was trained a total of 50,000 iterations for the generated test set. We set the
base learning rate to 0.001 for “location shuffling” and set the learning rate to 0.00001 for “combination
and location shuffling” learning. Figure 10 demonstrates the overall training loss, test loss and test
accuracy. The cross-entropy classification loss was used for the losses. To sum up, CL-CNN obtained a
92.8% overall accuracy for classifying the negative dataset from the original dataset.

Figure 10. The overall training loss, test loss, and test accuracy of the proposed network.

5.2. Detection Results

The experimental results for the natural images (the positive set) and forged images (the negative
set) are shown in Figures 11 and 12. The natural images are from the COCO 2014 test database. Because
no manipulation was detected, we showed the output value for which the CL-CNN input contained
all the object sets P extracted by the detector. For the natural image, the average output value was 0.98
or higher. For instance, a combination of vases, indoor tables and chairs is frequently observed in the
COCO dataset, thus all of them are judged to be natural objects, as shown in Figure 11a. Note that, the
appearance rate of people in the training dataset was high; thus, an image in which people appear
tends to be evaluated positively by CL-CNN. Therefore, the output values are larger in comparison, as
shown in Figure 11b,c.
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(a)C(P) = 0.970 (b)C(P) = 0.998 (c)C(P) = 0.992 (d)C(P) = 0.973

Figure 11. CL-CNN results with natural image input. The average output value was 0.98 or higher.
The yellow box shows the normal detection results by R-CNN, and red box represent the detection
result by our method. (a) indoor scene, (b) giraffes in the glass cage, (c) baseball scene, (d) indoor scene
with shelf bed.

(a)Original (b)Original (c)Original

(d)C(P) = 0.365 (e)C(P) = 0.088 (f)C(P) = 0.035

Figure 12. CL-CNN and forgery detection results with manipulated images. The object in the red box
was detected as a manipulated object. The first row shows original images. The second row shows
the detection results by the proposed method. (a) car road and a traffic light, (b) a bear, (c) a kite, (d)
detection result of manipulated image with car road and a zebra, (e) manipulated image with a horse
and a bat, (f) manipulated image with a cow in the sky.

We created images that were manipulated by using an arbitrary combination of object classes (see
Figure 12). Figure 12d,which displays a zebra surrounded by cars and trees, constitutes a contextual
abnormality. The yellow box shows the normal detection results by R-CNN, and red box represent the
detection result by our method. Because this combination of labels is rare (or does not exist), the output
value of the CL-CNN is rather low than in the positive cases. The results confirm that the “naturalness
of the image” would be enhanced by removing the zebra.

However, our framework has some limitations. For example, the image in Figure 12f is
manipulated by placing a cow beside a kite. However, our method loses the information that the cow
is in the sky during the object detection step. Therefore, both the cow and the kite are judged to appear
unnatural in the image. In Figure 12e, both the horse and baseball bat were inserted into the image
as the result of manipulation, but only the baseball bat was selected as an abnormal object. In this
case, other forgery detectors such as [21,22,25] could be combined with our method to improve the
detection accuracy.
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5.3. Detection Complement with Other Detectors

In this section, review sample results that show that other forgery detectors could be
combined with our method to improve the detection performance. Low-level image feature based
techniques [9,21,25,35] can help to complement our method. The low-level image feature such as noise,
resampling and JPEG artifacts are severely damaged by various post-processing techniques, so their
detection performance will be further improved by our method. Although other forensic tools can
detect the objects our method misclassified, our method can also be used for enhancing the other
forensic tools.

For instance, error level analysis (ELA) identifies areas within an image that are at different
compression levels [35]. ELA highlights differences in the JPEG compression level because re-saving
a JPEG removes high-frequency patterns and results in less differences between high-contrast edges
and textures. As shown in Figure 13a,b, the inserted cow cannot be distinguished by our detector, but
ELA boosts high-contrast edges from the cow that may have been digitally changed. However, if the
modified area of the image is globally processed with strong compression, noise addition or resizing,
ELA is unable to reveal the changed region of the image. As we can see in Figure 13d, our method
can detect such forgeries even after the strong post-processing, although ELA is unable to reveal the
changed region when the image has been globally post-processed.

(a)ELA map (b)C(P) = 0.035

(c)ELA map (d)C(P) = 0.224

Figure 13. Error level analysis (ELA) highlights differences in the JPEG compression level. (a) ELA
boost high-contrast edges from the cow that may have been digitally changed, but (b) the inserted
cow cannot be distinguished by our detector. As an opposite sample, (c) ELA is unable to reveal the
changed region when the image has been globally post-processed. (d) the proposed method confirms
that a boat is out-of-context. The yellow box shows the normal detection results by R-CNN, and red
box represent the detection result by our method.

Another family of forgery is a copy–move modification [9–11]. In a copy–move forgery, a part of
the image itself is copied and pasted into another part of the same image [9]. This is usually performed
with the intention to make the targeted object disappear from the image by covering it with a segment
copied from another part of the image. (See a seagull on the grass in Figure 14a. Copy–move forgery
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detector only targets a specific type of image modification. Similar to ELA, a copy–move detector
generally fails when the suspicious image has been post-processed, such as resizing, as shown in
Figure 14d.

(a) (b) (c) (d)

Figure 14. A part of grass image was copied and covered into the part of a seagull to make it disappear
from the image. (a) Original image; (b) object detection result of the manipulated image; (c) detection
result of the copy–move detector; (d) false positives of the detector on post-processed image.

As we have seen so far, each detector has its own specified forgery and counterfeit method.
Because the basics of our method differs significantly from other methods, the proposed detector is
useful to complement the drawbacks of the existing forensic techniques.

6. Discussion and Conclusions

In this study, we proposed a model (CL-CNN) that can provide contextual information prior to
directly learning the combination of image labels. The trained model provides a contextual prior based
on CNNs. The proposed method first uses a well-known object detector such as R-CNN [30] to detect
the class and location of the object and then evaluates the contextual scores based on the combination
of objects.

The proposed method can be used for various applications. Because many of the available forensic
tools require a large amount of computational power, this method can be used to pre-filter web-scale
image candidates. The abnormality detector could be used in a specific application to monitor an
image server or a large database. Unlike low-level feature-based forgery detectors in which forgery
detection performance is degraded by common image processing techniques, our method can detect
forgery by measuring abnormality if only objects are identified. Thus, our method complements
other forgery detection techniques, especially those that are low-level feature-based, such as photo
response non-uniformity (PRNU) [5], camera response function [24] and JPEG compression trace [25].
Our method is a learning-based technique, so the application can be easily extended and fine-tuned
with any other database.

However, the region-based object detector used in this study ignores the background of an image;
hence, our method does not allow the context between the object and its background to be directly
evaluated. Therefore, we plan to enhance the accuracy of the study by combining deep learning based
on scene classification, similar to the approach that was followed in recent studies [36,37]. In addition,
we aim to improve the model to obtain more robust and accurate results by paying more attention to
the generation of negative sets.
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