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Abstract: The paper presents an application of the Conditionally-Minimax Nonlinear Filtering
(CMNF) algorithm to the online estimation of underwater vehicle movement given a combination
of sonar and Doppler discrete-time noisy sensor observations. The proposed filter postulates
recurrent “prediction–correction” form with some predefined basic prediction and correction
terms, and then they are optimally fused. The CMNF estimates have the following advantageous
features. First, the obtained estimates are unbiased. Second, the theoretical covariance matrix of
CMNF errors meets the real values. Third, the CMNF algorithm gives a possibility to choose
the preliminary observation transform, basic prediction, and correction functions in any specific
case of the observation system to improve the estimate accuracy significantly. All the features of
conditionally-minimax estimates are demonstrated by the regression example of random position
estimate given the noisy bearing observations. The contribution of the paper is the numerical
study of the CMNF algorithm applied to the underwater target tracking given bearing-only and
bearing-Doppler observations.

Keywords: underwater target tracking; bearing-only measurements; bearing-Doppler measurements;
port-starboard ambiguity; nonlinear filtering; conditionally minimax nonlinear filter; machine learning

1. Introduction

The class of underwater target tracking problems is rapidly widening. This process has been
provoked not only by the dramatic growth of the underwater vehicle industry, resulting in a big
number of multi-functional vehicles available, but also by the active development of the registration
devices and improvement of their usage policies along with advanced methods of statistical data
processing. The spectrum of applications is also broad and lies both in the civil [1–5] and military
areas [6–10].

Without aiming to write an exhaustive review in the area of the underwater target tracking,
we should mention the following works [11–13]. The analysis of these comprehensive contributions
together with other related literature allows for determining the factors and restrictions which affect
the performance in any specific applied tracking problem:

– available sensors configuration and their characteristics,
– the mathematical model of the couple “target dynamics–measurements”,
– requirements to the target state estimates,
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– theoretical framework and numerical algorithms, involved into the solution to the tracking problem.

The object of this research is the long-range passive tracking problem of a maneuvering target by
stationary multi-static sonar site [11]. This task looks rather challenging. First, in this case, the available
observations are the bearings towards the target with or without the Doppler shift of the received
signal caused by the radial target movement relative to the sonar. The target range is unobservable in
the passive mode, which complicates the tracking significantly. Moreover, the bearing measurements
of sonars are considerably less accurate in comparison with radars: angular errors of sonars are
typically 1◦–3◦ [14], while those of radars vary in the range of 0.05◦–0.3◦ [15]. Second, the negative
feature of the sonar observations is the port-starboard ambiguity. The choice of the correct target
position is nontrivial and can be done by various methods [6,16,17]. Third, at the moment of the distant
target detection, the statistical uncertainty of the position is huge; this forces applying advanced
mathematical methods to make the state estimate quality reasonable. Fourth, usually, the moving
target is maneuvering [18], and the parameters of the maneuvers are also subject to estimation.

From the mathematical point of view, the target tracking is a filtering problem. The unobservable
state is described by a stochastic differential system (SDS), and this state has to be estimated given
the indirect discrete-time nonlinear noisy observations. The optimality criterion is usually the Mean
Square (MS) of the state estimate error. For practical realization of the filtering process, the common
practice is to apply either nonlinear modifications of the well-known Kalman filtering (KF) algorithm:
linearized/extended Kalman filter (LKF/EKF) [19–22], method of pseudo measurements [23–25],
unscented Kalman filter (UKF) [26,27], quadrature or cubature Kalman filter [28,29], and numerous
versions of the particle filter [30,31]. All these methods have known issues: the nonlinear versions of
the KF may diverge in specific settings [32–34] or provide the biased estimates [23,24], quadrature,
and cubature filters are resource-demanding for high-dimensional observation systems [28], and so
are the particle filters.

The aim of this paper is the presentation of the Conditionally-Minimax Nonlinear Filtering
(CMNF) algorithm for underwater target tracking in the conditions stated above. This algorithm
was initially proposed for the state filtering of the discrete-time stochastic finite-dimensional [35]
and distributed [36] observation systems. Recently, it was successfully applied to the tracking of
a maneuvering aerial target given the radar observations [37] and the navigation of the Automated
Underwater Vehicle (AUV) [38].

The idea of the CMNF algorithm is quite transparent. We fix the structure of the filter in the
two-step “prediction–correction” form. The transform of the estimate on the previous step (so-called
basic prediction function) and the observations on the present step (observation transform and basic
correction function) are predefined. The optimization procedure deals only with optimal fusion of
these functions in the final filtering estimate in order to provide the best performance in the MS-sense.
The minimax property of this fusion is related closely with the one of the pair “Gaussian distribution—
linear estimator”. If the mutual distribution of the triplet “state–prediction term–correction term” is
uncertain with known mean and covariance matrix bounded from above, then the least favorable
distribution is Gaussian, and then the best (equalizing) estimate is the linear one [35,36].

The CMNF estimate has remarkable properties. First, it is unbiased, i.e., the CMNF estimate
error is a centered random vector. Second, the CMNF algorithm allows for calculating the upper
bound of the error covariance matrix, and this conservative choice guarantees that the algorithm is
non-divergent in contrast with the EKF and UKF. Third, the CMNF algorithm gives a possibility to
select the functions of basic prediction, observation transform, and correction in accordance with
additional a priori information, such as the explicit form of the state dynamics, some guess concerning
the form of the optimal nonlinear filter for the observation system at hand, etc. It turns out that
a successful choice provides a significant gain in estimation accuracy.

Another aim of the research is to analyze the contribution of Doppler observations into the CMNF
performance in comparison with the bearing-only observation version.
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The paper is organized as follows. Section 2 contains a description of the target tracking problem.
We present the stochastic dynamic system, which defines the target motion, and the model of the
sensor measurements.

Section 3 is devoted to the theoretical background of the conditionally-minimax estimation.
Traditionally, the key features and performance of the nonlinear KF algorithms like EKF, UKF, etc. are
illustrated by a regression example, hence Section 3.1 contains the formulation and solution for the minimax
estimation problem of the regression parameters. The mutual distribution of the estimated and observable
components is uncertain: their mathematical expectation is known, and the uncertainty set of covariance
matrices has a maximal element. An assertion establishing the pair “Gaussian distribution–linear estimator”
as a saddle point of the optimality criterion at hand is provided. If the observable part is complemented
by some additional transforms of the observations, then it is possible to outperform the accuracy of the
best linear estimate. This feature is demonstrated in the regression example. In Section 3.2, we present
a conditionally-minimax filtering problem statement for the stochastic continuous-discrete observation
systems along with its solution.

Section 4 is the main part of the paper: it contains the comparative material of two numerical
experiment groups. Section 4.1 is devoted to the estimation of the three-dimensional random vector given
noisy bearing observations. We compare the performance of the best linear and conditionally-minimax
estimates. The last involves the least-squares (LS) estimates of the estimated vector as additional pseudo
observations. Section 4.2 contains a comparison of the tracking results of a maneuvering target by the
noisy bearing-Doppler observations. The maneuver being a planar stochastic coordinate turn with
unobservable random target speed and oscillating normal acceleration is described by 17 equations.
The parameters of the maneuver plane are also random and unobservable. The concluding remarks are
presented in Section 5.

2. Model Description and Tracking Problem Formulation

2.1. Target Dynamics

In what follows, we will operate two coordinate systems. The first one is the coordinate system in
which the target motion can be defined as a planar maneuver, and the second one is the coordinate
system in which the observations are collected and the estimate is calculated. We call the former
“target coordinate system” 0xyz and the latter—“observer coordinate system” 0XYZ. Both systems are
stationary, and the translation from one system to another is given by two Euler angles α and β and
the shift vector R0 (see Figure 1).

Figure 1. Target and observer coordinate systems.
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The planar target motion in the target coordinate system 0xyz is defined by the following SDS:

dxt = vt cos ϕtdt,
dyt = vt sin ϕtdt,
dzt = 0,
dvt = 0,
dϕt =

an
t

vt
dt,

dan
t = (−λan

t + ν)dt + µdWt,

(1)

where xt, yt, zt are the coordinates, vt is the absolute value of the target speed, which is constant, ϕt is
the heading angle, an

t is the normal acceleration, and Wt is a standard Wiener process. The acceleration
equation parameters λ and ν, as well as the disturbance intensity µ, are assumed to be known.
In SDS (1), the equations for xt, yt, vt, and ϕt follow from the standard planar curvilinear-motion
kinematic model for constant heading speed motion with the normal acceleration an

t , whose dynamics
are given by the last equation. In [18], this model is described in detail (see Equations (55), (57)–(60));
the only difference is that here we use the stochastic differential notation (and hence the Wiener process
instead of the white Gaussian noise).

The target starts from the origin, so the initial condition for the coordinates is (x0, y0, z0)
T =

(0, 0, 0)T , but other initial parameters v0, φ0, an
0 are assumed to be random with known distributions.

In the observer coordinate system, the target has the coordinates Xt = (Xt, Yt, Zt)T and the vector
speed Vt = (VX

t , VY
t , VZ

t )T , which are calculated from the target motion parameters xt = (xt, yt, zt)T ,
vt, and ϕt from SDS (1) by the following rules:(

Xt

Vt

)
=

(
A 0
0 A

)(
xt

vt

)
+

(
R0

0

)
, (2)

where vt = (vt cos ϕt, vt sin ϕt, 0)T and A is the rotation matrix

A =

 cos α − sin α cos β sin α sin β

sin α cos α cos β − cos α sin β

0 sin β cos β

 ,

The parameters of the target coordinate system rotation α, β, and shift R0 are assumed to be
unknown random values with known distributions. These parameters are subject to estimation,
and, to that end, we introduce the following auxiliary dynamic equations:

dαt = 0,
dβt = 0,

dR0
t =

(
dRX

0 (t), dRY
0 (t), dRZ

0 (t)
)T

= 0
(3)

with initial conditions α0 = α, β0 = β, R0
0 = R0.

Summing up the planar target dynamic Equation (1), the coordinate transform Equation (2),
and the equations for the auxiliary variables (3), we have a 17-dimensional stochastic differential system.

2.2. Observations

The target is observed by a set of N registration devices (acoustic sensors) which measure the
bearing and the Doppler frequency shift. The coordinates {Xi} = {(Xi, Yi, Zi)T}, i = 1, . . . , N of
these devices are assumed to be known, as well as the precision of the measurements they provide.
The observations are available at known time instants tk, k = 0, . . . , K of the observation interval
t ∈ [0, T] with t0 = 0 and tK = T. For the sake of simplicity, we presume equal intervals between the
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observations: ∆ = tk+1 − tk, k = 0, . . . , K − 1. The observable bearing is connected with the target
motion parameters by the following relations:

ξ i
tk
=

Ztk − Zi

Ri
tk

+ vξ i

k ,

ηi
tk
=

Xtk − Xi

ri
tk

+ vηi

k ,
(4)

where Ri = ‖Ri‖ is the range from the i-th observer to the target, and ri is the length of the position
vector Ri projection on the plane Z = 0:

Ri
tk
=
√
(Xtk − Xi)2 + (Ytk −Yi)2 + (Ztk − Zi)2,

ri
tk
=
√
(Xtk − Xi)2 + (Ytk −Yi)2.

The observation system is presented in detail in Figure 2. As one can see, the observations ξi = cos ψi

and ηi = cos θi are the direction cosines of Ri. Note that this structure of observations presumes the
presence of the port-starboard ambiguity.

Figure 2. Bearing observations of the target from the i-th observer.

The Doppler measurements bring information concerning the radial target speed towards the
sensor. The Doppler data processing makes the accuracy of the target state estimate significantly better.
In the case of active tracking, the target is irradiated by an emitter with a known fixed frequency,
and the receiver compares a frequency of the reflected signal with the original. In the case of passive
observations, tracking becomes a challenging problem. Only the acoustic noise (so-called target
acoustic signature) distorted by the target motion relative to the sensor is available for observation.
The signature identification itself is an individual non-trivial problem [39–44] outside the scope of our
study. To simplify the presentation, we suppose that the acoustic signature is known and determined
by some known fixed frequency ω0, whose Doppler distortions we can register.

Thus, the Doppler shift measurements are given by the following expression:

ωi
tk
=

ω0

1−Vi
tk

/C
+ vωi

k , (5)
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where ω0 is the frequency of sound emitted by the target, ωi is the frequency registered by the
observer i, C is the sound speed in the medium, and Vi

tk
is the relative speed of the target with respect

to the observer i:

Vi
tk
=

VX
tk
(Xtk − Xi) + VY

tk
(Ytk −Yi) + VZ

tk
(Ztk − Zi)

Ri
tk

.

The observation noise
(

vξ1

k , vη1

k , vω1

k , . . . , vξN

k , vηN

k , vωN

k

)T
is a sequence of independent and identically

distributed random vectors with uncorrelated components. The mean values and standard deviations
of the noise components are assumed to be known.

2.3. Tracking Problem Formulation

Now that the target dynamics and the observation model are defined, the tracking problem can be
formulated as filtering, i.e., search for the estimate X̂t =

(
X̂t, V̂t, x̂t, v̂t, φ̂t, ân

t , α̂t, β̂t, R̂0
t
)T

of the target
motion parameters

Xt = X0 +
∫ t

0
a(Xs)ds +

∫ t

0
bd`s, (6)

where a(Xs) and b are defined by SDS (1)–(3) given the bearing-only observations

Y b
k = col

({
(ξ i

tk
, ηi

tk
)T
})

, (7)

defined by Equation (4), or combined bearing-Doppler observations

Y bd
k = col

({
(ξ i

tk
, ηi

tk
, ωi

tk
)T
})

, (8)

defined by Equations (4) and (5), i = 1, . . . , N, k = 0, . . . , K. Here, col(·) operator applied
to a set of vectors {ai}, i = 1, . . . , N results in vertically stacking of those vectors into one:
col({ai}) = (aT

1 , . . . aT
N)

T .

3. Basics of Conditionally-Minimax Filtering

This section contains a brief description of the CM framework and the theorems necessary for the
filter design [35,36].

3.1. Minimax Estimation in Regression

The CMNF algorithm is based on the solution to the following minimax estimation problem.
Let us consider a compound random vector Q , col(X ,Y) ∈ Rn+m, where X ∈ Rn is an unobservable
estimated part, and Y ∈ Rm is the observation. The probability distribution P of Q is uncertain: the mean
mQ , EP {Q} = col(mX , mY ) is known, but the covariance RQ , covP(Q, Q) is unknown but bounded:

R ,

(
RXX RXY

RYX RYY

)
6 RQ 6 R ,

(
RXX RXY

RYX RYY

)
.

Here, R, R ∈ R(n+m)×(n+m)
+ are known positively semidefinite matrices and matrix inequality

A 6 B means that the matrix B− A is positive semidefinite. The set of all feasible distributions P is
denoted by P . All functions ψ : Rm → Rn such that sup

P∈P
EP

{
‖ψ(Y)−X‖2

}
< +∞ form the class of

admissible estimators Ψ. The performance of an estimator ψ(·) given the distribution P is determined
by the traditional MS-criterion J(P, ψ) , EP

{
‖ψ(Y)−X‖2}.
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The minimax estimation problem of X given Y is to find X̂ , ψ̂(Y) such that

ψ̂(·) ∈ Argmin
ψ∈Ψ

sup
P∈P

J(P, ψ).

Theorem 1. The minimax estimate X̂ is linear

X̂ = ψ̂(X ) , mX + RXY (RYY )+(Y −mY ), (9)

where A+ denotes matrix pseudo-inverse. On the set P ×Ψ, the criterion J has saddle points, i.e.,

min
ψ∈Ψ

max
P∈P

J(P, ψ) = max
P∈P

min
ψ∈Ψ

J(P, ψ).

The Gaussian distributionN (mQ, R) with the expectation mQ and the maximal feasible covariance matrix
R is the least favorable one, and the pair (N (mQ, R), ψ̂) is one of the saddle points. Hence, the double inequality

J(P, ψ̂) 6 J(N (mQ, R), ψ̂) 6 J(N (mQ, R), ψ)

holds for all (P, ψ) ∈ P ×Ψ.
The estimate X̂ has guaranteeing accuracy:

E
{
(X̂ − X )(X̂ − X )>

}
6 RXX − RXY (RYY )+RYX ,

and the equality holds for any P ∈ P with covP(Q, Q) = R.

The proof of Theorem 1 is given in [35,36]. The theorem plays a key role in the development of
the CMNF algorithm. First, it guarantees the estimate unbiasedness and gives a possibility to calculate
a conservative approximation of the accuracy characteristic, adequate to reality. Second, the minimax
estimate can be obtained under a priori uncertainty of probability distribution. To calculate the minimax
estimate, it is sufficient to know the mean and some upper bound of the covariance. The closer the
obtained upper bound is to the real covariance, the closer the conservative accuracy approximation is
to reality. Third, the extension of the admissible estimators by the nonlinear functions given initial
observations only does not enhance the estimation quality. Fourth, since the least favorable distribution
is Gaussian, the moments of the 1st and 2nd order form a closed set of sufficient statistics in the problem,
and, at the same time, it gives a certain justification of usage of the Gaussianity assumption concerning
both the prediction and correction terms in the EKF and UKF. In fact, estimate (9) is the best linear
one for the least favorable distribution N (mQ, R). Note that the regression estimates calculated either
via statistical linearization method or UT-transform, being affine functions of the observations, can
be considered as some approximations of the minimax estimate X̂ : terms mX and mY along with the
gain matrix RXY (RYY )+ are replaced in Formula (9) by some estimates of fixed precision. The term
“fixed precision” means that there is no way of asymptotic approximation of mX , mY and RXY (RYY )+

neither by the statistical linearization nor by the UT-transform. By contrast, the CMNF algorithm uses
the Monte Carlo method and gives a possibility to calculate coefficients with arbitrary precision.

The key advantage of the CM framework is the possibility to construct the estimate, which is
better than the optimal linear estimate (9), amplifying the initial observation Y with some transform.
Let us introduce a function z = z(y) : Rm → Rk, such that supP∈P EP

{
‖z(Y)‖2} < ∞ and the

corresponding compound vector Q′ , col(X ,Y , z(Y)). Again, the probability distribution P′ of Q′
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is supposed to be uncertain: the mean mQ′ , EP′ {Q′} = col(mX , mY , mZ) is known, the covariance
RQ′ , covP (Q′, Q′) is unknown but bounded:

R ,

RXX RXY RXZ

RYX RYY RYZ

RZX RZY RZZ

 6 RQ′ 6 R ,

RXX RXY RXZ

RYX RYY RYZ

RZX RZY RZZ

 .

Here, R, R ∈ R(n+m+k)×(n+m+k)
+ are known positively semidefinite matrices, including the lower

and upper bounds R and R as the corresponding block components. The set of all feasible distributions
P′ is denoted by P ′. All functions ψ′ : Rm+k → Rn such that supP′∈P ′ EP′

{
‖ψ(Y , z(Y))−X‖2} <

+∞ form the class of admissible estimators Ψ′. The performance of estimator ψ′(·) given the distribution
P′ is determined as J(P′, ψ′) , EP′

{
‖ψ(Y , z(Y))−X‖2}. In view of Theorem 1, the minimax estimate

X̂ ′ given col(Y , z(Y)) takes the form

X̂ ′ = mX +
(

RXY RXZ
)(RYY RYZ

RZY RZZ

)+ ((
Y

z(Y)

)
−
(

mY
mZ

))
,

and its guaranteeing accuracy is defined by the inequality:

E
{
(X̂ ′ −X )(X̂ ′ −X )>

}
6 RXX −

(
RXY RXZ

)(RYY RYZ

RZY RZZ

)+ (
RYX

RZX

)
, R̂.

From the properties of nonnegatively semidefinite matrix pseudo-inverse, it follows that R̂ 6 R̂
for any admissible z(y), i.e., taking into account any admissible observation transform enhances the
estimation performance. The effective choice of an appropriate transform looks like some sort of art,
and it should be done reasoning from the properties of a specific observation system at hand.

3.2. CMNF in Continuous-Discrete Systems

On the probability triplet with filtration (Ω,F ,P, {Ft}), we consider the observation system Xt = X0 +
∫ t

0
a(s,Xs)ds +

∫ t

0
b(s,Xs−)d`s, t > 0,

Yk = c(tk,Xtk , vk), tk+1 − tk = ∆, k ∈ N.

Here,

– Xt ∈ Rn is an unobservable state process subject to estimation with an initial condition X0,
– `t ∈ Rn is an Ft-adapted square-integrable Levy process,
– Yk ∈ Rm is the observation sequence, available at the equidistant instants tk with the step ∆,
– vk ∈ Rm is a Ftk -adapted sequence of i.i.d. random vectors; x0, {`t} and {vk} are supposed to be

mutually independent.

We assume for the drift a(·, ·) and diffusion b(·, ·) the standard conditions guaranteeing the
existence and uniqueness of a strong solution to the stochastic differential equation for Xt along
with finiteness of its moments [45]. The observation function c(·, ·, ·) is also assumed to provide the
existence of the moments up to order 2 for the observations Yk.

Generally, the problem is to find an estimate X̃k of the state Xk = Xtk , given the available
observations up to the moment tk. The estimation quality is characterized by a traditional MS-criterion.

The filter structure is partially determined by three sequences of functions {αk}, {βk} and {γk}:

– αk(x) : Rn → Rn is basic prediction function,
– βk(y) : Rm → Rk is observation transform,
– γk(x, z) : Rn ×Rk → Rk is basic correction function.
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The admissible filter has the following recursive form

X̃k = φk
(
αk(X̃k−1), γk(X̃k−1, βk (Yk))

)
, (10)

where the sequence {φk} of functions φk(x, z) : Rn ×Rk → Rn should be optimized. It is supposed
that the functions αk(·), βk(·) and γk(·) of the corresponding random arguments in Formula (10) have
finite moments up to order 2. The set Φk of admissible filters is also formed by all the measurable
functions, such that E

{
‖X̃k‖2} < ∞.

The conditions above guarantee that the compound random vector

Qk , col(Xk, αk(X̃k−1), γk(X̃k−1, βk(Yk)))

has two moments mQ
k , E {Qk} and RQ

k , cov(Qk, Qk):

mQ
k =

mx
k

mα
k

mγ
k

 , RQ
k =

Rxx
k Rxα

k Rxγ
k

Rαx
k Rαα

k Rαγ
k

Rγx
k Rγα

k Rγγ
k

 .

Let us denote by Pk the set of all probability distributions of (2n + k)-dimensional random vectors
with known expectation and unknown covariance matrix bounded from above: RQ

k 6 Rk with some
known positive semidefinite matrix Rk.

The conditionally-minimax filtering problem is to find

φ̂k∈Argmin
φk∈Φk

sup
P∈Pk

EP

{
‖φk

(
αk(X̃k−1), γk(X̃k−1, βk (Yk))

)
−Xk‖2

}
.

Theorem 2. The CMNF has a two-step “prediction–correction” form. The prediction and the upper bound of
its error covariance matrix are defined as follows:

X̆k = Rxα
k (Rαα

k )+αk(X̂k−1) + [mx
k − Rxα

k (Rαα
k )+mα

k ],
cov(X̆k −Xk, X̆k −Xk) 6 K̆xx

k , Rxx
k − Rxα

k (Rαα
k )+Rαx

k .
(11)

The correction and the upper bound of its error covariance matrix are defined as follows:

X̂k = X̆k + K̆xγ
k [K̆γγ

k ]+γ̆k, cov(X̂k −Xk, X̂k −Xk) 6 K̂xx
k , K̆xx

k − K̆xγ
k (K̆γγ

k )+K̆γx
k , (12)

where
γ̆k = γk(X̂k−1, βk(Yk))−mγ

k − Rγα
k (Rαα

k )+(αk(X̂k−1)−mα
k )

is the modified correction, and

K̆xγ
k , Rxγ

k − Rxα
k (Rαα

k )+Rαγ
k , K̆γγ

k , Rγγ
k − Rγα

k (Rαα
k )+Rαγ

k .

Proof of Theorem 2 follows immediately from assertions of Theorem 1 and the recursive variant
of Theorem 13.1 from [46]. The proposed CMNF has the following positive properties similar to the
minimax regression estimates: unbiasedness and conservative approximation of the covariance matrix.
Moreover, the CMNF algorithm gives additional possibilities. First, the transformation of observations
gives a chance to raise the estimation accuracy. For example, the inclusion of the powers of the original
observations into the calculation process allows for computing polynomial estimates of better accuracy
than provided by the best linear estimates [47]. Second, the proper choice of the basic prediction and
correction functions for each specified observation system also allows for raising the estimation quality
to the optimal. For instance, in the case of the linear Gaussian observation system, identical observation
transform, linear prediction, and correction, the proposed CMNF turns into the classical KF [48].
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There is a considerable issue of CMNF implementation. To calculate CMNF, one needs to know
the expectation and covariance matrix (or at least its conservative approximation) of the compound
vectors {Qk}. The analytical calculation of these characteristics is possible only for a narrow class
of observation systems, including linear Gaussian and the ones with Markov jump processes as the
states [47]. In general, the calculation of these parameters is possible through numerically expensive
Monte Carlo sampling. The approximations of the mean can be obtained by regular sampling; meanwhile,
the covariance matrix should be approximated from above, using the asymptotic confidence regions.
The desired sample size can be controlled based on the results of [49].

4. Comparative Numerical Study

4.1. Estimation of Static Cartesian Coordinates Given Bearing-Only Multisensor Observations

In this section, we present the simulation results for the static case, which can be considered as the
initial step of the filtering problem for the dynamic system presented in Section 2. All the simulation in
Sections 4.1 and 4.2 was done using Python, the source code is available in public repository [50].

The position of the target is a random vector X0 with independent components. The distribution of
each component is Gaussian with the following parameters (mean and standard deviation in meters):

X0 ∼ N (0, 103), Y0 ∼ N (y0, 103), Z0 ∼ N (−103, 102), (13)

where the parameter y0 takes values {5, 10, 20}× 103. This diversity is introduced in order to demonstrate
how the estimates depend on the degree of the nonlinearity of the system at hand.

Four pairs of registration devices (acoustic sonars) are located at the points {Xi}, i = 1, . . . , 8:

(−10000, 0,−25)T , (−5000, 1000,−25)T , (5000, 1000,−25)T , (10000, 0,−25)T ,
(−10000, 0,−50)T , (−5000, 1000,−50)T , (5000, 1000,−50)T , (10000, 0,−50)T .

(14)

The observation noise components (vξ i

k , vηi

t ) are assumed to have Gaussian distributionN (0, 0.02),
which roughly approximates the sonar precision equal to 1◦.

Note that, due to the port-starboard ambiguity, the bearing observations (4) do not allow
an explicit inverse transformation to calculate the target coordinates, even in the absence of the noise

(vξ i

k , vηi

t ). Nevertheless, the CMNF algorithm allows estimating {Xk} with relatively high precision.
First, the algorithm relates to the Bayesian estimator class, which allows for neutralizing the ambiguity
not having an individual observer but the site as in the presented example. Second, the CMNF allows
for fusing optimally the original observations and some of their transforms, such as least squares (LS)
estimates or other regression technique results. An alternative way is not to rely entirely on the current
measurements of the target position, but also to take into account some pre-collected data of such
observations. This can be done by the aids of one of the machine learning (ML) regression algorithms,
e.g., lasso regression [51]. This can provide not only the estimation quality gain, but also significantly
reduce the amount of time necessary for the online measurements processing. While the LS method
requires a nonlinear optimization problem solution for each observation round, an ML regression
algorithm can provide much faster predictions with all the resource and time demanding procedures
of the model fit being performed a priori. For instance, the lasso regression coefficients calculation also
requires a nonlinear optimization problem solution and the whole training set processing, but, after that,
the target position estimate is easily computed as a polynomial of the measurements.

In Table 1 and Figure 3, we present the standard deviations of the estimation errors for the
following estimators:

• Linear: the basic minimax estimator (9), which uses only the original bearing measurements
Y b = col({(ξ i, ηi)}), defined by relations (7). It is also the best linear estimate.

• LS: Linear squares estimate X̂ LS = X̂ LS(Yb), calculated using the eight pairs of bearing measurements.
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• ML: Lasso regression estimate X̂ML = X̂ML(Y b), which uses normalized bearing measurements
and their squares as features.

• CM LS: Minimax estimator (9) with original bearing measurements supplemented by the LS
estimate: Y LS = col({(ξ i, ηi)} ∪ X̂ LS(Y b)).

• CM ML: Minimax estimator (9) with original bearing measurements supplemented by the ML
estimate: YML = col({(ξ i, ηi)} ∪ X̂ML(Y b)).

The covariances RXY , which are necessary for the minimax estimates calculation with Formula (9),
for the Linear, CM LS, and CM ML estimators, were calculated on the test set of 106 position-measurement
pairs by Monte Carlo sampling. A part of this test set was also used to fit the lasso regression model
for estimators ML and CM ML. The standard deviations of the estimation errors were estimated on
a different test set of the same size of 106 samples.

Table 1. Coordinate-wise std of estimation error σE for E ∈ {Linear, LS, ML, CM LS, CM ML}.

y0 = 5 × 103 y0 = 10 × 103 y0 = 20 × 103

σX σY σZ σX σY σZ σX σY σZ

Linear 174.75 195.99 49.57 107.18 221.11 60.02 148.89 381.16 79.23
LS 139.57 116.69 51.31 105.62 165.49 74.61 146.97 403.34 130.72

ML 146.17 125.50 46.91 106.83 166.12 60.03 147.50 373.37 79.60
CM LS 137.28 114.79 45.56 105.04 162.44 59.69 145.30 371.56 79.22

CM ML 144.33 123.98 46.71 105.98 165.50 59.75 146.53 372.62 79.22

5km Range R 20km

100

140

180
σX

5km Range R 20km

100

250

400

σY

5km Range R 20km

40

80

120
σZ

σLinear σLS σML σCM LS σCMML

Figure 3. Coordinate-wise std of estimation error σE for E ∈ {Linear, LS, ML, CMLS, CMML}.

From the results presented in Table 1 and Figure 3, one can conclude the following:

• The CM LS estimate uniformly outperforms all others (Table 1, in bold).
• All the presented algorithms of CM-family are able to neutralize the port-starboard ambiguity.
• The error standard deviations computed for the Linear and CM LS/ML estimators confirm the

conclusion of Section 3.1. Indeed, the introduction of the additional measurements’ transform
increased the performance of the minimax estimate in comparison with the best linear estimate.
The last is true even for the case of y0 = 20× 103, where the LS estimate demonstrated very
poor quality.

• The difference in the results for various distances between the target and the observers shows
that the most benefit the minimax estimate can provide when the model at hand is far from linear.
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Indeed, for y0 = 20× 103, the difference between the estimate error standard deviations for linear
and nonlinear minimax estimates is negligible, which is not the case for y0 = 5× 103, where the
nonlinearity of the system is more pronounced.

4.2. Tracking of Maneuvering Target Given the Bearing-Doppler Multisensor Observations

In this section, we present the results of numerical simulation of a maneuvering target motion
model (1)–(3) given the bearing-only (7) and bearing-Doppler observations (8).

The planar target motion in the target coordinate system 0xyz is defined by the SDS (1) with the
acceleration equation parameters λ = 0.01, ν = 0.0 and µ = 0.01. The initial conditions are:

(x0, y0, z0) = (0, 0, 0), v0 ∼ R[5, 12], φ0 ∼ N (−π/2, 0.1), an
0 ∼ R[−0.2, 0.2].

Here, the parameters to the Gaussian distribution N (m, σ) are the mean and standard deviation
in meters, andR[a, b] is the uniform distribution in the interval [a, b]. The random rotation and shift
parameters for the target coordinate system are as follows:

α, β ∼ N (0, π/36), RX
0 ∼ N (0, 103), RY

0 ∼ N (20× 103, 103), RZ
0 ∼ N (−103, 102).

It should be noted that the introduced initial conditions for the coordinates in the target
coordinate system x0 = (x0, y0, z0)

T and the shift R0 = (RX
0 , RY

0 , RZ
0 )

T agree with the static model (13) for
y0 = 20× 103.

In Figure 4, we demonstrate 100 sample paths of the system (1)–(3) with the parameters defined
above. On the left, for clarity, we present the paths lying on the maneuver plane 0xy and starting
from the common initial position. On the right, the same paths, being distributed according to the
random initial position, are pictured in the observer coordinate system 0XYZ. Even though the model
has only one scalar disturbing process Wt in the equation for the normal acceleration an

t in SDS (1),
one can notice a rather wide variety of trajectories produced by the SDS with chosen parameters.
At the same time, all the presented paths demonstrate smoothness, which is characteristic of the
underwater environment.

-500m 0m 500m xt

0m

-500m

-1000m

yt

Xt-2km
0km

2km 18km
20km

22km
Yt

-1200m

-1000m

-800m

Zt

Figure 4. Sample paths in the target coordinate system 0xyz (left figure) and in the observer coordinate
system 0XYZ (right figure).

The registration devices are also located at the same points (14) as it was assumed for the
static case and have the same parameters of the noises in the bearing observations. For the Doppler
measurements (5), the sound speed is set to C = 1500 m/s, and the source frequency ω0 = 20 Hz.
The noise in frequency measurements is also assumed to be Gaussian: vω

k ∼ N (0, 0.005). Notably,
the parameters of both the target motion and sonar accuracy are chosen similarly to those of the classic
paper [23].
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In this simulation study, we have compared the standard deviation of the estimate error for the
following filters:

• LS: Linear squares estimate X̂ LS
k = X̂ LS

k (Yb
k ), calculated using the eight pairs of bearing measurements

Y b
k = col({(ξ i

k, ηi
k)}). The same as in the static case, but applied along the whole path.

• ML: Lasso regression estimate X̂ML
k = X̂ML

k (Y b
k ), which uses normalized bearing measurements

and their squares as features. The same as in the static case, but applied along the whole path.
• Basic CMNF: the conditionally minimax nonlinear filter (11) and (12), which uses the combined

bearing and Doppler measurements Y bd
k = col({(ξ i

k, ηi
k, ωi

k)}, defined by (8).
• CMNF LS: the conditionally minimax nonlinear filter (11) and (12), which uses the original bearing

measurements and the LS estimate Y LS
k = col({(ξ i

k, ηi
k)} ∪ X̂

LS
k (Y b

k )).
• CMNF LS with Doppler: the conditionally minimax nonlinear filter (11) and (12), which uses the

combined measurements and the LS estimate Y LS
k = col({(ξ i

k, ηi
k, ωi

k)} ∪ X̂
LS
k (Y b

k )).
• CMNF ML: the conditionally minimax nonlinear filter (11) and (12), which uses the original

bearing measurements and the lasso estimate YML
k = col({(ξ i

k, ηi
k)} ∪ X̂

ML
k (Y b

k )).
• CMNF ML with Doppler: the conditionally minimax nonlinear filter (11) and (12), which uses the

combined measurements and the ML estimate YML
k = col({(ξ i

k, ηi
k, ωi

k)} ∪ X̂
ML
k (Y b

k )).
• A priori estimate: equal to the mean Xt. The standard deviation of this “trivial” estimate can be

used as a measure of other filters’ performance: if a filter has std larger then that of a “trivial”
estimate, then one can conclude that this filter diverges; if a filter’s std is much less than it deserves
further analysis and application.

The model is simulated on the time interval t ∈ [0, 100] s with discretization step ∆ = 1 s. The size
of the training set for the CMNF filters, as well as of the test set, is equal to 105 sample paths.

It should be noted that the presented model turns out to be quite challenging for EKF and UKF
filters, which are common to apply when dealing with such nonlinear systems. Even in milder conditions,
when only the planar motion is considered, and, along with the bearing observations, the distance is
available; both mentioned filters demonstrate divergence [37].

Table 2 presents the standard deviations of the estimation errors for all the mentioned filters on
the last step, which corresponds to the end of the observation interval T = 100 s.

Table 2. Parameter-wise standard deviation of estimation error σF(T) for F ∈ {LS, ML, Basic CMNF
(Doppler), CMNF LS (Doppler), CMNF ML (Doppler), a priori}.

σX(T) σY(T) σZ(T) σV X (T) σVY (T) σV Z (T) σv(T) σa(T) σϕ(T)

LS 143.36 382.62 127.03 — — — — — —
ML 148.62 362.73 89.55 — — — — — —

Basic CMNF 19.30 39.37 40.84 0.345 0.152 0.404 0.094 0.053 0.278
CMNF LS 36.67 77.61 43.15 1.701 2.054 0.424 1.063 0.061 0.467

CMNF LS Doppler 19.30 39.37 40.83 0.345 0.152 0.404 0.094 0.053 0.278
CMNF ML 36.66 77.60 43.11 1.702 2.052 0.423 1.062 0.061 0.464

CMNF ML Doppler 19.30 39.36 40.82 0.345 0.152 0.404 0.094 0.053 0.278
a priori — — — — — — 2.0 0.115 0.1

In Figures 5–9, the standard deviations for the parameter estimation errors are presented with
respect to the time variable t ∈ [0, T], T = 100 s. Table 1 shows little or no difference between the
results for Basic CMNF, CMNF LS Doppler, CMNF ML Doppler filters, and between the results for
CMNF LS and CMNF ML filters on the last step. The analysis of the collected data shows that all
CMNF filters with Doppler measurements demonstrate almost the same behavior at all other time
instants as well. Thus, in the following figures, the Basic CMNF, CMNF LS Doppler, and CMNF ML
Doppler estimation error standard deviations are shown by the same line σDoppler. The same is true for
the CMNF filters based on the bearing observations only, so the CMNF LS and CMNF ML estimation
error standard deviations are also depicted by the same line σNoDoppler.
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Figure 5. Standard deviation of estimation error for the coordinates (Xt, Yt, Zt) calculated by CMNF
filter with and without Doppler measurements.
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1
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Figure 6. Standard deviation of estimation error for the target velocity components (VX
t , VY

t , VZ
t ) calculated

by CMNF filter with and without Doppler measurements.

Figure 5 shows the superiority of the CMNF filters for the target coordinate estimation in comparison
with all the static estimates presented in the Section 4.1. Together with Figure 6, it also provides evidence
of a great performance boost provided by the Doppler measurements.

Figures 7 and 8 demonstrate that, along with the target motion parameters, the parameters of its
maneuver, namely the heading speed vt and normal acceleration at, can be estimated with a quality
much better than one of the a priori estimate. The same is true for the target coordinate system shift R0

since the a priori estimates standard deviations are equal to σprior = (1000, 1000, 100)T .
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Figure 7. Standard deviation of estimation error for the target heading speed and normal acceleration
(vt, an

t ) calculated by CMNF filter with and without Doppler measurements, and their a priori estimates.
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Figure 8. Standard deviation of estimation error for the target coordinate system shift R0 = (RX
0 , RY

0 , RZ
0 )

T

calculated by CMNF filter with and without Doppler measurements.

In contrast, Figure 9 shows rather poor performance for all the filters for the estimation of the
angles α and β: the quality is almost the same as the quality of the estimate given by the mean value
α̂ = β̂ = 0. At the same time, the standard deviation of the heading angle error ϕt is notably less than
that of the “trivial” estimate ϕ̂t = E {ϕt}.
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Figure 9. Standard deviation of estimation error for the target heading and coordinate system rotation
angles (ϕt, α, β)T calculated by the CMNF filter with and without Doppler measurements, and their a
priori estimates.

The results presented in Table 2 and Figures 5–9 show the following:

• The conditionally minimax nonlinear filter provides much better estimates for the target coordinates
than the static ones, which do not take into account the information provided by the prediction
“by virtue” of the system.

• All the presented algorithms of CM-family are able to neutralize the port-starboard ambiguity.
• Doppler measurements give a significant performance boost for CMNF estimates not only for the

velocity parameters, but also for the target coordinates and normal acceleration.
• In contrast with the static case, where the introduction of the additional measurements’ transform

significantly increases the performance of the estimate, here, the improvement can’t be called dramatic.

5. Conclusions

In the paper, we presented the results of the CMNF algorithm applied to the solution of the
maneuvering AUV tracking problem, given the combination of the bearing-Doppler measurements.
The measurement structure admitted port-starboard ambiguity. The mathematical model of the target
movement represented a stochastic coordinate turn with random initial parameters: maneuver plane
position, target heading speed, etc. The total dimensionality of the dynamic system state was 17.

The obtained estimates of the target state, i.e., the coordinates and speed, were unbiased and had
high precision. The real estimation error covariance matrix was adequate to the corresponding theoretical
values. The port-starboard ambiguity was neutralized. We showed the impact of the Doppler speed
measurements on the AUV state estimation performance. It should be noted that the CMNF algorithm,
being applied to the bearing-Doppler measurements, allowed us to estimate the initial parameters of the
maneuver mentioned above.

We consider the following directions of further research in the same area. First, the optimization
of the observations transform is a possible way to the estimate enhancement. Second, the optimization
problem of the registration devices configuration and positioning looks promising. Third, the application
of the obtained results for the identification of the target maneuver change and successive tracking of
the AUV, performing a sequence of maneuvers, is practically important. The research on the mentioned
subjects is in progress.
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The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
CM Conditionally minimax
CMNF Conditionally minimax nonlinear filter
EKF Extended Kalman filter
KF Kalman filter
LS Least squares
LKF Linearized Kalman filter
ML Machine learning
MS Mean square
SDS Stochastic differential system
UKF Unscented Kalman filter
UT Unscented transform
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