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Abstract: Distributed temperature sensing (DTS) systems can be used to estimate the temperature
along optic fibers of several kilometers at a sub-meter interval. DTS systems function by shooting
laser pulses through a fiber and measuring its backscatter intensity at two distinct wavelengths in the
Raman spectrum. The scattering-loss coefficients for these wavelengths are temperature-dependent,
so that the temperature along the fiber can be estimated using calibration to fiber sections with a
known temperature. A new calibration approach is developed that allows for an estimate of the
uncertainty of the estimated temperature, which varies along the fiber and with time. The uncertainty
is a result of the noise from the detectors and the uncertainty in the calibrated parameters that relate
the backscatter intensity to temperature. Estimation of the confidence interval of the temperature
requires an estimate of the distribution of the noise from the detectors and an estimate of the
multi-variate distribution of the parameters. Both distributions are propagated with Monte Carlo
sampling to approximate the probability density function of the estimated temperature, which
is different at each point along the fiber and varies over time. Various summarizing statistics are
computed from the approximate probability density function, such as the confidence intervals and the
standard uncertainty (the estimated standard deviation) of the estimated temperature. An example is
presented to demonstrate the approach and to assess the reasonableness of the estimated confidence
intervals. The approach is implemented in the open-source Python package “dtscalibration”.

Keywords: distributed temperature sensing; DTS; fiber optic; Raman; Stokes; temperature;
calibration; uncertainty; confidence intervals

1. Introduction

Temperatures can be measured with distributed temperature sensing (DTS) along optical fibers
that may extend to several kilometers with a sub-meter resolution [1,2]. The application of DTS is
of great value to characterize thermal dynamics at a scale that corresponds to, for example, many
geophysical processes. Heat tracer tests with DTS have been used to estimate wind speed [3,4],
evaporation [5,6], soil moisture [7], groundwater-surface water interaction [1,8], and groundwater
flow [9,10]. The specification sheets of DTS measurement systems list the uncertainty in the temperature
estimated under ideal conditions. In practice, the uncertainty in the temperature estimate varies along
the fiber, is different for each setup, and is temperature-dependent. Therefore, the uncertainty in the
temperature estimate should be estimated separately for every DTS measurement.

DTS systems that estimate temperature from Raman-backscatter measurements shoot a laser
pulse through a fiber-optic cable, which is scattered back to the DTS system by inhomogeneities in
the fiber. Most of the backscattered laser has the same wavelength as the emitted laser (Rayleigh
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scattering), but a small fraction has different wavelengths (Raman scattering). The detectors in DTS
systems measure the intensity of the backscatter at two distinct wavelengths: Stokes (-Raman) and
anti-Stokes (-Raman) scatter. The temperature at the point of reflection is estimated from these two
types of scatter. Stokes scatter has a longer wavelength than the laser and its intensity does not vary
much with temperature, while anti-Stokes scatter has a shorter wavelength than the laser and its
intensity varies significantly with temperature. The location of the measurement along the fiber is
estimated from the time between sending the laser pulse and receiving the scatter. Temperature along
the fiber is estimated from the measured intensities of the Stokes and anti-Stokes scatter by calibrating
to reference sections with a known temperature. In practice, these fiber sections are submerged in
water baths of which the temperature is continuously measured with a separate temperature sensor.
The water can be mixed with small pumps in an attempt to equalize the temperature of the water in
the baths. Sequential temperature measurements require continuous calibration due to varying gains
and losses in the DTS system. Detailed calibration procedures are available in the literature [11–14].
The uncertainty in the temperature estimates is strongly affected by the calibration procedure [2,15].

Attenuation of light propagating through a fiber depends on its wavelength and therefore is
different for Stokes and anti-Stokes scatter. The key in DTS calibration is to differentiate the attenuation
from the temperature effects at the point of reflection. There are two types of setups to estimate
temperature from Stokes and anti-Stokes scatter: single-ended and double-ended. In single-ended
setups, only one end of the fiber is connected to the DTS system, and the difference in attenuation
between the Stokes and the anti-Stokes scatter is approximated as constant over the fiber. However,
this difference in attenuation is also affected by sharp bends, connectors, and bad splices, which may
result in a shift in the temperature if not accounted for. In double-ended setups, measurements are
carried out from both ends of the fiber to estimate the difference in attenuation between the Stokes and
anti-Stokes scatter at each point along the fiber. In such setups, measurements from both ends of the
fiber must be combined, including their uncertainty.

In this paper, a new calibration procedure is presented for the temperature estimates for
single-ended and double-ended setups, including estimates of the uncertainty in the form of confidence
intervals. First, a brief review is given of how temperature can be estimated from Stokes and anti-Stokes
intensity measurements. Next, the calibration steps are outlined for single-ended and double-ended
setups. The spatial and temporal variability in the uncertainty of the temperature are demonstrated by
an example of the double-ended calibration procedure. The new calibration procedure is implemented
in the open-source Python package “dtscalibration”. This article concludes with a conclusion and a
discussion with practical tips to reduce the uncertainty in the temperature.

2. Estimation of Temperature from Stokes and Anti-Stokes Scatter

The equations that relate the Stokes and anti-Stokes intensity measurements to temperature along
a fiber are reviewed here briefly; a comprehensive resource that covers DTS theory is Hartog [16].
The path of a laser pulse emitted by a DTS system through a fiber is shown in Figure 1. The laser
module emits a short laser pulse that is approximated here as an impulse with energy E0. The pulse
travels with the speed of light, v, through the fiber, during which it attenuates with exp

(
−
∫ x

0 αl dx
)
,

where αl is the attenuation at the wavelength of the laser pulse. A small fraction, S(x)R(x)∆x, of the
energy of the laser pulse is scattered back over section ∆x, where S is the scattering-loss coefficient for
the scattering at the wavelength of the laser pulse, and R is the capture fraction, which depends on the
fiber composition (e.g., diameter and numerical aperture [17]). The backscatter pulse is 2∆t wide and
is attenuated again on its way back to the detector. The intensity measured by the detector, P from
scattering at x (between times 2x/v− ∆t and 2x/v + ∆t) is given by [16] (Equation (3.5)):

P (x, t) = 1
2 E0ηvSR exp

(
−
∫ x

0
2αl dx

)
(1)
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where η corrects for the sensitivity of the detector and the attenuation between the detector and where
the fiber end is connected to the DTS system [18].

exp( x
0 dx)

Attenuation

x

x = 0 x = L

Spontaneous scattering

t = x/v
S(x)R x

2 t

exp(
x

0
dx)

Attenuation

t

DTS system

Laser: E0(t)

Detector: P(x, t), (t)

Figure 1. Path of a laser pulse.

In practice, the backscatter is not returned as a pulse, but is dispersed, resulting in spatially
correlated measurements. The spreading of the pulse is caused by the finite width of the emitted
laser pulse, the measurement response of the detector, and intermodal dispersion of the pulse while
propagating through the fiber. The spreading of the pulse may be experimentally estimated following
Simon et al. [19]. Most of the scattered energy has the same wavelength as the emitted laser pulse
(Rayleigh scattering), but a small part has different wavelengths. The scattering-loss coefficient S+ for
the Stokes wavelength and S− for the anti-Stokes wavelength are given by [16,20]:

S+(x, t) =
K+

λ4
+

exp [γ/T(x, t)]
exp [γ/T(x, t)]− 1

(2)

S−(x, t) =
K−
λ4
−

1
exp [γ/T(x, t)]− 1

(3)

where K+ and K− correct for the fraction of the molecules in the fiber that scatter at the Stokes and
anti-Stokes wavelengths [21], λ is the wavelength, T is the temperature along the fiber in Kelvin, and
γ is the sensitivity of the Stokes and anti-Stokes scattering to temperature in Kelvin and depends on
the fiber material.

The Stokes and anti-Stokes power (P+ and P−, respectively) measured at the detector(s) in a DTS
system are given by:

P+(x, t) = 1
2 E0η+vS+R exp

[
−
∫ x

0
(αl + α+) dx

]
(4)

P−(x, t) = 1
2 E0η−vS−R exp

[
−
∫ x

0
(αl + α−) dx

]
(5)

where α+ and α− are the attenuation as a function of x at the Stokes and anti-Stokes wavelengths.
Most DTS systems use the ratio of Equation (4) over Equation (5) [20]:

P+(x, t)
P−(x, t)

=
η+(t)K+/λ4

+

η−(t)K−/λ4
−

exp
(
−
∫ x

0
∆α(x′)dx′

)
exp [γ/T(x, t)] (6)

where Equations (2) and (3) are substituted for S+ and S−, respectively, and ∆α
(
m−1) is the differential

attenuation, ∆α(x) = α+ − α−. Taking the logarithm of Equation (6) gives:
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I(x, t) = −C(t)−
∫ x

0
∆α(x′)dx′ +

γ

T(x, t)
(7)

where

I(x, t) = ln
(

P+(x, t)
P−(x, t)

)
(8)

C(t) = ln

(
η−(t)K−/λ4

−
η+(t)K+/λ4

+

)
(9)

where C is the lumped effect of the difference in gain at x = 0 between Stokes and anti-Stokes intensity
measurements and the dependence of the scattering intensity on the wavelength. An equation for T
may be obtained from Equation (7) as:

T(x, t) =
γ

I(x, t) + C(t) +
∫ x

0 ∆α(x′)dx′
(10)

The temperature along the fiber can now be estimated from the Stokes and anti-Stokes intensity
measurements, I, if the terms γ, C, and

∫ x
0 ∆α(x′)dx′ are known. These terms are estimated by

calibration to reference sections.

3. Integrated Differential Attenuation

The differential attenuation, ∆α, is different for each fiber type, varies along a fiber, and
may change at sharp fiber bends and fiber connections. The integrated differential attenuation
(
∫ x

0 ∆α(x′)dx′) differs per setup and must be estimated experimentally to differentiate it from a shift in
the temperature. It is estimated differently in single-ended setups than in double-ended setups.

3.1. Single-Ended Measurements

In single-ended setups, Stokes and anti-Stokes intensity is measured from a single end of the
fiber. The differential attenuation is assumed constant along the fiber so that the integrated differential
attenuation may be written as [11]: ∫ x

0
∆α(x′)dx′ ≈ ∆αx (11)

The temperature can now be written from Equation (10) as:

T(x, t) ≈ γ

I(x, t) + C(t) + ∆αx
(12)

The parameters γ, C(t), and ∆α must be estimated from calibration to reference sections, as
discussed in Section 5. The parameter C must be estimated for each time and is constant along the
fiber. Confidence intervals for the estimated temperature are discussed in Section 7.1. When jumps in
the integrated differential attenuation are expected, the measurements can be split into sections with a
constant differential attenuation. Each additional section requires its own reference section to estimate
the magnitude of the jump in the integrated differential attenuation.

3.2. Double-Ended Measurements

In double-ended setups, Stokes and anti-Stokes intensity is measured in two directions from
both ends of the fiber. The forward-channel measurements are denoted with subscript F, and the
backward-channel measurements are denoted with subscript B. Both measurement channels start at a
different end of the fiber and have opposite directions, and therefore have different spatial coordinates.
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The first processing step with double-ended measurements is to align the measurements of the two
measurement channels so that they have the same spatial coordinates. The spatial coordinate x (m)
is defined here positive in the forward direction, starting at 0 where the fiber is connected to the
forward channel of the DTS system; the length of the fiber is L. Consequently, the backward-channel
measurements are flipped and shifted to align with the forward-channel measurements. Alignment of
the measurements of the two channels is prone to error because it requires the exact fiber length [15].
Depending on the DTS system used, the forward channel and backward channel are measured one
after another by making use of an optical switch, so that only a single detector is needed. However, it
is assumed in this paper that the forward channel and backward channel are measured simultaneously,
so that the temperature of both measurements is the same. This assumption holds better for short
acquisition times with respect to the time scale of the temperature variation, and when there is no
systematic difference in temperature between the two channels. The temperature may be computed
from the forward-channel measurements (Equation (10)) with:

TF(x, t) =
γ

IF(x, t) + CF(t) +
∫ x

0 ∆α(x′)dx′
(13)

and from the backward-channel measurements with:

TB(x, t) =
γ

IB(x, t) + CB(t) +
∫ L

x ∆α(x′)dx′
(14)

where CF(t) and CB(t) are the parameter C(t) for the forward-channel and backward-channel
measurements, respectively. CB(t) may be different from CF(t) due to differences in gain, and difference
in the attenuation between the detectors and the point the fiber end is connected to the DTS system (η+
and η− in Equation (9)). The calibration procedure presented in van de Giesen et al. [12] approximates
C(t) to be the same for the forward and backward-channel measurements, but this approximation is
not made here.

Parameter A(x) is introduced to simplify the notation of the double-ended calibration procedure
and represents the integrated differential attenuation between locations x1 and x along the fiber.
Location x1 will be selected in Section 6.

A(x) =
∫ x

x1

∆α(x′)dx′ (15)

so that Equations (13) and (14) may be written as:

TF(x, t) =
γ

IF(x, t) + DF(t) + A(x)
(16)

TB(x, t) =
γ

IB(x, t) + DB(t)− A(x)
(17)

where

DF(t) = CF(t) +
∫ x1

0
∆α(x′)dx′ (18)

DB(t) = CB(t) +
∫ L

x1

∆α(x′)dx′ (19)

Parameters DF and DB must be estimated for each time and are constant along the fiber, and
parameter A must be estimated for each location and is constant over time. The calibration procedure
is discussed in Section 6. TF and TB are separate approximations of the same temperature at the same
time. The estimated TF is more accurate near x = 0 because that is where the signal is strongest.
Similarly, the estimated TB is more accurate near x = L. A single best estimate of the temperature is
obtained from the weighted average of TF and TB as discussed in Section 7.2.
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4. Estimation of the Variance of the Noise in the Intensity Measurements

The Stokes and anti-Stokes intensities are measured with detectors, which inherently introduce
noise to the measurements. Knowledge of the distribution of the measurement noise is needed for a
calibration with weighted observations (Sections 5 and 6) and to project the associated uncertainty
to the temperature confidence intervals (Section 7). Two sources dominate the noise in the Stokes
and anti-Stokes intensity measurements [16] (p. 125). Close to the laser, noise from the conversion of
backscatter to electricity dominates the measurement noise. The detecting component, an avalanche
photodiode, produces Poisson-distributed noise with a variance that increases linearly with the
intensity. The Stokes and anti-Stokes intensities are commonly much larger than the standard deviation
of the noise, so that the Poisson distribution can be approximated with a Normal distribution with a
mean of zero and a variance that increases linearly with the intensity. At the far-end of the fiber, noise
from the electrical circuit dominates the measurement noise. It produces Normal-distributed noise
with a mean of zero and a variance that is independent of the intensity. However, in this paper the
sum of the two noise sources is approximated with a single Normal distribution with a variance that is
independent of the intensity. This approximation holds better for small setups with little attenuation
and DTS systems with avalanche photodiodes with a lower gain. In Appendix A, a procedure is
presented to compute the intensity-dependent variance of the noise for when this approximation does
not hold.

The variance of the noise in the Stokes (σ2
P+ ) and anti-Stokes (σ2

P− ) measurements are estimated
by fitting Equations (4) and (5) through the Stokes and anti-Stokes intensity measurements of the
reference sections, after which the distribution of the residuals is used as an estimate of the distribution
of the noise [22]. Fiber sections that are used for calibration have an approximately spatially uniform
reference temperature (Tr(t)), so that Equations (4) and (5) are each expressed in a term that varies
along the reference section but is constant over time (H(x)) and a term that varies with time (G(t)) but
is constant for a reference section:

P+(x, t) = G+(t)H+(x) (20)

P−(x, t) = G−(t)H−(x) (21)

with

G+(t) = E0(t)η+(t)
K+

λ4
+

exp [γ/Tr(t)]
exp [γ/Tr(t)]− 1

(22)

G−(t) = E0(t)η−(t)
K−
λ4
−

1
exp [γ/Tr(t)]− 1

(23)

H+(x) = 1
2 vR exp

(
−
∫ x

0

[
αl(x′) + α+(x′)

]
dx′
)

(24)

H−(x) = 1
2 vR exp

(
−
∫ x

0

[
αl(x′) + α−(x′)

]
dx′
)

(25)

Values for G(t) and H(x) are obtained by minimizing the residuals between the Stokes and
anti-Stokes intensity measurements and Equations (20) and (21) with a standard routine. Here, the
“minimize” routine of the Python package scipy.optimize [23] is used, and is implemented in the
package “dtscalibration” (Section 8). G(t) and H(x) are, of course, highly correlated (Equations (20)
and (21)), but that is not relevant here as only the product of G(t) and H(x) is of interest. The residuals
between the fitted product of G(t) and H(x) and the Stokes and anti-Stokes intensity measurements
are attributed to the noise from the detectors. The variance of the residuals is used as a proxy for the
variance of the noise in the Stokes and anti-Stokes intensity measurements. The consequence of a
non-uniform temperature of the reference sections on the estimated variance is described in Section 10.
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5. Single-Ended Calibration Procedure

In single-ended calibration, the temperature is estimated from Stokes and anti-Stokes intensity
measurements with Equation (12). The parameters that need to be estimated from calibration are γ,
∆α, and C, where C needs to be estimated for each time step. The parameters are estimated from
the reference temperature at M locations along the reference sections and at N times. Equation (7) is
reorganized to amend it for linear regression. The observation at location m and time n, denoted with
Im,n, is written as a linear combination of the unknown parameters:

Im,n =
1

Tm,n
γ− xm∆α− Cn, with m = 1, 2, ..., M and n = 1, 2, ..., N (26)

where Tm,n is the reference temperature at location m and time n, xm is the location of point m along
the reference sections, and Cn is the constant C of the fiber at time n. In total, there are N + 2 unknown
parameters and MN observations.

The system of N Equation (26) for location m may be written in vector form as:

ym = Xma + εm, (27)

where εm are the residuals between the observed values and the fitted values for location m, and

ym =


Im,1

Im,2
...

Im,N

 , Xm =


1

Tm,1
−xm −1

1
Tm,2

−xm −1
...

...
. . .

1
Tm,N

−xm −1

 , a =



γ

∆α

C1

C2
...

CN


(28)

The vector a contains the unknown parameters that are to be estimated. The system of MN
equations for all locations may be combined into one system of equations:

y = Xa + ε, (29)

where

y =


y1

y2
...

yM

 , X =


X1

X2
...

XM

 , ε =


ε1

ε2
...

εM

 (30)

This system (Equation (29)) is solved by minimizing the sum of the squared weighted residuals χ2:

χ2 = (y− Xa)ᵀW(y− Xa) (31)

where ᵀ refers to the transposed matrix and W is a diagonal matrix given by

diag (W) =


W1

W2
...

WM

 , Wm =



1
σ2

Im,1
1

σ2
Im,2
...
1

σ2
Im,N


(32)



Sensors 2020, 20, 2235 8 of 21

The variance, σ2
Im,n

, of the distribution of the noise in the observation at location m, time n, is a
function of the variance of the noise in the Stokes and anti-Stokes intensity measurements (σ2

P+ and
σ2

P− ), and is approximated with [24]:

σ2
Im,n
≈
[

∂Im,n

∂Pm,n+

]2
σ2

P+ +

[
∂Im,n

∂Pm,n−

]2
σ2

P− (33)

≈ 1
P2

m,n+
σ2

P+ +
1

P2
m,n−

σ2
P− (34)

The variance of the noise in the Stokes and anti-Stokes intensity measurements is estimated
directly from Stokes and anti-Stokes intensity measurements using the steps outlined in Section 4.

The sum of the squared weighted residuals may be minimized with a standard routine. In this
paper, a custom sparse implementation of the weighted least squares routine of the Python package
Statsmodels is used [25], which returns the optimal parameter set, the covariance matrix of the optimal
parameter set, and the residuals (this is part of the Python package “dtscalibration”, which is described
in Section 8). The number of reference sections required for calibration is discussed in Section 10.2.

6. Double-Ended Calibration Procedure

In double-ended calibration, the temperature is estimated using Stokes and anti-Stokes intensity
measurements from both ends of the fiber. The temperature is estimated from Equations (16) and (17).
The unknown parameters γ, DF(t), DB(t), and A(x) are obtained from calibration to reference sections,
similar to the single-ended calibration procedure. x1 is chosen as the first location of the first reference
section, so that the value for A at that location equals 0 (Equation (15)). There are M locations along
the reference sections where the temperature is measured at N times. In total there are 2N + M
unknowns: parameter γ, N parameters DF, N parameters DB, and M− 1 parameters A (since A1 = 0).
Equations (16) and (17) are reorganized to amend them for linear regression as:

IF,m,n =
1

Tm,n
γ− DF,n − Am

IB,m,n =
1

Tm,n
γ− DB,n + Am

 with m = 1, 2, ..., M and n = 1, 2, ..., N (35)

where DF,n is the constant DF at time n, DB,n is the constant DB at time n Am is the constant A at
location m, and A1 = 0. The system of 2N equations for location m may be written as:

ym = Xma + εm, (36)

where

ym =

[
Fm

Bm

]
, Xm =

[
Rm −I(N, N) 0(N, N) −Qm

Rm 0(N, N) −I(N, N) Qm

]
, (37)

Fm =


IF,m,1

IF,m,2
...

IF,m,N

 , Bm =


IB,m,1

IB,m,2
...

IB,m,N

 , Rm =


1

Tm,1
1

Tm,2
...
1

Tm,N

 (38)

where I is an identity matrix with its number of rows and columns between brackets, 0 is a matrix
of zeros with its number of rows and columns between brackets, and εm are the residuals at location
m. The matrix Qm is defined differently for the first location than for the other locations. For m = 1,
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Qm is a matrix of zeros size N by M− 1. For m > 1, Qm is a matrix of zeros of size N by M− 1 except
for column m− 1, which contains ones. The vector a contains the unknown parameters, has length
2N + M, and is given by:

a =


γ

aD,F

aD,B

aA

 , aD,F =


DF,1

DF,2
...

DF,N

 , aD,B =


DB,1

DB,2
...

DB,N

 , aA =


A2

A3
...

AM

 (39)

The weights of the observations at location m are given by:

diag (Wm) =

[
1/σ2 [Fm]

1/σ2 [Bm]

]
(40)

where the elements of σ2 [Fm] and σ2 [Bm] are approximated with Equation (34) applied to the forward
and backward channels, respectively.

The equations for all M locations are gathered in a single set of equations given by
Equations (29) and (30), where ym, Xm, a are given by Equations (37)–(39). This is a system of
2MN equations for M + 2N unknown parameters. The system is solved by minimizing χ2 as given by
Equation (31), where W is given by Equation (32) with Equation (40) for Wm.

The set of estimated parameters contains estimates of A for the locations along the reference
sections only. An estimate of A and its variance for locations outside the reference sections are required
to estimate the temperature outside of the reference sections. An estimate of A for location p and
time n outside the reference sections is obtained by setting TF = TB using Equations (16) and (17),
which gives:

Ap,n =
IB,p,n − IF,p,n

2
+

DB,n − DF,n

2
(41)

The variance of Ap,n is approximated with:

σ2 [Ap,n
]
≈ 1

4

(
σ2 [IB,p,n

]
+ σ2 [IF,p,n

]
+ σ2 [DF,n] + σ2 [DB,n]− 2σ [DF,n, DB,n]

)
(42)

≈ 1
4

(
1

P2
B,m,n+

σ2
PB+

+
1

P2
B,m,n−

σ2
PB−

+
1

P2
F,m,n+

σ2
PF+

+
1

P2
F,m,n−

σ2
PF−

+ σ2 [DF,n] + σ2 [DB,n]− 2σ [DF,n, DB,n]

) (43)

where σ2
PB+

, σ2
PB−

, σ2
PF+

, and σ2
PF−

are estimated directly from the Stokes and anti-Stokes intensity
measurements of the forward and the backward channels using the procedure presented in Section 4,
the terms σ2 [DF,n] and σ2 [DB,n] are parameter uncertainties from the diagonal of the covariance
matrix, and the term σ [DF,n, DB,n] is the square-root of the covariance between DF,n and DB,n from
the covariance matrix. A single estimate of Ap and σ2 [Ap

]
at location p is obtained using the inverse

temporal-variance weighted mean:

Ap = σ2 [Ap
] ( N

∑
n=1

Ap,n

σ2
[
Ap,n

]) (44)

σ2 [Ap
]
=

1
N
∑

n=1
1/σ2

[
Ap,n

] (45)
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The number of reference sections required for calibration is discussed in Section 10.2.

7. Confidence Intervals of the Temperature

The uncertainty in the estimated temperature varies along the fiber as the laser pulse attenuates
when propagating through the fiber, and varies over time due to varying gains and losses in the
DTS device. The two sources that contribute to the uncertainty in the temperature estimate are the
uncertainty in the calibrated parameters and the uncertainty associated with the noise in the Stokes
and anti-Stokes intensity measurements. The former dominates the uncertainty in the estimated
temperature for measurements with longer acquisition times, while the latter dominates measurements
with shorter acquisition times. Other sources of possible uncertainty are not taken into account here.
These include the uncertainty introduced by the model that relates measured Stokes and anti-Stokes
intensities to temperature, and the uncertainty in measured temperatures obtained with external
sensors. The latter is generally much smaller than the uncertainty in the DTS temperature from the
noise in the Stokes and anti-Stokes intensity measurements.

Estimation of the confidence intervals of the temperature starts with estimating separate
probability density functions for the Stokes and anti-Stokes intensity measurements and the calibrated
parameters. The probability density functions are propagated through the model using a Monte Carlo
sampling procedure following the steps from JCGM [26,27]. This procedure results in an approximation
of the probability density function for the estimated temperature, which is different at each location
and varies over time. Various summarizing statistics are computed from the approximate probability
density function, including the expected value, the standard deviation, and the confidence intervals.
The standard deviation is also called the temperature resolution, but in line with JCGM [26], the term
standard uncertainty is used here. The procedure is explained first for single-ended measurements,
followed by the procedure for double-ended measurements.

7.1. Single-Ended Measurements

Estimation of the confidence intervals for the temperatures measured with a single-ended setup
consists of five steps. First, the variances of the Stokes and anti-Stokes intensity measurements
are estimated following the steps in Section 4. A Normal distribution is assigned to each intensity
measurement that is centered at the measurement and using the estimated variance. Second, a
multi-variate Normal distribution is assigned to the estimated parameters using the covariance matrix
from the calibration procedure presented in Section 5. Third, the distributions are sampled, and the
temperature is computed with Equation (12). Fourth, step three is repeated, e.g., 10,000 times for each
location and for each time. The resulting 10,000 realizations of the temperatures approximate the
probability density functions of the estimated temperature at that location and time. Fifth, the standard
uncertainties are computed with the standard deviations of the realizations of the temperatures, and
the 95% confidence intervals are computed from the 2.5% and 97.5% percentiles of the realizations of
the temperatures.

7.2. Double-Ended Measurements

Double-ended setups require four additional steps to estimate the confidence intervals for the
temperature. First, the variances of the Stokes and anti-Stokes intensity measurements of the forward
and backward channels are estimated following the steps in Section 4. A Normal distribution is
assigned to each intensity measurement that is centered at the measurement and using the estimated
variance. Second, a multi-variate Normal distribution is assigned to the estimated parameters using the
covariance matrix from the calibration procedure presented in Section 6. Third, Normal distributions
are assigned for A for each location outside of the reference sections. These distributions are centered
around Ap and have variance σ2 [Ap

]
given by Equations (44) and (45). Fourth, the distributions

are sampled and TF,m,n and TB,m,n are computed with Equations (16) and (17), respectively. Fifth,
step four is repeated to compute, e.g., 10,000 realizations of TF,m,n and TB,m,n to approximate their
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probability density functions. Sixth, the standard uncertainties of TF,m,n and TB,m,n (σ [TF,m,n] and
σ [TB,m,n]) are estimated with the standard deviation of their realizations. Seventh, for each realization
i the temperature Tm,n,i is computed as the weighted average of TF,m,n,i and TB,m,n,i:

Tm,n,i = σ2 [Tm,n]

(
TF,m,n,i

σ2 [TF,m,n]
+

TB,m,n,i

σ2 [TB,m,n]

)
(46)

where

σ2 [Tm,n] =
1

1/σ2 [TF,m,n] + 1/σ2 [TB,m,n]
(47)

The best estimate of the temperature Tm,n is computed directly from the best estimates of TF,m,n and
TB,m,n as:

Tm,n = σ2 [Tm,n]

(
TF,m,n

σ2 [TF,m,n]
+

TB,m,n

σ2 [TB,m,n]

)
(48)

Alternatively, the best estimate of Tm,n can be approximated with the mean of the Tm,n,i values. Finally,
the 95% confidence interval for Tm,n are estimated with the 2.5% and 97.5% percentiles of Tm,n,i.

8. Python Implementation

The presented calibration procedure is implemented in the Python package “dtscalibration” [28].
It is open source, has a BSD 3-or-later license and is available online at https://github.
com/dtscalibration/python-dts-calibration, together with installation instructions, examples, and
documentation. The package reads DTS measurement files into an object, which has several calibration
and plotting methods. Calibration and calculation of confidence intervals can be conducted within
10 lines of Python code, as is demonstrated in the examples of Section 9 and Supplementary Materials.
Several routines are implemented to read Stokes and anti-Stokes intensity measurement files from the
following DTS devices: AP Sensing CP320, Sensornet Oryx, Sensornet Halo, SensorTran 5100, Silixa
Ultima, Silixa XT. The package inherits many functions (e.g., visualization, parallel computing) from
xarray [29] so that the code base remains small. Most computations are performed by Dask [30] in
chunks and in parallel, so that gigabytes of DTS measurement data can be processed on a personal
computer with limited memory.

9. Example

An example of a double-ended setup is presented to demonstrate the spatial and temporal
variability in the uncertainty of the temperature. This example attempts to estimate the uncertainty of
the temperature along the entire fiber for a given acquisition time. The uncertainty in the estimated
temperature can easily be reduced by increasing the acquisition time, but that limits the ability to
observe temporal variation in temperature. Alternatively, the uncertainty can be reduced by increasing
the sampling distance, but that limits the ability to observe spatial variation in temperature.

9.1. Setup and Data Collection

A schematic representation of the setup is shown in Figure 2. Sections of the fiber are submerged
in water baths with a measured temperature as listed in Table 1. A uniform temperature in all water
baths is desired so that the temperature measured with an external temperature sensor resembles the
temperature of the fiber. Therefore, an aluminum bath filled with water is placed in a cold climate
room, and a second one is placed in a warm climate room. The air in the climate rooms circulates
around the water baths and the air temperature is kept constant with a maximum variation of 0.5 ◦C
to achieve a uniform temperature in the water baths. A cooler turns on if the air temperature in the
climate rooms is 0.3 ◦C above its target temperature, and a heater turns on if the air temperature in the

https://github.com/dtscalibration/python-dts-calibration
https://github.com/dtscalibration/python-dts-calibration
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climate rooms is 0.2 ◦C below the target temperature. Both baths contain two coils of fiber. Another coil
of fiber is placed in a cooler box filled with water, without temperature control, but with an aquarium
air pump to attempt to mix the water and achieve a uniform temperature. All coils of fiber are lifted
from the bottom of the baths with plastic spacers so that the coils are approximately centered. The
setup was left to rest to achieve a stable and uniform temperature in the water baths before starting
the measurements.

Ultima-S DTS system

Interrogator

Cold bath
~4°C

Warm bath
~19°C

Ambient bath
~13°C

Forward
channel

Backward
channel

x=0

Pt100

C1

C2

W1

W2

Pt100

Pt100

Figure 2. The setup of the example.

Table 1. Fiber sections submerged in water baths.

Name Fiber
Section (m)

Average
Temperature (◦C)

Number of
Measurement Locations Notes

Cold 1 7.5–17.0 4.35 37 Used for calibration
Warm 1 24.0–34.0 18.52 39 Used for calibration
Ambient 40.0–50.0 12.62 39
Cold 2 70.0–80.0 4.35 39
Warm 2 85.0–95.0 18.52 39

The DTS system used in this example is a Silixa Ultima-S DTS system (Hertfordshire, UK) that
measures fibers up to 2 km with a factory-reported spatial resolution of approximately 30 cm. The
system is configured to measure the Stokes and anti-Stokes intensity with an acquisition time of
2 s in the forward direction and 2 s in the backward direction, every 12.7 cm along 100 m of fiber
(Figure 2). The system’s specification sheet lists several values for the standard uncertainty (referred to
as the temperature resolution) for different single-ended setups using the built-in calibration routine.
According to the specification sheet, the standard uncertainty is 0.34 ◦C if the fiber is shorter than
500 m, sampled every 12.7 cm, and measured for a second, which translates roughly to a standard
uncertainty of 0.17 ◦C for an acquisition time of 4 s. The used fiber (j-BendAble made by j-fiber GmbH,
Jena, Germany) is an OM3 fiber with a germanium-doped core with a diameter of 50 µm and a silica
cladding with a diameter of 125 µm. The temperature in the warm- and cold-water baths is measured
by the DTS system with two Pt100 RTDs, and the temperature in the ambient water bath is measured
with a Pt100 RTD using a Fluke 1524 Handheld Thermometer.

9.2. Estimation of the Temperature and the Associated Uncertainty

The variance of the noise in the Stokes and anti-Stokes intensity measurements of the forward and
backward channels were estimated using measurements from the two reference sections (‘Cold 1’ and
‘Warm 1’ in Table 1) with the procedure described in Section 4. A scatter plot with the residuals of the
intensity measurements of the forward channel is shown in Appendix B. The residuals of the Stokes
intensity measurements are plotted on the horizontal axis and the residuals of the anti-Stokes intensity
measurements on the vertical axis. The residuals may be approximated with a Normal distribution
and show no clear correlation (Pearson correlation coefficient is 0.02).
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Double-ended calibration was performed to estimate the optimal parameter values and their
covariance following the procedure described in Section 6. The calibration uses measurements from
the two reference sections (Table 1). Instead of using all the measurements from the measurement
period of one day, 1000 time samples were used, evenly spaced over a single day (N = 1000). Inherent
to DTS systems, neighboring measurement locations are spatially correlated (Section 2). To reduce
this correlation, every other measurement location was disregarded so that the distance between the
used measurement locations is 25.4 cm, which is close to the spatial resolution and results in a total
of 193 measurement locations. The number of locations along the reference sections that are used for
calibration is 76 (M = 76).

The 95% confidence intervals are estimated with the approach described in Section 7. The
estimated temperature and its confidence interval at the first time step are shown in Figure 3a. The
difference between the estimated temperature and reference temperature is shown in Figure 3b with
markers, where the confidence interval minus the estimated temperature at the first time step is shown
with a blue fill. For the estimation of the confidence intervals, a Monte Carlo sample size of 10,000
was used; doubling the sample size for this measurement setup did not change the 95% confidence
intervals significantly, but it did smooth the edges of the confidence intervals (i.e., the roughness of the
edges of the blue fill in Figure 3b). The percentage of reference temperature measurements that fall
within the 95% confidence interval of the estimated temperature for all 1000 time steps are listed for
each section in Table 2. For the ambient bath, only 92.3% of the temperature measurements fall within
the 95% confidence interval.
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Figure 3. (a) Temperature with its 95% confidence intervals at the first time step. (b) Differences
between the estimated temperature and the reference temperature at the first time step.

Table 2. Percentage of reference temperature within estimated 95% confidence intervals.

Cold 1 Warm 1 Ambient Cold 2 Warm 2 Total

95.6% 95.0% 92.3% 94.7% 94.3% 94.4%
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The mean difference between the reference temperature and the estimated temperature for all
times is shown for each location along the reference sections in Figure 4 with orange markers. The
estimated temperature of the ambient bath is on average 0.06 ◦C above the corresponding reference
temperature. This bias may be the result of either the external temperature sensor not representing
the temperature of the fiber due to local temperature variations in the water bath, or the external
temperature sensor is calibrated differently. This could have been confirmed by simultaneously
submerging all temperature sensors in a water bath and comparing their measurements, but this was
not done here. The mean difference of reference section Warm 2 shows a spatial correlation between
the mean differences, which can indicate non-uniform temperatures in the water bath. The spatial
variability in the standard deviation of the differences between the reference temperature and the
estimated temperature is shown in Figure 4 with blue markers. The standard uncertainty is estimated
for each location from the Monte Carlo samples from all times and is shown with a black line. It varies
with the temperature, with slightly smaller values for the fiber sections in the cold baths and slightly
larger values for the fiber sections in the warm baths. The standard deviation of the difference between
the reference temperature and the estimated temperature for all times is shown with blue markers and
is well described at each location with the standard uncertainty.
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Figure 4. Spatial variation of the standard uncertainty of the estimated temperature, and the mean and
standard deviation of the differences between the estimated and reference temperature.

The mean difference between the reference temperature and the estimated temperature for all
reference locations is plotted over time in Figure 5 with orange markers. Each marker represents
the mean of 193 differences. The mean of the differences are slightly above zero probably caused by
the bias in the ambient bath temperature. The standard uncertainty at each time is computed from
the Monte Carlo samples from all locations and is shown with a black line. The standard deviation
of the difference between the reference and estimated temperature for all locations is shown with
blue markers, which roughly follow the estimated standard uncertainties. The increase in standard
uncertainty after 11.5 h coincides with a strong decrease in Stokes and anti-Stokes intensity of the
forward and backward channels (not shown here), caused by either a decrease in laser strength or a
decrease in sensitivity of the detector.
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Figure 5. Temporal variation of the standard uncertainty of the estimated temperature, and the mean
and standard deviation of the differences between the estimated and reference temperature.

9.3. Effect of Parameter Uncertainty

As stated, the uncertainty of the temperature is a function of the uncertainty in the estimated
parameters and the uncertainty in the Stokes and anti-Stokes intensity measurements. The estimation
of the standard uncertainty of the temperature was repeated except for that the covariance matrix of the
optimal parameters was not propagated to the Monte Carlo set, so that the standard uncertainty consists
of only the uncertainty introduced by the noise in the Stokes and anti-Stokes intensity measurements
(Section 7.2). The standard uncertainty of the temperature was recalculated, and was on average
0.001 ◦C smaller than the original values and did not show any patterns or trends. Hence, it is
concluded that for this experiment the contribution of the parameter uncertainty to the standard
uncertainty is small compared to the uncertainty introduced by the noise in the Stokes and anti-Stokes
intensity measurements.

9.4. Effect of Difference in Reference Temperatures

As stated in Section 6, reference sections at two different temperatures are required to estimate
the parameters that relate Stokes and anti-Stokes intensity measurements to temperature and only one
reference section is needed if its temperature varies sufficiently over time. To test the consequence
of calibrating to reference sections with a variation in temperature that is too small, an additional
calibration is performed with two reference sections at the same temperature: Cold 1 and Cold 2
(Table 1). 95% of the reference temperatures were between 4.33 and 4.39 ◦C. Values for the A(x)
parameters along the reference sections are correctly estimated, but the parameters γ, DF(t), and
DB(t) are not. Their estimated values are of the right order of magnitude, and the temperature of
the cold-water baths is estimated well with those parameters (not shown). The temperatures outside
the 4.33–4.39 ◦C range are not correctly estimated. The 95% confidence intervals for the estimated
temperature outside the reference sections are enormously wide, because of the large parameter
uncertainty. The standard uncertainty of the A(x) estimates are the same as in the first calibration
configuration, but the standard uncertainty of the γ, DF(t), and DB(t) estimates are two orders of
magnitude larger than their estimated values. As expected, this calibration configuration failed due
to the lack of difference in temperature between the reference sections and the lack of temperature
variation of the reference sections.

10. Discussion

10.1. Improved Temperature Estimation for Double-Ended Setups

The estimation of the uncertainty of the temperature from Stokes and anti-Stokes intensity
measurements requires several approximations. In this section, the practical implications of these
approximations are assessed. Single-ended measurements have several inherent drawbacks compared
to double-ended measurements. The differential attenuation is approximated to be constant, step
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changes are neglected (e.g., fiber splices, sharp bends), and fiber sections with a different differential
attenuation are not accounted for (e.g., coiled up fiber sections, different fiber types). This includes
sharp bends in ‘bend-tolerant’ fiber [14,31]. The step losses in Stokes and anti-Stokes intensity
measurements can be corrected manually, if they are identified and the temperature is the same
at either side of the step loss [32]. Uncorrected step losses result in a bias in the estimated temperature
that is not expressed in the confidence intervals. Commercially available DTS systems usually include
an internal reference fiber section for calibration purposes. The use of the internal reference section
is not recommended for single-ended measurements because of the step change in the integrated
differential attenuation at the connector. The type of the internal fiber is most likely different, with a
different differential attenuation than the fiber connected to the DTS system. Hence, it is recommended
to use double-ended setups rather than single-ended setups.

The proposed calibration procedure to estimate the integrated differential attenuation in
double-ended setups differs from the two-step procedure of van de Giesen et al. [12]. They estimate
the differential attenuation integrated between neighboring measurement locations, average them
over time for the entire fiber, and sum them to estimate the integrated differential attenuation. In
Section 6 of this paper, estimation of the integrated differential attenuation is achieved in one step, and
formulated so that it can be used in weighted linear regression.

The presented calibration procedure can lead to better temperature estimates compared to existing
calibration procedures. Parameters that are time invariant are kept constant and are estimated from all
available data, which improves their estimation. By weighing Stokes and anti-Stokes measurements
with their uncertainty, the estimation of parameters is less affected by measurement noise along
reference sections with a low signal strength, i.e., at the end of the fiber.

Furthermore, weighted averaging of the temperature from the forward and backward-channel
measurements results in better temperature estimates than arithmetic averaging or using either of the
individual channel measurements. Consider the synthetic temperature measurement of a double-ended
setup shown in Figure 6. The approximated standard uncertainty is computed using the procedure
outlined in Section 7.2 and is shown for the forward-channel temperature measurements in orange
and for the backward channel in blue. The standard uncertainty of the inverse-variance weighted
mean is shown with the solid black line and is much smaller near the ends of the fiber. The standard
uncertainty of the inverse-variance weighted mean is equal to that of the arithmetic mean where the
standard uncertainty of the forward-channel measurements is equal to that of the backward-channel
measurements.
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10.2. Calibration to Reference Sections

The presented calibration procedures require either one or two reference sections with a different
temperature. In single-ended setups, two reference sections are needed to differentiate between γ/Tr

and C(t) + x∆α. In double-ended setups, two reference sections are needed to differentiate between
γ/Tr and DF(t), and between γ/Tr and DB(t). Only one reference section is needed in single-ended
and double-ended setups if the reference temperature varies sufficiently over time. To examine the
minimum temperature variation that is needed when using one reference section, the analysis of the
example of Section 9 is repeated using only the reference section in the ambient water bath, which
varies between 12.53 and 12.73 ◦C. This temperature variation of only 0.2 ◦C proved to be sufficient
for this setup. The contribution of the parameter uncertainty to the standard uncertainty is again
small com1pared to the uncertainty introduced by the noise in the Stokes and anti-Stokes intensity
measurements. As expected, the likely bias in the estimated temperature of the ambient bath that
was apparent in Figure 4 translates to a bias in the estimated temperature (not shown). For example,
the temperature estimates along the sections in the cold and warm water baths are 0.03 and 0.10 ◦C
too low, respectively. The minimum temperature difference needed for calibration depends on many
factors, including: the matrix solver and its settings, the length of the reference sections, the Stokes
and anti-Stokes intensity, and the noise in the Stokes and anti-Stokes intensity measurements.

All existing calibration procedures rely on the temperature of reference sections measured with
external sensors. Any deviation of the fiber temperature from the temperature measured with an
external sensor introduces errors. Problems that are commonly occurring with DTS calibration are
ill-defined positions of the reference sections and non-uniform temperature of the water baths. Both
can be discovered at different stages of the calibration procedure. They may introduce a bias in
the estimated temperature, which is not accounted for in the estimation of the standard uncertainty
and confidence intervals. Therefore, an additional external temperature sensor is recommended for
identification of a bias in the reference temperature. A bias may then be identified by, for example,
composing a figure of the time-averaged difference between the estimated temperature and the
reference temperature, similar to Figure 4. A non-uniform temperature of the reference sections also
negatively affects the parameter estimation by introducing an error in the coefficient matrix, in the first
column of Xm in Equations (30) and (37). Investigation of the contribution of the parameter uncertainty
to the uncertainty of the estimated temperature is explained in Section 9.3. A non-uniform temperature
of the reference sections may also result in an overestimation of the noise in the Stokes and anti-Stokes
intensity measurements. The variance of the noise in the intensity measurements are estimated from
the residuals between Equations (20) and (21) and the intensity measurements assuming a uniform
reference temperature (Section 4). A non-uniform temperature of a reference section increases the
residuals, which are incorrectly attributed to the noise from the detector. A comparison of the estimated
variance of different reference sections can indicate the location of non-uniform temperature sections.
Alternatively, trends in the time-averaged differences between the estimated and reference temperature
can also indicate a non-uniform temperature of the reference sections, of which an example is shown
with orange markers in Figure 4.

11. Conclusions

A new approach is presented to calibrate temperature from Stokes and anti-Stokes intensity
measurements and to provide a confidence interval for the estimated temperature. The uncertainty in
the estimated temperature is caused by the noise from the Stokes and anti-Stokes detectors, and the
uncertainty in the calibrated parameters that relate the Stokes and anti-Stokes intensity measurements
to temperature. Estimation of the confidence interval for the estimated temperature requires an
estimation of the distribution of the noise from the Stokes and anti-Stokes detectors and a multi-variate
distribution of the parameters that relate the Stokes and anti-Stokes intensity measurements to
temperature. All these distributions are propagated with Monte Carlo sampling to approximate
the probability density function of the temperature, which is different at each location and varies over
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time. Various summarizing statistics can be computed from the approximated probability density
function, such as standard uncertainties and confidence intervals.

Several improvements were made to existing calibration procedures to reduce the uncertainty
in the estimated temperature. The integrated differential attenuation differs per setup and must be
experimentally estimated to differentiate it from a shift in temperature. The integrated differential
attenuation for double-ended setups is formulated such that it can be used directly in linear regression
and the uncertainty in the parameter estimation is reduced. The parameter estimation is further
improved by making use of the fact that some parameters are time-invariant, and to use all available
data to estimate their value. The linear regression accounts for spatial and temporal variation in the
signal intensity, so that large-intensity measurements have a larger weight in the parameter estimation
than the small-intensity measurements.

In double-ended setups, the temperature is estimated from measurements made from both
ends of the fiber. Close to the ends of the fiber, the difference in Stokes and anti-Stokes intensity
between the forward and backward measurements is large, resulting in a large difference in the
uncertainty of the temperature estimated from the forward and backward measurements. The
estimated temperature is a weighted average of the temperatures estimated from the forward and
backward-channel measurements. Compared to unweighted averaging, this reduces the uncertainty
in the estimated temperature. The uncertainty of the temperature that is estimated with the proposed
calibration procedure is assessed in an example. The estimated temperature and 95% confidence
intervals adequately represent the temperature of the reference sections.

The calibration procedure is implemented in “dtscalibration”, an open-source Python package
that is freely available under the BSD 3-or-later license from https://github.com/dtscalibration/
python-dts-calibration. The package contains the new calibration procedures for both single-ended
and double-ended setups, can compute confidence intervals of the estimated temperature, and includes
several routines for visualization of the results.
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Appendix A. Intensity-Dependent Variance of the Noise in the Intensity Measurements

The sources of noise dominating the noise in Stokes and anti-Stokes intensity measurements are
discussed in the introductory paragraph of Section 4. For larger setups with more attenuation and DTS
systems with a larger avalanche photodiode gain, σ2

P+ and σ2
P− may be expressed as a linear function

of the intensity,

σ2
P+ = β+P+ + σ2

P+ ,bg (A1)

σ2
P− = β−P− + σ2

P− ,bg (A2)

https://github.com/dtscalibration/python-dts-calibration
https://github.com/dtscalibration/python-dts-calibration
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where σ2
P,bg is the variance of the background noise from the electrical circuit, and β+ and β− are the

coefficients that relate the intensity to the variance of the noise from the avalanche photodiode.
An algorithm is proposed to obtain β+, β−, σ2

P+ ,bg, and σ2
P− ,bg from the residuals between the

fitted product of G(t) and H(x) and the Stokes and anti-Stokes intensity measurements. The residuals
must be known for a wide range of intensities to estimate the unknowns, e.g., with a reference section
at the beginning and end of the fiber. First, start with an array with the Stokes intensity measurements
and an array with the residuals. The arrays share a temporal and a spatial dimension. Second, sort both
arrays by the Stokes intensity measurements. Third, bin both sorted arrays, and compute per bin the
mean of the Stokes intensity measurements and the variance of the residuals. Finally, fit Equation (A1)
to the two computed values per bin to estimate β+ and σ2

P+ ,bg. And repeat the algorithm for the
anti-Stokes intensity measurements.

Appendix B. Correlation Stokes and Anti-Stokes Residuals

The variance in the Stokes and anti-Stokes intensity measurements is estimated from
measurements of the reference sections used for calibration (Table 1) with the procedure presented in
Section 4. The residuals between the Stokes intensity measurements and the fitted curve are plotted
against the residuals between the anti-Stokes intensity measurements and the fitted curve in Figure A1.
The Pearson correlation coefficient between the two is 0.02. The fitted Normal distribution of the
Stokes and anti-Stokes residuals are shown on the top and right axes, respectively. These residuals are
used as proxy for the noise from the detector.
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Figure A1. Stokes residuals plotted against the anti-Stokes residuals. The Stokes and anti-Stokes
intensity recorded by the DTS instrument have arbitrary units that are linearly related to the power of
the scattered signals.



Sensors 2020, 20, 2235 20 of 21

References

1. Selker, J.S.; Thévenaz, L.; Huwald, H.; Mallet, A.; Luxemburg, W.; van de Giesen, N.; Stejskal, M.;
Zeman, J.; Westhoff, M.; Parlange, M.B. Distributed fiber-optic temperature sensing for hydrologic systems.
Water Resour. Res. 2006, 42, 1–8. [CrossRef]

2. Tyler, S.W.; Selker, J.S.; Hausner, M.B.; Hatch, C.E.; Torgersen, T.; Thodal, C.E.; Schladow, S.G. Environmental
temperature sensing using Raman spectra DTS fiber-optic methods. Water Resour. Res. 2009, 45, 1–11.
[CrossRef]

3. Sayde, C.; Thomas, C.K.; Wagner, J.; Selker, J. High-resolution wind speed measurements using actively
heated fiber optics. Geophys. Res. Lett. 2015, 42, 10064–10073. [CrossRef]

4. Van Ramshorst, J.G.V.; Coenders-Gerrits, M.; Schilperoort, B.; van de Wiel, B.J.H.; Izett, J.G.; Selker, J.S.;
Higgins, C.W.; Savenije, H.H.G.; van de Giesen, N.C. Wind speed measurements using distributed fiber
optics: A windtunnel study. Atmos. Meas. Tech. Discuss. 2019, 2019, 1–21. [CrossRef]

5. Euser, T.; Luxemburg, W.M.J.; Everson, C.S.; Mengistu, M.G.; Clulow, A.D.; Bastiaanssen, W.G.M. A new
method to measure Bowen ratios using high-resolution vertical dry and wet bulb temperature profiles.
Hydrol. Earth Syst. Sci. 2014, 18, 2021–2032. [CrossRef]

6. Schilperoort, B.; Coenders-Gerrits, M.; Luxemburg, W.; Jiménez Rodríguez, C.; Cisneros Vaca, C.; Savenije, H.
Technical note: Using distributed temperature sensing for Bowen ratio evaporation measurements.
Hydrol. Earth Syst. Sci. 2018, 22, 819–830. [CrossRef]

7. Steele-Dunne, S.C.; Rutten, M.M.; Krzeminska, D.M.; Hausner, M.; Tyler, S.W.; Selker, J.; Bogaard, T.A.;
van de Giesen, N.C. Feasibility of soil moisture estimation using passive distributed temperature sensing.
Water Resour. Res. 2010, 46, 1–12. [CrossRef]

8. Lowry, C.S.; Walker, J.F.; Hunt, R.J.; Anderson, M.P. Identifying spatial variability of groundwater discharge
in a wetland stream using a distributed temperature sensor. Water Resour. Res. 2007, 43, 1–9. [CrossRef]

9. Bakker, M.; Caljé, R.; Schaars, F.; van der Made, K.J.; de Haas, S. An active heat tracer experiment to determine
groundwater velocities using fiber optic cables installed with direct push equipment. Water Resour. Res. 2015,
51, 2760–2772. [CrossRef]

10. Bense, V.F.; Read, T.; Bour, O.; Le Borgne, T.; Coleman, T.; Krause, S.; Chalari, A.; Mondanos, M.; Ciocca, F.;
Selker, J.S. Distributed Temperature Sensing as a downhole tool in hydrogeology. Water Resour. Res. 2016,
52, 9259–9273. [CrossRef]

11. Hausner, M.B.; Suárez, F.; Glander, K.E.; Giesen, N.V.d.; Selker, J.S.; Tyler, S.W. Calibrating Single-Ended
Fiber-Optic Raman Spectra Distributed Temperature Sensing Data. Sensors 2011, 11, 10859–10879. [CrossRef]
[PubMed]

12. Van de Giesen, N.; Steele-Dunne, S.C.; Jansen, J.; Hoes, O.; Hausner, M.B.; Tyler, S.; Selker, J. Double-ended
calibration of fiber-optic raman spectra distributed temperature sensing data. Sensors 2012, 12, 5471–5485.
[CrossRef] [PubMed]

13. Krause, S.; Blume, T. Impact of seasonal variability and monitoring mode on the adequacy of fiber-optic
distributed temperature sensing at aquifer-river interfaces. Water Resour. Res. 2013, 49, 2408–2423. [CrossRef]

14. Hilgersom, K.; van Emmerik, T.; Solcerova, A.; Berghuijs, W.; Selker, J.; van de Giesen, N. Practical
considerations for enhanced-resolution coil-wrapped distributed temperature sensing. Geosci. Instrum.
Methods Data Syst. 2016, 5, 151–162. [CrossRef]

15. McDaniel, A.; Tinjum, J.M.; Hart, D.J.; Fratta, D. Dynamic Calibration for Permanent Distributed Temperature
Sensing Networks. IEEE Sens. J. 2018, 18, 2342–2352. [CrossRef]

16. Hartog, A.H. An Introduction to Distributed Optical Fibre Sensors; CRC Press: Boca Raton, FL, USA, 2017.
17. Eriksrud, M.; Mickelson, A. Application of the backscattering technique to the determination of parameter

fluctuations in multimode optical fibers. IEEE J. Quantum Electron. 1982, 18, 1478–1483. [CrossRef]
18. Fukuzawa, T.; Shida, H.; Oishi, K.; Takeuchi, N.; Adachi, S. Performance improvements in Raman distributed

temperature sensor. Photonic Sens. 2013, 3, 314–319. [CrossRef]
19. Simon, N.; Bour, O.; Lavenant, N.; Porel, G.; Nauleau, B.; Pouladi, B.; Longuevergne, L. A Comparison of

Different Methods to Estimate the Effective Spatial Resolution of FO-DTS Measurements Achieved during
Sandbox Experiments. Sensors 2020, 20, 570. [CrossRef]

20. Bolognini, G.; Hartog, A. Raman-based fibre sensors: Trends and applications. Opt. Fiber Technol. 2013,
19, 678–688, doi:10.1016/j.yofte.2013.08.003. [CrossRef]

http://dx.doi.org/10.1029/2006WR005326
http://dx.doi.org/10.1029/2008WR007052
http://dx.doi.org/10.1002/2015GL066729
http://dx.doi.org/10.5194/amt-2019-63
http://dx.doi.org/10.5194/hess-18-2021-2014
http://dx.doi.org/10.5194/hess-22-819-2018
http://dx.doi.org/10.1029/2009WR008272
http://dx.doi.org/10.1029/2007WR006145
http://dx.doi.org/10.1002/2014WR016632
http://dx.doi.org/10.1002/2016WR018869
http://dx.doi.org/10.3390/s111110859
http://www.ncbi.nlm.nih.gov/pubmed/22346676
http://dx.doi.org/10.3390/s120505471
http://www.ncbi.nlm.nih.gov/pubmed/22778596
http://dx.doi.org/10.1002/wrcr.20232
http://dx.doi.org/10.5194/gi-5-151-2016
http://dx.doi.org/10.1109/JSEN.2018.2795240
http://dx.doi.org/10.1109/JQE.1982.1071411
http://dx.doi.org/10.1007/s13320-013-0128-1
http://dx.doi.org/10.3390/s20020570
http://dx.doi.org/10.1016/j.yofte.2013.08.003


Sensors 2020, 20, 2235 21 of 21

21. Davey, S.; Williams, D.; Ainslie, B.; Rothwell, W.; Wakefield, B. Optical gain spectrum of GeO2-SiO2 Raman
fibre amplifiers. IEE Proc. J Optoelectron. 1989, 136, 301–306. [CrossRef]

22. Richter, P. Estimating Errors in Least-Squares Fitting. NASA Telecommun. Data Acquis. Prog. Rep. 1995, 42,
107–137.

23. Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.;
Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python. Nat. Methods 2020, 17, 261–272, doi:10.1038/s41592-019-0686-2. [CrossRef] [PubMed]

24. Ku, H.H. Notes on the use of propagation of error formulas. J. Res. Natl. Bur. Stand. 1966, 70, 263–273
25. Seabold, S.; Perktold, J. Statsmodels: Econometric and statistical modeling with python. In Proceedings of

the 9th Python in Science Conference, Austin, TX, USA, 28–30 June 2010.
26. Joint Committee for Guides in Metrology. JCGM 100: Evaluation of Measurement Data—Guide for the Expression

of Uncertainty in Measurement (GUM); Technical Report; JCGM: Paris, France, 2008.
27. Joint Committee for Guides in Metrology. JCGM 101: Evaluation of Measurement Data—Supplement 1 to the

“Guide to the Expression of Uncertainty in Measurement (GUM)”—Propagation of Distributions Using a Monte Carlo
Method; Technical Report; JCGM: Paris, France, 2008.

28. Des Tombe, B.F.; Schilperoort, B. Dtscalibration Python Package for Calibrating Distributed Temperature
Sensing Measurements, 2020, v0.7.4. Available online: https://zenodo.org/record/3627843#.XpUvaJkRWUk
(accessed on 14 April 2020).

29. Hoyer, S.; Hamman, J. xarray: ND labeled Arrays and Datasets in Python. J. Open Res. Softw. 2017, 5, 1–6.
[CrossRef]

30. Rocklin, M. Dask: Parallel Computation with Blocked algorithms and Task Scheduling. In Proceedings of
the 14th Python in Science Conference, Austin, TX, USA, 6–12 July 2015.

31. Remouche, M.; Georges, F.; Meyrueis, P. Flexible Optical Waveguide Bent Loss Attenuation Effects Analysis
and Modeling Application to an Intrinsic Optical Fiber Temperature Sensor. Opt. Photonics J. 2012, 2, 1–7.
[CrossRef]

32. Hausner, M.B.; Kobs, S. Identifying and correcting step losses in single-ended fiber-optic distributed
temperature sensing data. J. Sens. 2016, 2016, 1–10. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/ip-j.1989.0047
http://dx.doi.org/10.1038/s41592-019-0686-2
http://www.ncbi.nlm.nih.gov/pubmed/32015543
https://zenodo.org/record/3627843#.XpUvaJkRWUk
http://dx.doi.org/10.5334/jors.148
http://dx.doi.org/10.4236/opj.2012.21001
http://dx.doi.org/10.1155/2016/7073619
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Estimation of Temperature from Stokes and Anti-Stokes Scatter
	Integrated Differential Attenuation
	Single-Ended Measurements
	Double-Ended Measurements

	Estimation of the Variance of the Noise in the Intensity Measurements
	Single-Ended Calibration Procedure
	Double-Ended Calibration Procedure
	Confidence Intervals of the Temperature
	Single-Ended Measurements
	Double-Ended Measurements

	Python Implementation
	Example
	Setup and Data Collection
	Estimation of the Temperature and the Associated Uncertainty
	Effect of Parameter Uncertainty
	Effect of Difference in Reference Temperatures

	Discussion
	Improved Temperature Estimation for Double-Ended Setups
	Calibration to Reference Sections

	Conclusions
	Intensity-Dependent Variance of the Noise in the Intensity Measurements
	Correlation Stokes and Anti-Stokes Residuals
	References

