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Abstract: A reflective intensity-modulated fiber-optic sensor based on microelectromechanical systems
(MEMS) for pressure measurements is proposed and experimentally demonstrated. The sensor consists
of two multimode optical fibers with a spherical end, a quartz tube with dual holes, a silicon sensitive
diaphragm, and a high borosilicate glass substrate (HBGS). The integrated sensor has a high sensitivity
due to the MEMS technique and the spherical end of the fiber. The results show that the sensor achieves a
pressure sensitivity of approximately 0.139 mV/kPa. The temperature coefficient of the proposed sensor
is about 0.87 mV/◦C over the range of 20 ◦C to 150 ◦C. Furthermore, due to the intensity mechanism,
the sensor has a relatively simple demodulation system and can respond to high-frequency pressure in
real time. The dynamic response of the sensor was verified in a 1 kHz sinusoidal pressure environment
at room temperature.
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1. Introduction

Pressure measurement in harsh environments is of great value in various fields, such as oil logging,
aerospace vehicle engine testing, and in the pharmaceutical industry [1–3]. At present, pressure sensors
used in engineering mainly include piezoresistive pressure sensors, piezoelectric pressure sensors,
capacitive pressure sensors, and fiber optic pressure sensors [4–7]. Compared with the electrical sensor,
the fiber optic sensor has unique advantages. Fiber optic sensors are more adaptable to harsh environments,
more resistant to electromagnetic interference, and have compact size and simple structure [8]. Until now,
fiber-optic pressure sensors have been developed into many subtypes according to the working mechanism,
including modulating intensity [9,10], frequency [11], phase [12], wavelength [13], and polarization [14].

In recent years, intensity-modulated fiber-optic sensors have attracted significant interest due to their
simple system, low cost, and high dynamic response. Shen et al. proposed a fiber-optic displacement
sensor, which is based on reflective intensity modulation using a fiber-optic collimator [15]. Vallan et al.
utilized a low-cost plastic fiber-optic sensor for displacement and acceleration sensing, and verified it
under the actual conditions of a sinusoidal vibration [16]. Perrone et al. reported a novel non-contact
method to measure vibrations, which enabled a submicron resolution [17]. Cui et al. designed a new
dual fiber structure sensor based on a fiber Bragg grating probe that can measure the axial and radial
contact displacement simultaneously and can be used to measure the shape change of the fuel nozzle
in engines [18]. Vallan et al. proposed and analyzed an intensity-modulated sensor for 2D crack
monitoring [19]. Guermat et al. presented a fiber-optic sensor that could monitor the temperature and
pressure. The measurements were taken by a reflectometer [20]. Due to the limitations of temperature-
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resistant materials and the current processing technologies, the above sensors are not suitable for a
harsh temperature environment or batch-production.

With the development of technology, a considerable number of methods have been applied
to fabricate the fiber-optic sensors [21–23], for example, MEMS, chemical etching, lasing, applying
special optical fibers, and so on [24–28]. Ge et al. proposed an optical MEMS pressure sensor based
on a mesa-diaphragm structure [29]. Poeggel et al. reported a femtosecond-laser-based inscription
technique for post-fiber-Bragg grating inscription in an extrinsic Fabry-Perot interferometer pressure
sensor; the sensor has a small size and high stability [30]. Hirsch et al. reported the fiber-optic
microsphere sensors, which realized high-sensitivity refractive index detection [31]. The MEMS-based
optical fiber pressure sensors have attracted significant interest, as they are quite small and ideal for
applications where restricted space or minimal measurement interference is a consideration.

In this study, we proposed a MEMS-based reflective intensity-modulated fiber-optic sensor for
pressure measurement. The sensor consists of two multimode optical fibers with a spherical end,
a quartz tube with dual holes, a silicon sensitive diaphragm, and a high borosilicate glass substrate
(HBGS) integrated by MEMS technique. The sensor was assembled and sealed using a CO2 laser,
which is beneficial for improving the sensor performance and avoiding thermal mismatch between the
adhesive and the fiber-optic. The temperature features were characterized over the temperature range
of 20-150 ◦C, and the dynamic response was verified at room temperature. The sensitivity of the sensor
was significantly improved by fabricating a micro-sphere at the end of the multimode fiber. Due to
the intensity mechanism, the sensor has a relatively simple demodulation system and can respond to
high frequency pressure. Besides, the pressure sensor proposed in this paper has the potential to be
mass-produced, which can reduce manufacturing costs.

2. Configuration and Operating Principle

The configuration of the proposed sensor is shown in Figure 1a. The sensor consists of two multimode
fibers with a spherical end, a quartz tube with dual holes, and a sensor head. The sensor head structure
consisted of an HBGS covered with a silicon sensitive diaphragm. Two multimode optical fibers were
inserted inside the quartz tube and further vertically into the sensor head. A pressure cavity was
formed between the ending of the optical fiber and the inner surface of the silicon sensitive diaphragm.
The sensing principle of pressure is shown in Figure 1b. The light was transmitted in the transmitting
fiber and incident on the sensitive diaphragm, then reflected by the surface of the sensitive diaphragm,
and received by the receiving fiber. The final reflection spectrum was analyzed by a photodetector.
When an external pressure was applied to the sensitive diaphragm, the diaphragm deformed, which
induced the optical path change. The output voltage of the photodetector changes linearly with the
pressure. By processing the voltage signal by the photodetector, the change in the external pressure
can be monitored in real time.

When the light propagates in the transmitting fiber, the radial distribution along the fiber axis can
achieve an approximately Gaussian distribution. The irradiance of emitted light from the transmitting
fiber obeys an exponential law according to [32–34]:

I(r, z) =
2P0

πw2(z)
e
−2r2

w2(z) , (1)

where P0 is the optical power sent by the transmitting fiber; r and z are the radial coordinates and
pressure cavity length, respectively; and w(z) is waist radius of the reflected light at the sensitive
diaphragm and can be defined as:

w(z) = w0 + 2ztan(acrsin(NA)), (2)

where w0 is the radius of the transmitting fiber, and NA is numerical aperture of the transmitting fiber.
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The receiving fiber collects the light reflected from the sensitive diaphragm, and the total received
optical power (Pz) can be evaluated by integrating the irradiance I(r, z) within the core region (Sr) of
the receiving fiber end:

Pz =

∫
Sr

I(r, z)dSr. (3)

To better describe the light intensity modulation characteristics of the sensor, the light intensity
modulation function (M) is defined as follows:

M =
Pz

P0
= F(w0, wr, s, NA, z), (4)

where s is center-to-center distance between two fiber cores, and wr is the core radius of the receiving
fiber. The designed parameters of the proposed fiber-optic pressure sensor obtained by Equation (4)
are listed in Table 1.
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Figure 1. Reflective intensity-modulated fiber-optic pressure sensor: (a) structural configuration;
and (b) principle of pressure sensing.

Table 1. Structural parameters of the proposed fiber-optic pressure sensor.

Parameter Symbol Typical Value (µm)

Core radius of the transmitting fiber w0 31.25
Core radius of the receiving fiber wr 31.25

Center-to-center distance between two fiber cores s 150

Compared with the standard fiber, the fiber with microsphere structure has a higher numerical
aperture (NA) [35]. The relationship between the NA of the optical fiber and the light intensity is
simulated using the MATLAB software, as shown in Figure 2. The initial pressure cavity length of
the sensor is z0 (z0 > s + wr). In the effective working range [36], the sensor with higher numerical
aperture fibers has a larger slope (k) in the intensity modulation function (kn3 > kn2 > kn1 > kn0).
Thus, by using the fiber with a microspherical end, the pressure sensitivity of the sensor could be
effectively improved.
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Figure 2. Influence of the numerical aperture on the modulation characteristic curve.

3. Fabrication of the Sensor

A 4-inch double-side polished silicon wafer was used to manufacture the sensitive diaphragm.
The HBGS was made by a 4-inch high borosilicate glass. The thicknesses of the silicon and high borosilicate
glass were 300µm and 2 mm, respectively. The whole manufacturing process mainly included silicon sensitive
diaphragm processing, HBGS processing, sensor head assembly, and fiber integration. The fabrication
process is as follows: Firstly, a mask layer of the photoresist was coated on one side of each silicon
wafer. Secondly, the silicon wafer was subjected to standard lithographic processes using a pattern
with a diameter of 3 mm. After this, dry etching was applied to form a deep cylindrical cavity with
a diameter of 1.5 mm and a depth of 210 µm, as shown in Figure 3a–c. The diaphragm, with a final
thickness of approximately 90 µm, can enhance the pressure sensitivity. Subsequently, the photoresist
was repeatedly applied on the back surface, and a second photolithography process was operated
to form a back pattern with a diameter of 3 mm. Then, a gold film was formed on the silicon wafer
using the magnetron sputtering technique, and the rest photoresist was removed. The silicon sensitive
diaphragm was made by using the above steps, as shown in Figure 3d–g. Due to the high reflectivity
of Au, the optical coupling efficiency of the sensor can be improved.
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After this, a micro-machining method was used to fabricate a cylindrical deep cavity with a
diameter of 3 mm and a depth of 0.3 mm on one side of a high borosilicate glass. On the other side of
the high borosilicate glass, a convex platform with an outer diameter of 2 mm and a height of 1 mm
was processed. A 1mm-diameter hole was machined at the center of the entire structure. The HBGS
could be successfully processed, as shown in Figure 3h. The HBGS was then anodically bonded with
the silicon sensitive diaphragm. Then, the entire sensor head was assembled by using the above steps,
as shown Figure 3i. For the fiber integration, we inserted two multimode fibers (MMF125/62.5, YOFC,
Wuhan, China) with the microsphere end into a quartz tube. We then inserted the entire tube into
the sensor head vertically. The microsphere structure was made by laser heating at the end of the
fiber. The carbon dioxide laser fusion splicer (LZM-110, Fujikura, Ltd., Tokyo, Japan) was used in the
production process. The laser power was 175 bits (about 5.2 W), the laser heating time was 2 s, and the
heating was performed twice [37]. The sensor was assembled and sealed by using CO2 laser, which
was beneficial for improving the sensor performance and avoiding thermal mismatch between the
adhesive and the fiber-optic [38], as shown Figure 3j. The length of the initial pressure cavity is 190 µm.

The entire pressure sensor was 5.0 mm in length, 5.0 mm in width, and 1.3 mm in height, as shown
in Figure 4. Figure 4a shows the real image of the sensor. The microsphere end of the fiber was observed
under a microscope, as shown in Figure 4b,c. Figure 4d provides a sectional view of the double-hole
quartz casing with an outer diameter of approximately 1 mm and an aperture of approximately 126 µm.
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Figure 4. Sensor structure: (a) physical drawing of proposed sensor; (b) microscopic top view of the
microsphere end of optical fiber; (c) side view of the optical fiber; and (d) sectional view of the double-
hole quartz casing.

4. Experimental Results

The experimental setup of the sensor for pressure testing under the dynamic temperature is
shown in Figure 5, which includes the fiber sensing system and the temperature and pressure control
system. The fiber sensing system consisted of a LED light source (850 T, Wyoptics, Shanghai, China),
a fiber optics coupler (WLF 1 × 2 MM ratio 50:50, 850nm, HJGTEK, Shenzhen, China), a photodetector
(New Focus Model 2001, New Port, California, America), and an oscilloscope (TBS 1102, Tektronix,
America). The photodetector was set as Gain knob: 104, Gain multiplier: 3, and Response factor: 0.36.
The temperature and pressure control system includes a thermal chamber, a pressure vessel, a gas
cylinder, a temperature, and pressure controller.



Sensors 2020, 20, 2233 6 of 10

Sensors 2020, 20, x FOR PEER REVIEW 6 of 10 

 

 

Figure 5. Experimental setup of the sensor for pressure testing under the dynamic temperature. 

During the experiment, the sensor was placed in the thermal chamber. A thermocouple was 

placed near the sensor, the value of which was displayed on the temperature controller. The pressure 

controller can ensure a uniform distribution of pressure in the pressure vessel. First, at room 

temperature, we increased the pressure from approximately 0 to 1 MPa at 0.1 MPa steps to verify the 

voltage response. The pressure was kept for 5 min at each step, and the corresponding output voltage 

of the sensor was recorded. Figure 6 shows the fitting curves of the voltage versus pressure during 

the three pressurization experiments. A linear relationship between the voltage and pressure was 

observed. The pressure sensitivities of the three tests were 0.1391, 0.1390, and 0.1390 mV/kPa, 

respectively. For these three repeatable experiments, the repeatability and nonlinear errors are 

approximately 2.15 % and less than 2.51 %, respectively. 

. 

Figure 6. Output voltage versus pressure during three experiments. 

To test the temperature performance of the sensor, we monitored the pressure response of the 

sensor under 20 °C, 50 °C, 75 °C, 100 °C, 125 °C, and 150 °C, respectively. Figure 7 shows the response 

voltage under the different temperatures, and reveals that the response to the pressure at different 

temperatures is linear. The pressure sensitivities at temperatures of 20 °C, 50 °C, 75 °C, 100 °C, 125 

°C, and 150 °C, were 0.1387, 0.1409, 0.1431, 0.1452, 0.1460, and 0.1473 mV/kPa, respectively. It was 

seen that the temperature had a small effect on the sensitivity of the sensor, which may be caused by 

complex physical mechanisms such as the Young’s modulus of the sensitive diaphragm materials 

changed with the temperature. Although the temperature has a certain influence on the sensor, it still 

showed a good response to the pressure in a temperature environment and achieves good linearity. 

Figure 5. Experimental setup of the sensor for pressure testing under the dynamic temperature.

During the experiment, the sensor was placed in the thermal chamber. A thermocouple was placed
near the sensor, the value of which was displayed on the temperature controller. The pressure controller
can ensure a uniform distribution of pressure in the pressure vessel. First, at room temperature, we
increased the pressure from approximately 0 to 1 MPa at 0.1 MPa steps to verify the voltage response.
The pressure was kept for 5 min at each step, and the corresponding output voltage of the sensor
was recorded. Figure 6 shows the fitting curves of the voltage versus pressure during the three
pressurization experiments. A linear relationship between the voltage and pressure was observed.
The pressure sensitivities of the three tests were 0.1391, 0.1390, and 0.1390 mV/kPa, respectively.
For these three repeatable experiments, the repeatability and nonlinear errors are approximately 2.15 %
and less than 2.51 %, respectively.
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Figure 6. Output voltage versus pressure during three experiments.

To test the temperature performance of the sensor, we monitored the pressure response of the
sensor under 20 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, 125 ◦C, and 150 ◦C, respectively. Figure 7 shows the response
voltage under the different temperatures, and reveals that the response to the pressure at different
temperatures is linear. The pressure sensitivities at temperatures of 20 ◦C, 50 ◦C, 75 ◦C, 100 ◦C, 125 ◦C,
and 150 ◦C, were 0.1387, 0.1409, 0.1431, 0.1452, 0.1460, and 0.1473 mV/kPa, respectively. It was seen that
the temperature had a small effect on the sensitivity of the sensor, which may be caused by complex
physical mechanisms such as the Young’s modulus of the sensitive diaphragm materials changed with
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the temperature. Although the temperature has a certain influence on the sensor, it still showed a good
response to the pressure in a temperature environment and achieves good linearity. Figure 8 shows the
relationship between the initial sensor voltage with temperature. The experiment results show that
the temperature coefficient of the proposed sensor was 0.87 mV/◦C. When the temperature exceeded
150 ◦C at a pressure of 1 MPa, the welding part of the sensor was damaged, resulting in the pressure
cavity of the sensor not being sealed. Therefore, the sensor can operate at a higher temperature than
150 ◦C, when the welding process is optimized.
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To verify the dynamic response of the sensor, a dynamic pressure test system was established,
as shown in Figure 9. It consisted of a pressure control system, a sinusoidal pressure generator, a standard
piezoelectric sensor, a gas cylinder, a pressure vessel, and a fiber sensing system. Standard piezoelectric
sensors were used to monitor pressure changes and feed them back to the pressure control system.
During the dynamic experiment, the sensor head was placed in the pressure vessel. The pressure control
system controlled the magnitude and frequency of the pressure applied to the sensor. To verify the
pressure response of the sensor under dynamic conditions, experiments at 400 Hz, 780 Hz, and 1 kHz
were performed. Figure 10 shows the output of the sensor under sinusoidal pressure environments at
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room temperature. According to the experiment results, the sensor had a good dynamic response under
400 Hz, 780 Hz, and 1 kHz sinusoidal pressure environments.Sensors 2020, 20, x FOR PEER REVIEW 8 of 10 

 

 

Figure 9. Experimental setup of the dynamic pressure test. 

  
(a) (b) 

Figure 10. Output of the sensor: (a) waveform of voltage and (b) fast Fourier transform spectrum of 

the waveform. 

5. Conclusions 

We proposed and demonstrated a reflective intensity-modulated fiber-optic pressure sensor that 

can be applied under various pressures from 0 to 1 MPa, at room temperatures up to 150 °C. The 

sensor can also be applied in a dynamic pressure environment and monitor a high-frequency 

dynamic pressure signal in real time. We used an optical fiber with a microspherical end, which 

effectively improved the pressure sensitivity of the sensor. The whole sensor was integrated and 

sealed with a CO2 laser, which is beneficial for improving the sensor performance and avoiding 

thermal mismatch between the adhesive and the fiber-optic. Moreover, the sensor is fabricated by 

MEMS techniques, providing the possibility of the batch production.  

Author Contributions: Conceptualization, T.L. and J.X.; Investigation, J.L. and Q.R.; Methodology, P.J. and G.A.; 

Writing—original draft, N.Z. All authors have read and agree to the published version of the manuscript. 

Funding: This research was supported by the National Natural Science Foundation of China under Grant 

51935011, the Innovative Research Group Project of National Science Foundation of China under Grant 51821003, 

the Natural Science Foundation of Shanxi Province of China under Grant 201901D111160, and the Fund for 

Shanxi “1331 Project” Key Subject Construction.  

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 9. Experimental setup of the dynamic pressure test.

Sensors 2020, 20, x FOR PEER REVIEW 8 of 10 

 

 

Figure 9. Experimental setup of the dynamic pressure test. 

  
(a) (b) 

Figure 10. Output of the sensor: (a) waveform of voltage and (b) fast Fourier transform spectrum of 

the waveform. 

5. Conclusions 

We proposed and demonstrated a reflective intensity-modulated fiber-optic pressure sensor that 

can be applied under various pressures from 0 to 1 MPa, at room temperatures up to 150 °C. The 

sensor can also be applied in a dynamic pressure environment and monitor a high-frequency 

dynamic pressure signal in real time. We used an optical fiber with a microspherical end, which 

effectively improved the pressure sensitivity of the sensor. The whole sensor was integrated and 

sealed with a CO2 laser, which is beneficial for improving the sensor performance and avoiding 

thermal mismatch between the adhesive and the fiber-optic. Moreover, the sensor is fabricated by 

MEMS techniques, providing the possibility of the batch production.  

Author Contributions: Conceptualization, T.L. and J.X.; Investigation, J.L. and Q.R.; Methodology, P.J. and G.A.; 

Writing—original draft, N.Z. All authors have read and agree to the published version of the manuscript. 

Funding: This research was supported by the National Natural Science Foundation of China under Grant 

51935011, the Innovative Research Group Project of National Science Foundation of China under Grant 51821003, 

the Natural Science Foundation of Shanxi Province of China under Grant 201901D111160, and the Fund for 

Shanxi “1331 Project” Key Subject Construction.  

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 10. Output of the sensor: (a) waveform of voltage and (b) fast Fourier transform spectrum of
the waveform.

5. Conclusions

We proposed and demonstrated a reflective intensity-modulated fiber-optic pressure sensor that
can be applied under various pressures from 0 to 1 MPa, at room temperatures up to 150 ◦C. The sensor
can also be applied in a dynamic pressure environment and monitor a high-frequency dynamic pressure
signal in real time. We used an optical fiber with a microspherical end, which effectively improved
the pressure sensitivity of the sensor. The whole sensor was integrated and sealed with a CO2 laser,
which is beneficial for improving the sensor performance and avoiding thermal mismatch between the
adhesive and the fiber-optic. Moreover, the sensor is fabricated by MEMS techniques, providing the
possibility of the batch production.
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