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Abstract: It is essential to develop a simple and sensitive method to rapidly detect residual fungicides
in agricultural products to protect human health. So far, little studies have been reported on potential
application of gold nanospheres (AuNSps) as a surface plasmon resonance based sensor for in-situ
detection of residual fungicides. Therefore, in this study, we investigated the potential application of
AuNSps as a surface plasmon resonance based sensor for in-situ detection of fungicides. AuNSps
were successfully synthesized via a seed-mediated method with some modifications. Firstly, gold
nanoseeds were made during the reduction of chloroauric acid by trisodium citrate dihydrate
(TSC). Then, AuNSps were grown from the seeds by using HAuCl4, TSC and EDTA. AuNSps were
subsequently dropped on a glass substrate before covered by thiophanate methyl, a broad-spectrum
systemic fungicide. The AuNSps coated glass substrate was subsequently dried in the air for further
surface-enhanced Raman spectroscopy (SERS) measurements. Optical properties, shape and size of
AuNSps were confirmed by UV-vis spectroscopy, XRD, SEM-EDX and TEM. The results showed that
AuNSps were successfully synthesized with the size of 53 nm, and their resonance peak was located
at 560 nm. The Raman signal intensity of thiophanate methyl covered on AuNSps is higher than that
without AuNSps, indicating SERS effects of AuNSps deposited glass substrate.

Keywords: gold; nanosphere; SERS; fungicides; Raman

1. Introduction

The development of science and technologies has led to the introduction of modern analytical
methods with high sensitivity and accuracy, such as high performance liquid chromatography
(HPLC), fluorescence assay (FL), high performance liquid chromatography mass spectrometry/mass
spectrometry (HPLC–MS/MS), electrochemical assay (EC) and gas chromatography/mass spectrometry
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(GC/MS). However, these methods have some limitations such as complicated sample preparation
and analysis processes that require operators to be highly qualified, time-consuming operation, high
consumption of organic solvents and restricted on-site measurement. Since the discovery of Raman
spectroscopy took placed in early 1928, Raman spectroscopy has been thought to be a promising method
to overcome these disadvantages [1]. However, the application of Raman spectroscopy in analytical
field was not popular at that time due to its low sensitivity as a result of low intensity of Raman
scattered light as compared with the incident laser. In order to increase the intensity of Raman scattered
light, a high-intensity laser should be used [2]. However, the sensitivity of the method is not really
high until the study of surface-enhanced Raman spectroscopy (SERS) on the electrode silver anode of
DL Jeanmaire was published in 1977 [3]. SERS is thought to be the result of the enhancement of Raman
scattered light due to both physical and chemical factors [4]. The physical factor is the enhancement
of the electromagnetic field on the nanoparticle surface due to the surface plasmon resonance, while
the chemical factor is the electrical resonance and charge transfer between the adsorbent molecules
and the metal surface [5]. SERS can be observed on the surface of several of nanoparticles such as Au,
Ag, Pt, Cu and Pd [6–11]. Among them, gold nanoparticles with non-toxicity and high bioactivity
have gained much interest, and they present a wide range of applications in modern medical and
biological studies such as drug, DNA and antigens delivery; biosensorics, genomics, immunoanalysis,
detection of microorganisms and cancer cells and bioimaging [12]. It has been argued that the shape,
size and structure of gold nanoparticles determine their chemical and physical properties [13,14].
Therefore, shape-, size- and structure-controlled synthesis of gold nanoparticles is urgently important
and considerably challenging. To date, possible wet synthesis methods have been used to fabricate
gold nanoparticles of various controlled sizes, shapes and structures such as nanospheres, nanorods,
nanoshells, nanocages, nanostars, etc. [15].

Thiophanate methyl whose chemical structure is shown in Figure 1 is known as a member of
the benzimidazole group of fungicides [16]. It is a broad-spectrum systemic fungicide that has been
employed to control the pathogens recently. However according to the office of Environmental Health
Hazard Assessment (OEHHA), long exposure to residue from thiophanate methyl in agricultural
products may cause serious effects on human health [16]. Therefore, it is essential to develop a sensitive
on-site method to detect residual thiophanate methyl in agricultural products to prevent humans
from being exposed to thiophanate methyl [17]. The analysis of thiophanate methyl residues by Au
nanospheres (AuNSps)—supported Raman spectroscopy—has the potential to be an accurate portable
analytical method. So far, little studies have been reported on the potential application of AuNSps as a
surface plasmon resonance based sensor for in-situ detection of residual fungicides.

In this work, AuNSps were synthesized by a facile method using TSC as a reducing agent and
EDTA as a protective agent during the nucleation stage. The as-synthesized AuNSps were used as a
platform to investigate the SERS signal in thiophanate methyl fungicide analysis.
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2. Materials and Methods

2.1. Chemicals and Characterization

Tetrachloroauric (III) acid trihydrate (HAuCl4·3H2O, ≥99.5%) and ethylenediaminetetraacetic
acid (EDTA, ≥98.0%) were purchased from Merck (Darmstadt, Germany). Trisodium citrate dihydrate
(TSC, ≥99.0%) were purchased from Prolabo (Kennersburg, NJ, USA). Deionized (DI) water (>18 MW,
Millipore, Darmstadt, Germany) was used during the synthesis of AuNSps. A commercial product,
called TOPSIN M 70WP (containing 70% of thiophanate methyl), was purchased from Nippon Soda
Company, Ltd. All reagents were used without further purification.

The morphology of the as-synthesized samples was obtained by scanning electron microscopy
(Hitachi, Horiba S-4300) coupling with energy-dispersive X-ray (EDX) spectroscopy operated at 20 kV
of the incident electron beam energy. Transmission electron microscope (TEM) images were obtained
with a JEOL JEM-1400 (120 kV). X-ray diffractometer (XRD, Bruker D8 advance powder diffractometer
model) with Cu Kα radiation (λ = 1.54056 Å) operated at 40 kV and 30 mA with a scanning rate of
0.02◦ per step in the 2θ range of 10◦ ≤ 2θ ≤ 90◦ was carried out to characterize the crystal structure of
AuNSps. UV-vis spectroscopy (UV-Vis-NIR-V670, JASCO, Tokyo, Japan) was utilized to investigate
the optical properties of AuNSps. The Raman spectra of AuNSps samples were recorded on a LabRam
HR micro-Raman instrument with a 532 nm Ar+ ion laser at room temperature.

2.2. Synthesis of Au Nanoseeds and AuNSps

Au nanoseeds were synthesized by the Turkevich method [15] with some modifications. Firstly,
100 µL of 25 mM HAuCl4 was mixed with 10 mL of DI water, and the obtained solution was boiled at
100 ◦C. Under vigorous stirring 300 µL of 1% TSC was then added to the solution. The color of the
solution will change from colorless to reddish. After cooling at room temperature, the solution was
kept in dark for 30 min for seeding crystallization of Au nanoseeds.

For the synthesis of AuNSps, 50 µL of the Au nanoseed solution and 100 µL of 25 mM HAuCl4
were firstly added into 100 mL of DI water under vigorous stirring. Next, 20 µL of 1% TSC and 100 µL
of 0.1 M EDTA were added to the mixture. The solution was kept in the dark for 30 min for stabilization.
The whole procedure of AuNSps synthesis was illustrated in Figure 2.
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Figure 2. Fabrication process of gold nanospheres (AuNSps).

2.3. SERS Measurement

The Raman spectra of thiophanate methyl were recorded on an AuNSps coated glass substrate in
order to study the SERS effects. To prepare AuNSps coated glass substrate, the substrate was firstly
rinsed with a 3:1 (v/v) mixture of concentrated H2SO4 and 30% H2O2 in 15 min, subsequently washed
with DI water and dried in the air. Twenty microliters of AuNSps solution was gently dropped onto the
clean substrate homogeneously, and the substrate was then dried in the air. Next, Twenty microliters of
thiophanate methyl (in DI water) was gently dropped onto the AuNSps coated glass substrate, and the
substrate was subsequently dried in the air for further SERS measurements. For comparison, Raman
spectra of a clean substrate, AuNSps and thiophanate methyl solutions (10−4 M and 0.1 M) were also
recorded. The procedure of SERS measurement was illustrated in Scheme 1.
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Scheme 1. Surface-enhanced Raman spectroscopy (SERS) measurement procedure.

3. Results and Discussion

3.1. Synthesis of AuNSps

Optical properties of AuNSps and Au nanoseeds were studied through UV-Vis spectra. As shown
in Figure 3, the spectra of Au nanoseeds exhibited a characteristic peak at 521 nm, while the resonance
peak of AuNSps located at 560 nm [18]. The red-shift of surface plasmon resonance peak indicated the
crystal growth of Au nanoparticles from Au nanoseeds. It is widely accepted that the optical properties
of AuNSps are highly dependent on the nanoparticle diameter [19]. Smaller nanospheres primarily
absorb light and have absorption peaks near 520 nm, while larger spheres exhibit light scattering
and have significantly broaden and red-shifted absorption peaks. Larger spheres scatter more light
both because they have larger optical cross sections, and also because the ratio of scattering to total
extinction increases with size [20,21].
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Figure 3. UV-Vis spectra of Au nanoseeds and AuNSps.

The solution of Au nanoseeds consisted of clusters of Au nanosized particles with the average
diameter of 18.27 ± 0.08 nm (Figure 4a,b). Nanoseeds with the crystalline lattices of 0.231 nm,
corresponding to the (111) crystal plane of Au, is clearly observed in the HRTEM image (Figure 4a, the
inset) [22,23]. The TEM images of AuNSps revealed monodisperse spherical nanostructures with the
average diameter of 53.52 ± 0.36 nm (Figure 4c,d).
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HRTEM image of Au nanoseeds.

Figure 5a revealed XRD pattern of AuNSps with characteristic peaks of Au at 2θ = 38.1◦ (111),
44.3◦ (200), 64.5◦ (220) and 77.7◦ (311) [24]. No impurities were found in XRD spectra of AuNSp. The
EDX spectrum in Figure 5b represented that Au and Si were the major elements of AuNSps coated
glass substrate, indicating successful coating of the glass substrate with AuNSps.
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3.2. SERS Measurement

The Raman spectra of 0.1 M thiophanate methyl in Figure 6a showed the signals at 613 cm−1,
726 cm−1, 779 cm−1, 898 cm−1, 959 cm−1 and 1538 cm−1, which are ascribed to -N-C=S deformation,
N-H wagging of –(C=O)-NH-(C=S)-, C=S stretching, C-S stretching, C=S and C-N, respectively.
Moreover, other signals of =C-H deformation, N-C-N asymmetric stretching, C-O, C-O-C, C=C, C=O
and N-H were also observed at 1039 cm−1, 1154 cm−1, 1267 cm−1, 1298 cm−1, 1601 cm−1 and 1708
cm−1, respectively [25]. As shown in Figure 6d,e, the glass substrate or AuNSps itself did not give
any Raman signals of thiophanate methyl indicating thiophanate methyl-free surfaces. It should be
noted that even though in the presence of thiophanate methyl, those signals could not be observed
when the concentration of thiophanate methyl was as low as 10−4 M (Figure 6c), probably due to being
under the detection limit. Interestingly, at the same concentration of thiophanate methyl, most of
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the characteristic Raman peaks of thiophanate methyl were clearly observed after the deposition of
thiophanate methyl onto the AuNSps coated glass substrate (Figure 6b), indicating the SERS effect
of AuNSps. Therefore, this effect is useful for the detection at a low level of thiophanate methyl,
particularly under the detection limit of thiophanate methyl.
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To elucidate the sensitivity of the method, 20 µL of thiophanate methyl solutions with
concentrations ranging from 11 to 30 µM were deposited onto AuNSps coated glass substrates,
which serve as Raman probes. The corresponding Raman spectra of thiophanate methyl were collected
in Figure 7. It can be seen that the characteristic peaks of thiophanate methyl could be clearly identified
in all Raman spectra. Typically, the intensity of SERS signals increased with the increasing investigated
concentrations of thiophanate methyl. The limit of detection (LOD) was determined as low as 17 µM
at which the signal to noise (S/N) ratio for the peak 779 cm−1 dropped to 3. The limit of quantification
(LOQ), therefore, was estimated as 57 µM.
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The reproducibility of the measurement was also evaluated by collecting SERS spectra of 30 µM
thiophanate methyl at 10 random locations on the as-fabricated substrate, as shown in Figure 8. The
relative standard deviation (RSD) was found to be 4.8%, which indicates a good reproducibility for
routine SERS analysis.
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