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Abstract: Beamspace processing has become much attractive in recent radar and wireless
communication applications, since the advantages of complexity reduction and of performance
improvements in array signal processing. In this paper, we concentrate on the beamspace DOA
estimation of linear array via atomic norm minimization (ANM). The existed generalized linear
spectrum estimation based ANM approaches suffer from the high computational complexity for large
scale array, since their complexity depends upon the number of sensors. To deal with this problem, we
develop a low dimensional semidefinite programming (SDP) implementation of beamspace atomic
norm minimization (BS-ANM) approach for DFT beamspace based on the super resolution theory
on the semi-algebraic set. Then, a computational efficient iteration algorithm is proposed based on
alternating direction method of multipliers (ADMM) approach. We develop the covariance based
DOA estimation methods via BS-ANM and apply the BS-ANM based DOA estimation method to the
channel estimation problem for massive MIMO systems. Simulation results demonstrate that the
proposed methods exhibit the superior performance compared to the state-of-the-art counterparts.

Keywords: DOA estimation; atomic norm minimization; semidefinite programming; beamspace

1. Introduction

Direction-of-Arrive (DOA) estimation is an important topic in many applications, such as radar,
sonar, and wireless communication. To lower the hardware cost, reduce the computational burden
and improve the performance, the received signals on front-end sensors can be projected into lower
dimensional space by digital/analog structure, which is referred to as beamspace processing [1–3].
In the past decades, various classic DOA estimation methods have been applied to beamspace [4–7].

Inspired from the concept of compressed sensing, some discrete sparse representation approaches
are extended to the beamspace to improve the DOA estimation performance in low SNR and lack
of snapshots’ scenarios [8–10]. However, the discrete sparse recovery methods may suffer from the
off-grid sources problem, a.k.a. power leakage effect [11].

To deal with the problem, the super resolution methods have recently been proposed for gridless
compressed sensing, which is referred to as atomic norm minimization (ANM) [12]. By utilizing
the Toeplitz structure of the covariance matrix, ANM approaches are applied to DOA estimation of
linear/rectangular arrays [13–16].

For beamspace processing cases, the existed ANM methods are usually based on the generalized
line spectral estimation (GL) framework [17], which regards the beamspace DOA estimation problem
as the line spectral estimation problem with linear mapping constraints, which can be solved by the
conventional ANM approaches [11,18–20]. However, these methods focus on recovering the signal on
the sensors of the receiver, which may yield high computational burden (since high dimensional SDP
formulation) in the case of large number of sensors, e.g., millimeter-wave massive MIMO system for
5G, even though the dimension of the beamspace may be quite small.
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Like the extensive application for gridless super resolution methods with beamspace processing
in real-time scenarios, we try to propose the low complexity beamspace super resolution method that
is not yet reported in the literature.

We study the beamspace super resolution approaches for discrete Fourier transform (DFT)
beamspace via beamspace atomic norm minimization(BS-ANM) in this paper. Firstly, we define
the beamspace atomic norm and propose the low dimensional SDP implementations based on the
super resolution theory on the semi-algebraic set. Then, we develop the fast algorithm based on the
alternating direction method of multipliers (ADMM) method and show the computational complexity
analysis. Finally, we apply BS-ANM approaches to the covariance based DOA estimation problem and
the channel estimation in millimeter-wave massive MIMO system with lens antenna array. Simulation
results indicate that the proposed approaches exhibit the favorable performance and computational
cost, as compared to the state-of-the-art methods.

This paper is organized as follows: the signal model and conception of atomic norm are introduced
in Section 2. The low dimensional SDP implementation of BS-ANM is proposed in Section 3.
In Section 4, we present a fast algorithm based on ADMM for BS-ANM and provide the complexity
analysis in Section 5. In Section 6, the BS-ANM based DOA estimation and channel estimation methods
are developed and simulations are performed in Section 7. Section 8 concludes this paper.

Notations: (•)T denotes the transpose, (•)† denotes pseudo inverse of a matrix, and (•)H denotes
conjugate transpose of a matrix or vector. diag(x) denotes a diagonal matrix.‖•‖2 and ‖•‖F denote the
Euclidean l2 norm and the Frobinus norm. C,R and N represent the complex, real and nature number
set, respectively. M ≥ 0 denotes positive semidifinite matrix. E {•} is the expectation. deg(•) denotes
the degree of the polynomial. vec(•) and Tr(•) are the vectorization and the trace operator. inf {•}
and sup {•} denote the infimum and supremum of a set, respectively.

2. Signal Model and Atomic Norm

2.1. Signal Model

Considering the uniform linear array (ULA) of N sensors with the M(M < N) dimensional
fixed hardware structure beamformer, there are K far field narrowband scatters at angular directions
θ1, . . . , θK and the measurement vector on the sensors at time t can be written as

x(t) = As(t) + n(t), (1)

where s(t) = [s1, · · · , sK]
T ∈ CK×1 and n(t) ∈ CN×1 are the source and additional noise component

with Rs = E
{

s(t)sH(t)
}

and E
{

n(t)nH(t)
}

= σ2I(σ2 is the power of noise). The N × K array
manifold A is given by

A = [a(θ1), · · · , a(θK)], (2)

where the column vector of A is

a(θ) = [1, e−j 2πd
λ sin θ , · · · , e−j 2πNd

λ sin θ ]T (3)

with θk ∈ Ξ, Ξ = (−π/2, π/2], the interspace of elements d, and the wavelength λ.
Denote the DFT beamspace transform matrix as W ∈ CM×N , whose mth row is [4]

wm =
1
N

ejm (N−1)π
2N

[
1, e−jm π

N , · · · , e−jm (N−1)π
N

]
, (4)
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the beamspace received signals are modeled as

y(t) = Bs(t) + nb(t),

=
K

∑
k=1

skb(θk) + nb(t),
(5)

where B = WA = [b(θ1), · · · , b(θK)] and nb(t) = Wn(t) are the beamspace array manifold and noise,
respectively. From Equation (5), the covariance matrix in beamspace is

R = E
{

Y(t)YH(t)
}

= BRsBH + V
(6)

with V = σ2WWH. Inspired from [21], the covariance matrix in (5) can be represented in the Multiple
Measurement Vectors (MMV) model as

R = BH + V

=
K

∑
k=1

ckb(θk)hk + V
(7)

where H = RsBH, ckhk is the kth row vector of H and ‖hk‖2 = 1.

2.2. Atomic Norm in Beamspace

As shown in [12], the element-space signals of the ULA in Equation (1) are consisted of distinct
atoms over the atomic set

A =
{
[a(θk)]n = e−j 2πnd sin θ

λ |θk ∈ Ξ
}

, (8)

which can be represented by the atomic decomposition as

x =
K

∑
k=1

ska(θk), a(θ) ∈ A. (9)

The atomic decomposition with the smallest total variation over A yields the `1 atomic norm as

‖x‖A = inf

{
K

∑
k=1
|sk|
∣∣∣∣x =

K

∑
k=1

ska(θk), a(θ) ∈ A
}

. (10)

Followed by generalized line spectral estimation framework in [17], the beamspace signal in
Equation (5) can be retrieved by the following atomic norm minimization (ANM) problem:

min
x
‖x‖A

s.t. y = Wx,
(11)

if the locations of sources are separated sufficiently. Followed by the Vandermonde decomposition
theorem, the SDP implementation of Equation (11) can written as [12]

‖x‖T = min
Q,w,z

1
2N

Tr(S(Q)) +
1
2

w

s.t.

[
S(Q) x

xH w

]
≥ 0,

y = Wx

(12)
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where ‖x‖T = ‖x‖A and S(Q) is a Toeplitz matrix defined by Q.
It is noted that the method in Equation (11) can be applied to arbitrary beamspace design; however,

it may result in high computational burden when the number of sensors is large, due to the fact that the
computational complexity of SDP based implementation to Equation (12) depends on the dimension
of x [22].

To develop the low complexity super resolution approach for the signal in beamspace, in this
paper, we focus on the beamspace atomic norm

‖y‖B = inf

{
K

∑
k=1
|s′k|

∣∣∣∣y =
K

∑
k=1

s′kb′(θk), b′(θ) ∈ B
}

(13)

directly, with
B =

{
b′(θ)|b′(θ) = Wa(θ)/ ‖Wa(θ)‖F , θk ∈ Ξ

}
. (14)

We will introduce an approximate low dimensional SDP implementation of the beamspace atomic
norm minimization (BS-ANM) problem in Equation (13) for DFT beamspace design in the next section.

3. Low Dimensional Sdp Implementation for Bs-Anm

The generalized line spectral estimation based methods rely on the Vandermonde decomposition
theorem. However, the beamspace array manifolds are not Vandermonde, which implies the major
difficulty of realizing that the BS-ANM approach is to formulate the solvable convex optimization
problem without the Vandermonde decomposition theorem. In this section, we propose an
approximate low dimensional SDP implementation to the BS-ANM problem based on the super
resolution theory on the semi-algebraic set [23].

We first introduce the dual problem of Equation (13) with Lagrangian analysis,

max
Ω

Re
{

Tr
[
yHΩ

]}
s.t. ‖Ω‖∗B ≤ 1,

(15)

which can retrieve the atomic decomposition of the ground truth if there exists the polynomial
q(θ) = b′H(θ)Ω satisfying the following dual certificate:{

q(θk) = 1, ∀k = 1, 2, . . . , K

‖q(θ)‖2 < 1, ∀θ 6= θk
(16)

where ‖•‖∗B is the dual norm corresponding to ‖•‖B that

‖Ω‖∗B = sup
‖G‖B≤1

Re
{

Tr
[
GHΩ

]}
= sup

θ∈Ξ,‖ρ‖2=1
Re
{

Tr
[
ΩHb′(θ)ρ

]}
= sup

θ∈Ξ,‖ρ‖2=1

∣∣∣Tr
[
ρΩHb′(θ)

]∣∣∣
= sup

θ∈Ξ

∥∥∥ΩHb′(θ)
∥∥∥

2
.

(17)

Letting z = e−j 2πnd sin θ
λ , we have

‖Ω‖∗B ≤ 1

⇔F(z) = 1− b′H(θ)ΩHΩb′(θ) ≥ 0,
(18)
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i.e., F(z) is a nonnegative trigonometric polynomial. In addition, F(z) is also a polynomial of b, which
can be denoted as f (b), where b denotes b(θ) in Equation (5).

To insight the property of the polynomial f (b), we introduce the following theorems:

Theorem 1. Given a bounded semi-algebraic set

D(g) =
{

b ∈ RM
∣∣∣ gv(b) ≥ 0, v = 1, 2, · · · , V

}
, (19)

if there exists the nonnegative polynomial f (b) ≥ 0 for any b ∈ D(g), we have

f (b) = ∑
α∈{0,1}V

gα1
1 . . . gαV

V sα, (20)

with gv(b) ∈ R[b] and sα ∈ ∑R[b]2, where R[b] and ∑R[b]2 denote the set of real polynomials and real sum
of squares polynomials on b, respectively.

Proof of Theorem 1. Theorem 1 can be found in [24] as Theorem 4.1 (See also Corollary 3 in [25]), thus
we omit the proof here.

Theorem 2. The beamspace array manifold B in Equation (14) with the DFT beamspace in Equation (4) is a
semi-algebraic set as D(g) in Equation (19).

Proof of Theorem 2. Followed by the invariant relationship between bm and bm+1 in [4] and the
property of trigonometric functions, where bm denotes the mth element of b(θ), we have

vm(bm, bm+1) sin(
u
2
) = pm(bm, bm+1) cos(

u
2
),

sin2(
u
2
) + cos2(

u
2
) = 1,

sin(u) = 2sin(
u
2
) cos(

u
2
),

cos(u) = 2 cos2(
u
2
)− 1

(21)

with u = 2πnd
λ sin θ and

vm(bm, bm+1) = cos(
mπ

N
)bm + cos(

(m + 1)π
N

)bm+1,

pm(bm, bm+1) = sin(
mπ

N
)bm + sin(

(m + 1)π
N

)bm+1.
(22)

Solving the polynomial system in Equation (21) implies that cos(u) and sin(u) can be determined
by the polynomial of {bm, bm+1} uniquely, i.e., cos(u) = Lm(bm, bm+1) and sin(u) = Jm(bm, bm+1).
Accordingly, we can represent bm as a polynomial of b such that bm = Hm(b).

Combining the constraints mentioned above together
L1(b1, b2) = L2(b2, b3) = · · · = LM−1(bM−1, bM),

J1(b1, b2) = J2(b2, b3) = · · · = JM(bM−1, bM),

L2
m(bm, bm+1) + J2

m(bm, bm+1) = 1,

Hm(b) = bm, m = 1, · · · , M,

(23)

it implies the solution of the polynomials system Equation (23) is the element of the beamspace atomic
set B, i.e., the beamspace array manifold B is a semi-algebraic set as D(g), where gv(b) is constructed
from Equation (23) and gv(b) ≡ 0 for b ∈ B.

By utilizing Theorem 1 and Theorem 2, we present the following theorem.
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Theorem 3. Given f (b) to be a polynomial of b, if f (b) ≥ 0 on the domain B with the DFT beamspace in
Equation (4), f (b) is a sum-of-squares polynomial on b.

Proof of Theorem 3. Given a beamspace steering vector b ∈ B, we have |bm| ≤ 1 followed by [4],
which implies

χ(b) = M−
M

∑
m=0

b2
m ≥ 0, b ∈ B, (24)

and thusD(g) is bounded, whereD(g) is the semi-algebraic set asD(g) in Equation (19) corresponding
to B, followed by Theorem 2.

Using Theorem 1 and the fact that gv(b) ≡ 0 for b ∈ B , we can say that any f (b) ≥ 0 for
b ∈ D(g) satisfies

f (b) = ∑
α∈{0,1}V

gα1
1 . . . gαV

V sα,

= s0, sα ∈∑R[b]2,
(25)

where s0 denotes the sα with {αv}v=1,··· ,V = 0, i.e., f (b) is sum-of-squares polynomial on b.

We note that the result in Equation (25) is with the sum-of-squares relaxation of the polynomial
in [26]. If deg( f (b)) = deg(s0), we can have the SDP implementation to Equation (15) followed
by [24] as

min
P,Ω
− Re

{
Tr
[
yHΩ

]}
s.t. Tr(ΘnWHPW) = Tr(ΘnWHW)

n ∈ H[
P −ΩH

−Ω I

]
≥ 0

(26)

where Θn ∈ RN×N is the zeros matrix except ones on the nth diagonal, H is a half space of [−(N −
1), N − 1]. The derivation of Equation (26) can be found in Appendix A.

Therefore, Equation (13) can be implemented by the following SDP problem with the standard
Lagrangian analysis if strong duality holds

min
Q,M

1
2

Tr(WS(Q)WH) +
1
2

Tr(M)

s.t.

[
WS(Q)WH y

yH M

]
≥ 0,

(27)

where S(Q) is a Hermitian Toeplitz matrix with the first row vector Q. The derivation of Equation (27)
can be found in Appendix B.

Regarding the Theorem 3 and its resulting SDP implementations of BS-ANM problem in
Equations (26)–(27), we remark as follows:

Remark 1. It is well known that the positive trigonometric polynomial is sum-of-squares [24], i.e., f (b) ∈
∑R[z]2, which formulates the mathematical foundation of conventional ANM approaches, such as [12,17].
In Theorem 3, we further reveal that the positive polynomial f (b) ∈ ∑R[b]2 for the DFT beamspace manifold.
Based on this theorem, we develop the lower dimensional SDP implementation in Equations (26) and (27), which
is our main contribution.

Remark 2. Compared with the conventional one in Equation (12), the proposed SDP implementation in
Equation (27) is with lower dimensional SDP constraints in the beamspace processing scenarios (N > M),
which results in the low computational complexity as shown in Section 5.
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Remark 3. The SDP formulation in Equation (26) is based on the sum-of-squares relaxation [26], and thus is
an approximate algorithm of Equation (15). It can be regarded as the optimal polynomial designing to regression
the dual polynomial in Equation (16) under the polynomial order constraint as shown in [27].

Remark 4. Our work is related with the ANM approaches on the semi-algebraic set [22,23]. In particular,
we formulate the beamspace array manifold as the boundary of a semi-algebraic set, which is obviously a
semi-algebraic set either, and this results in the low dimensional SDP implementation.

4. BS-ANM via ADMM

Due to the SDP based methods with the high computational burden, we propose a fast
implementation of BS-ANM approach via ADMM.

Let Λ ≥ 0 and V ≥ 0 be the Lagrangian multipliers of the constraint of Equation (27),
the Lagrangian function of Equation (27) is

L(Q, M, Λ) = Tr(M) +

〈
V−

[
WS(Q)WH y

yH M

]
︸ ︷︷ ︸

T

, Λ

〉

+
ρ

2

∥∥∥∥∥V−
[

WS(Q)WH y
yH M

]∥∥∥∥∥
2

F

+ Tr(WS(Q)WH)

(28)

where Λ =

[
Λ0 Ω

ΩH Λ1

]
, V =

[
V0 Γ

ΓH V1

]
and the blocks in Λ and V match the partition of the blocks

in T. Then, the partial derivatives of L(Q, M, Λ) with respect to Q and M are calculated as follows:

∂L
∂M

= I−Λ1 − ρ(V1 −M),

∂L
∂Q

= e1 − E(Λ0, W)− ρ

2
E(V0, W) +

ρ

2
F(W)

[
Qr

Qi

]
,

(29)

where Qr and Qi denote the real and imaginary part of Q, e1 is the vector with zeros except the first
element, I is the unity matrix. E(V0, W) ∈ CN×1 is a vector function of V0 and W, whose nth element
is [E(V0, W)]n = Tr(ΘnWHV0W) and E(Λ0, W) is defined similarly. F(W) = [Fr(W) − jFi(W)] is
a matrix function of W, where the element of Fr(W) ∈ CN×N on mth row and nth column can be
described as

[Fr(W)]m,n = Tr(WΘnWHΠm)

[Fi(W)]m,n = Tr(WΘnWHΥm)
(30)

where

Πm =

{
WΘmWH + WΘ−mWH, m 6= 0

WWH, m = 0,

Υm =

{
−WΘmWH + WΘ−mWH, m 6= 0

WWH, m = 0.

(31)

Therefore, we can give the updates steps for the alternating optimization of the ADMM. Given
the results of lth iteration Ql , Λl

0, Λl
1, Vl

1, Vl
0, the updates rules can be described as

Ml+1 =
1
ρ

Λl
1 + Vl

1 −
1
ρ

I (32)

[
Ql+1

r
Ql+1

i

]
=

2
ρ
F†(W)

[
E(Λl

0, W) +
ρ

2
E(Vl

0, W)− e1

]
(33)

Λl+1 = Λl + ρ(Vl+1 − Tl+1) (34)
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with

Tl+1 =

[
WS(Ql+1)WH y

yH Ml+1

]
(35)

Vl+1 =
[
Tl+1 − ρΛl

]
+

. (36)

In Equation (33), [•]+ denotes the orthogonal projection on the positive semidefinite matrices,
which is defined as

Vl+1 = UlΣ+UlH (37)

where Tl+1− ρΛl = UlΣUlH
is the eigenvalue decomposition and Σ+ is Σ with all negative eigenvalue

being zeros.
Summarizing above, we completed the iterations steps of ADMM algorithm for the BS-ANM

problem in Table 1. The iteration will stop until converging or achieving the iteration number limits.

Table 1. The ADMM based BS-ANM algorithm.

Initialize: Q0 = 0, M0 = 0, Λ0 = 0, V0 = 0, l = 0
Input: y; Output: Vo

Iteration:
While (the stop condition is not satisfied) do:
1: Update Ml+1 and Ql+1 using Equations (32) and (33), respectively.
2: Update Tl+1 using Equation (35).
3: Update Vl+1 using Equation (36).
4: Update Λl+1 using Equation (34).
5: l = l + 1;
end
Output: Vo = Vl

5. Complexity Analysis

In this section, we provide the complexity analysis to the implementations of the ANM based
methods in beamspace, such as the algorithms in Equations (12) and (27), Table 1 and [28].

5.1. Complexity of SDP Implementations

It is shown in [22] that a primal-dual path following method needs C(ε) = −O(1) ln(ε)S flops to
solve the SDP problem with accuracy ε, where

S =

{
1 +

I

∑
i=1

βi

} 1
2
{

γ3 + γ2
I

∑
i=1

β2
i + γ

I

∑
i=1

β3
i

}
(38)

and the SDP problem is with γ independent real variables and I real linear matrix inequalities (LMI)
with the ith LMI size of β× β.

Firstly, we analyze the GL based SDP implementation in Equation (12). Here, we have γ =

4N − 2M, I = 1 and β1 = 2(N + 1), and thus S = O(N4.5) for Equation (12), followed by [22].
For the SDP implementation of BS-ANM approach in Equation (27), there are N − 1 complex

variables, two real variables, and a (M + 1)× (M + 1) SDP constraint, thus we have γ = 2N, I = 1
and β1 = 2(M + 1), which gives

S =
√

2M + 3
{

8N3 + 16N2(M + 1) + 16N(M + 1)3
}

. (39)

Accordingly, for N > M, the computational complexity of Equation (27) is O(NM3.5), compared
with the computational complexity of S = O(N4.5) for the GL based method.
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5.2. Complexity of ADMM Based Methods

The ADMM based method for generalized line spectral estimation problem has been proposed
in [28]. As shown in [28], the step with highest computational burden of the ADMM methods is
the projection onto the semidefinite cone as Equation (34), and thus the ADMM based method
for GL problem is with the complexity of O(N3), since the eigenvalue decomposition requires
O(N3) operations.

Similarly, the algorithm proposed in Section 4 is with a semidefinite cone projection operator of
M×M matrix, and the complexity of the proposed ADMM method is O(M3) accordingly. It is noted
that the complexity of the MUSIC [29] is O(M3), although the proposed ADMM method has a higher
computational cost than the MUSCI method since the iterations.

Therefore, the proposed methods are significantly more computationally efficient than GL based
ones, when N > M. The complexity gain of the proposed methods is O(M

N )3.5 for SDP implementation
and O(M

N )3 for ADMM implementation, respectively.

6. DOA Estimation via BS-ANM

Based on the BS-ANM approaches proposed in Sections 3 and 4, we develop the covariance matrix
based DOA estimation algorithm in free space and the channel estimation method for massive MIMO
system with lens antennas.

6.1. DOA Estimation with Covariance Matrix

Rewriting the MMV model in Equation (7) that R =
K
∑

k=1
ckb(θk)hk, we define the beamspace

atomic set as
B′ :=

{
b′(θ)h

∣∣b′(θ) = Wa(θ)/ ‖Wa(θ)‖F , θ ∈ Ξ, ‖h‖2 = 1
}

. (40)

Then, the beamspace atomic `1 norm of the covariance matrix R can be defined as

‖R‖B′= inf

{
K

∑
k=1

ck

∣∣∣∣∣R =
K

∑
k=1

ckb′(θk)hk.

}
. (41)

Followed by Equation (27), the SDP implementation of Equation (41) can be written as

min
Q,M

1
2

Tr(WS(Q)WH) +
1
2

Tr(M)

s.t.

[
WS(Q)WH R

RH M

]
≥ 0.

(42)

In practice DOA estimation applications, we usually estimate the noisy covariance matrix as

R̂ =
1
J

J

∑
t=1

Y(t)YH(t),

= BRsBH + η,

(43)

where η is the outlier term. Consequently, the BS-ANM approach can be applied to the noisy case via
regularization:

min
Q,M,R

1
2

Tr(WS(Q)WH) +
1
2

Tr(M)

s.t.

[
WS(Q)WH R

RH M

]
≥ 0,

∥∥R̂− R
∥∥2

2 ≤ ε2

(44)
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where ε can be set as ε = Mσ2, followed by [30]. Here, we estimate σ with the square root of the smallest
eigenvalue of R̂. Then, the DOAs can be obtained by employing Root-MUSIC [31] to WS(Q?)WH,
where Q? is the solution of Equation (44).

Summarizing above, we list the steps of the DOA estimation algorithm via the BS-ANM approach
in Table 2.

Table 2. DOA estimation algorithm via BS-ANM.

Inpute: Y(t), K
Output:

{
θ̂k
}

k=1,2,··· ,K

1: Compute the covariance matrix R̂ as in Equation (43).
2: Compute the smallest of eigenvalue of R̂ to obtain ε.
3: Solve Equation (44) to obtain WS(Q?)WH.
4: Apply Root-MUSIC to WS(Q?)WH and estimate

{
θ̂k
}

k=1,2,··· ,K .

To apply the ADMM approach to DOA estimation, we propose a subspace based method, inspired
from [32]. Consider the covariance matrix in Equation (43)

R̂ = UsΣsUH
s + σ2UnUH

n , (45)

where Us and Un are the signal and noise subspace, respectively, which is obtained by eigenvalue
decomposition. Let ỹ = UsU†

s be substituted into Equations (32), (33), and (34) to replace y; the
proposed ADMM method can be applied to DOA estimation in noisy environments. We list the
algorithm in Table 3.

Table 3. The DOA estimation algorithm via ADMM.

Input: Y(t), K
Output:

{
θ̂k
}

k=1,2,··· ,K

1: Compute the covariance matrix R̂ as in Equation (43).
2: Compute the eigenvalue decomposition of R̂ and obtain Us as the eigenvectors
corresponding to the large eigenvalues.
3: Let y = UsU†

s and compute Vo by the algorithm in Table 1.
4: Apply Root-MUSIC to Vo to estimate

{
θ̂k
}

k=1,2,··· ,K .

6.2. Channel Estimation with Lens Antenna Array

In the millimeter-wave massive MIMO system, the lens antenna arrays with the DFT beamformer
are used for the hardware cost and power reduction [9,10]. In this subsection, we apply the BS-ANM
approach to the channel estimation at the base station (BS) in such scenario.

Considering a narrowband millimeter-wave massive MIMO system with N antennas ULA at base
station and a single antenna mobile phone, the uplink channel can be expressed as [11]

H(t) =
K

∑
k=1

gk(t)a(θk), (46)

where a(θ) is the steering vector of ULA at BS in Equation (3) and gk(t) denotes the channel gain for
the kth propagation path at time block t.

As shown in [9], given a lens antenna array with the M channel DFT beamformer, the received
signal after normalizing the known pilot sequence can be given by

y(t) = Bg(t) + nb(t) (47)
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where g(t) = [g1(t), · · · , gK(t)]T, B is the beamspace array manifold in Equation (5), then the channel
estimation can be regarded as the sparse representation problem with the MMV model.

Thus, the estimated angle of the scatters
{

θ̂k
}

can be obtained by the algorithm presented in
Section 6.1 and the path gain {gk(t)} can be given by

ĝ(t) = min
g
‖y(t)− Bg(t)‖2 (48)

Finally, we have the estimated channel state information (CSI) as

Ĥ(t) =
K

∑
k=1

ĝk(t)a(θ̂k). (49)

The steps of the BS-ANM based channel estimation algorithm for the lens antenna array are
presented in Table 4.

Table 4. Channel estimation algorithm via BS-ANM.

Input: y(t)
Output: Ĥ(t)

1: Compute the covariance matrix R̂ with y(t) as in Equation (43).
2: Solve Equation (44) to obtain WS(Q?)WH.
3: Compute the eigenvalue of WS(Q?)WH as γ1 ≥ γ2 ≥ · · · ≥ γM,
and estimate the number of scatters by K = min[η, sup {k : γk ≥ 0.01γ1}] .
4: Apply Root-MUSIC to Vo to estimate

{
θ̂k
}

k=1,2,··· ,K .
5: Estimate the path gain ĝ(t) using Equation (48).
6: Estimate Ĥ(t) by Equation (49).

7. Simulations

In this section, we evaluate the performance of the proposed methods through simulations. Here,
the proposed SDP and ADMM based methods are referred to as BS-ANM and BS-ADMM, respectively.

Firstly, we compare the resolution capability of the BS-ANM and the generalized line spectral
estimation based ANM method (GL-ANM). Consequently, we demonstrate the computational
complexity and the DOA estimation performance comparison of the proposed the BS-ANM and
BS-ADMM methods with the conventional ANM and subspace based methods, such as Beamspace
MUSIC in [29], SPA in [13], and GL-ANM in [17]. As a performance metric of DOA estimation accuracy,
the Cramer–Rao bound (CRB) derived in [33] is also presented in simulations. In Sections 7.1–7.3,
simulations perform the DOA estimation in free space, where the signal model is followed from
Equation (5). In Section 7.4, we show the performance of the proposed methods for the channel
estimation problem in the massive MIMO system as shown in Figure 1.

Figure 1. The architecture of the massive MIMO system with lens antenna array.
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In simulations of DOA estimation, the root mean square error (RMSE) is utilized to evaluate the
performance of algorithms as

RMSE=

√√√√ 1
TK

K

∑
i=1

T

∑
j=1

(
_

θ ij − θi)2 (50)

where
_

θ ij and θi denote the estimated and the true DOA of the ith target at jth trial, the number
of trials is T and K is the number of sources. Monte Carlo simulations are are performed
with T = 200 to compute RMSE using Intel i7-8700K CPU PC (Santa Clara, CA, USA). All the
simulations are implemented by Matlab2017b (Natick, MA, USA). Our code is publicly available at
github.com/panda-1982/BS-ANM.

7.1. Comparison of Resolution and Complexity

Consider a ULA with N = 22 elements and M = 10 DFT beamformer, d = λ/2, there are two
sources at θ = −20◦ and θ = −20 + δ◦. The RMSE of the BS-ANM method and GL-ANM method in a
noiseless case with 100 snapshots are shown in Figure 2 versus angle separation. It can be seen that the
BS-ANM method performs similar resolution capacity with the GL-ANM method.

The computing time of GL-ANM, BS-ANM, BS-ADMM, SPA, and MUSIC methods are presented
in Figure 3. In Figure 3a, the dimension of beamspace is fixed as M = 10, and we compare the CPU
runtime of evaluated methods versus the number of sensors N. In Figure 3b, the number of sensors
is set as N = 64 and the CPU runtime of evaluated methods is compared versus the dimension of
beamspace M. In simulations, the GL-ANM, BS-ANM, and SPA methods are implemented by the CVX
software package [34], and the BS-ADMM is implemented in Matlab with the "codegen" feature. As
shown from the results, the runtime of GL-ANM is significantly higher than BS-ANM and BS-ADMM,
especially when the number of sensors N is large.

0 0.5 1 1.5 2
 (°)

10-10

10-8

10-6

10-4

10-2

100

R
M

S
E

 (
°)

GL-ANM

BS-ANM

Figure 2. RMSE versus angle separation δ for the GL-ANM and BS-ANM methods.
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Figure 3. (a) Runtime versus the number of sensors N; (b) Runtime versus the dimension of the
beamspace M.

7.2. Performance for Uncorrelated Sources

In this subsection, the proposed BS-ANM based methods are evaluated with some baselines in
the presence of uncorrelated sources.

Supposing that the array configuration is the same as the setting in Section 7.1, there are two
independent sources at θ = −10◦ and θ = 5◦ impinging onto the array and 200 snapshots are collected
in each trial. Figure 4 shows the RMSE of DOA estimation of the evaluated algorithms when SNR
varies from −15 to 10 dB. It can be seen that the proposed BS-ANM and BS-ADMM methods have
almost the identical RMSE to GL-ANM method and perform better than the other competitors. We
also note that the performance of MUSIC method degrades significantly compared with the sparsity
based methods when SNR is lower than −8 dB.

-15 -10 -5 0 5 10
SNR (dB)

10-2

10-1

100

101

R
M

S
E

 (
°)

MUSIC
SPA
GL-ANM
BS-ANM
BS-ADMM
CRB

Figure 4. RMSE comparison for uncorrelated sources at θ = 5◦ and θ = −10◦, J = 200 when SNR varies
from −15 to 10 dB.

When the SNR is fixed at SNR = −10 dB, Figure 5 plots the RMSE of DOA estimation of the
evaluated algorithms versus a different number of snapshots. The result shows that the GL-ANM
method performs the best among the algorithms, and the BS-ANM method has a similar performance to
the GL-ANM method. When the number of snapshot is not too low, i.e., larger than 100, the BS-ADMM



Sensors 2020, 20, 2222 14 of 19

method also shows the satisfying DOA estimation accuracy. In addition, it is shown that the MUSIC
method suffers from the lack of snapshots more seriously than the sparsity based methods.

In Figure 6, we demonstrate the DOA estimation performance versus the number of sources.
Considering the ULA with N = 22 elements and M = 8 DFT beamformer, there are K uncorrelated
sources at [−30◦,−24◦, · · · , (6K− 36)◦] and J = 100 snapshots are used for DOA estimation. The SNR
is fixed at 0 dB. We can see from the simulation results that the proposed BS-ANM and BS-ADMM
methods are robust to the multiple sources’ scenarios.

101 102 103

Snapshots

10-1

100

101

R
M

S
E

 (
°)

MUSIC
SPA
GL-ANM
BS-ANM
BS-ADMM
CRB

Figure 5. RMSE comparison for uncorrelated sources at θ = 5◦ and θ = −10◦, SNR = −10 dB when the
number of snapshots varies from 10 to 2000.

2 3 4 5 6

K

0.05

0.1

0.15

0.2
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M
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 (
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BS-ANM
BS-ADMM
CRB

Figure 6. RMSE comparison for uncorrelated sources at [−30◦,−24◦, · · · , (6K− 36)◦], J = 100 and
SNR = 0 dB when the number of sources varies from 2 to 6.

7.3. Performance for Correlated Sources

Next, we study the effect of correlated sources on the evaluated algorithms. Supposing that the
array configuration and the source location are set as in Figure 4, the signal sequences consisted of
200 snapshots in each trial with the correlation coefficient of ζ = 0.5. We present the RMSE of the
evaluated algorithms versus SNR in Figure 7. As we can see from Figure 7, GL-ANM, BS-ANM, and
BS-ADMM methods have almost the same performance, which is very close to CRB when SNR is
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higher than −10 dB. In addition, the SPA and MUSIC methods are suffered from the correlated sources
more seriously than the ANM based ones, especially in low SNR.

-15 -10 -5 0 5 10
SNR (dB)

10-2

10-1

100

101

R
M

S
E

 (
°)

MUSIC
SPA
GL-ANM
BS-ANM
BS-ADMM
CRB

Figure 7. RMSE comparison for correlated sources at θ = 5◦ and θ = −10◦, J = 200 when SNR varies
from −15 to 10 dB, ζ = 0.5.

To evaluate the effect of the number of snapshots in a correlated sources’ scenario, we set
SNR = 0 dB and the correlation coefficient of ζ = 0.7, and the RMSE of the evaluated algorithms
versus the number of snapshots is demonstrated in Figure 8. The simulation results show that the
proposed BS-ANM and BS-ADMM methods provide the significant robustness against the correlation
of the sources compared with SPA and MUSIC methods and can achieve satisfying DOA estimation
performance close to CRB even with a low number of snapshots.

101 102 103
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10-1

100

101

R
M
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 (
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GL-ANM
BS-ANM
BS-ADMM
CRB

Figure 8. RMSE comparison for correlated sources at θ = 5◦ and θ = −10◦, SNR = 0 dB when the
number of snapshots varies from 10 to 2000, ζ = 0.7.

7.4. Performance for Channel Estimation

We verify the channel estimation method proposed in Section 6.2 with lens antenna array for
massive MIMO system as shown in Figure 1.

Suppose the N = 64 ULA with M = 16 dimensions DFT beamspace as the receiver antennas array
and the single antenna transmitter consist of the MIMO system, there are K = 6 random distributed



Sensors 2020, 20, 2222 16 of 19

scatters in the main-lobe region of the receiver array whose locations are satisfying uniform distribution,
and the path gains {gk(t)} are assumed as independent identical Gaussian distribution. The channel
estimation is carried out with J = 10 snapshots and η = 9 in each trail. The 200 Monte Carlo trials are
performed in the simulation. The normalized mean squared error (NMSE) of the CSI estimation

NMSE=
1
L

L

∑
l=1

∥∥Ĥl(t)−H(t)
∥∥2

F

‖H(t)‖2
F

(51)

is utilized to evaluate the performance of the channel estimation methods, where Ĥl(t) and H(t) are
the estimated and ground truth CSI, respectively.

The NMSE of the orthogonal matching pursuit (OMP) based channel estimation method in [8],
the GL based channel estimation method in [20] and the proposed method in Section 6.2 versus SNR is
shown in Figure 9. The simulation results indicate that the proposed method shows the significant
performance improvement over the OMP based method and has almost the same performance as the
GL based method.

-5 0 5 10 15 20

SNR (dB)

10-4

10-3

10-2

10-1

N
M

S
E

OMP
BS-ANM
GL-ANM

Figure 9. NMSE comparison of different channel estimation methods when SNR varies from −5 to 20 dB.

8. Conclusions

In this paper, we study the low complexity implementation of the beamspace atomic norm
minimization for DOA estimation. We propose the beamspace atomic norm and its low dimensional
SDP implementation for DFT beamspace. By utilizing this approach, the covariance based BS-ANM
DOA estimation methods and BS-ANM based channel estimation method for a massive MIMO
system with a lens antenna array are developed. The complexity analysis and simulations
indicate that the proposed methods have almost the same performance and significantly lower
computational complexity than the generalized line spectral estimation based ANM methods.
In addition, the proposed methods demonstrate the performance improvement compared to some
state-of-the-art counterparts.
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Appendix A. Derivation of Equation (26)

Followed by s0 ∈ ∑R[b]2 and deg( f (b)) = deg(s0), we have a positive semidefinite matrix
Σ ≥ 0 that

‖Ω‖∗B ≤ 1⇔ 1− b′H(θ)ΩΩHb′(θ) ≥ 0

⇔ bH(θ)b(θ)− bH(θ)ΩHΩb(θ) ≥ 0,

⇔ aH(θ)WHWa(θ)− aH(θ)WHΩHΩWa(θ) = aH(θ)WHΣWa(θ).

(A1)

Let P = Σ + ΩHΩ, according to the Gram matrix representation of positive polynomials in [24],
Equation (A1) gives

aH(θ)WHPWa(θ) = Tr(a(θ)aH(θ)WHPW)

= ∑
n

[
ΘnWHP∗W

]
zn

= ∑
n

[
ΘnWHW

]
zn,

(A2)

and thus

‖Ω‖∗B ≤ 1⇔


Tr(ΘnWHPW) = Tr(ΘnWHW), n ∈ H,[

P −ΩH

−Ω I

]
≥ 0,

(A3)

which implies the SDP implementation of Equation(15) as

min
P,Ω
− Re

{
Tr
[
yHΩ

]}
s.t. Tr(ΘnWHPW) = Tr(ΘnWHW), n ∈ H[

P −ΩH

−Ω I

]
≥ 0

(A4)

Appendix B. Derivation of Equation (27)

Let Λ =

[
S Z

ZH M

]
≥ 0 and Q be the Lagrangian multipliers of the two constraints of

Equation (27), the Lagrangian function of Equation (27) can be given as

L(Q, M, S, Z)

=− Re
{

Tr(yΩH)
}
+ ∑

n∈H
qn(Tr(ΘnWHPW)− Tr(ΘnWHW))− Tr

{[
P −Ω

−ΩH I

]
Λ

}

=− 1
2

Tr(yΩH + ΩyH)− Tr(PS−ΩZH −ΩHZ + M) + ∑
n∈H

qn(Tr(ΘnWHPW)− Tr(ΘnWHW))

(A5)

For minimizing L(Q, M, S, Z), we can derive the partial derivative of L(Q, M, S, Z) with respect
to(P, Ω), which results in that 

S = W

[
∑

n∈H
qnΘn

]
WH

1
2

y = Z

. (A6)

Inserting Equation (A6) into Equation (A5), we have

inf(L) = −Tr(WS(Q)WH)− Tr(M), (A7)



Sensors 2020, 20, 2222 18 of 19

which results in the dual problem of Equation (26) as

min
Q,M

Tr(WS(Q)WH) + Tr(M)

s.t.

[
WS(Q)WH 1

2 R
1
2 RH M

]
≥ 0,

(A8)

that is,

min
Q,M

1
2

Tr(WS(Q)WH) +
1
2

Tr(M)

s.t.

[
WS(Q)WH R

RH M

]
≥ 0.

(A9)
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