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Abstract: Recognizing human physical activities from streaming smartphone sensor readings is essential
for the successful realization of a smart environment. Physical activity recognition is one of the active
research topics to provide users the adaptive services using smart devices. Existing physical activity
recognition methods lack in providing fast and accurate recognition of activities. This paper proposes
an approach to recognize physical activities using only2-axes of the smartphone accelerometer sensor.
It also investigates the effectiveness and contribution of each axis of the accelerometer in the recognition
of physical activities. To implement our approach, data of daily life activities are collected labeled using
the accelerometer from 12 participants. Furthermore, three machine learning classifiers are implemented
to train the model on the collected dataset and in predicting the activities. Our proposed approach
provides more promising results compared to the existing techniques and presents a strong rationale
behind the effectiveness and contribution of each axis of an accelerometer for activity recognition.
To ensure the reliability of the model, we evaluate the proposed approach and observations on standard
publicly available dataset WISDM also and provide a comparative analysis with state-of-the-art studies.
The proposed approach achieved 93% weighted accuracy with Multilayer Perceptron (MLP) classifier,
which is almost 13% higher than the existing methods.

Keywords: activity recognition; smartphone; accelerometer sensor; smart health

1. Introduction

Physical inactivity is rising as a big issue nowadays. Authors in [1] present that inactivity is the 4th
leading risk factor for people. Blood pressure and obesity are quite close to physical inactivity. Authors
show that physical fitness can decrease mental disorder, cancer, diabetes, muscle issues, weight issues,
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emotional issues, and depression as well. Physical fitness can be tracked and analyzed by monitoring
daily life physical activities.

Physical activity recognition was initiated back in 2004 using on-body sensors. Researchers in [2]
used the accelerometer’s annotated data to recognize the physical activities. They made an Android-based
system that collects raw data from the accelerometer and applied machine learning algorithms to predict
physical activities. Authors in [3] recognized six basic activities, i.e., walking, jogging, sitting, standing,
upstairs and downstairs. Authors in [4] used on-body sensors for activity recognition but found that
it is very difficult to carry the sensors all the time. Many authors suggested that a smartphone is a
non-obtrusive option for activity recognition [3,5–9].

The smartphone is playing a vital role in modern life. It provides services and applications such as
health monitoring, early-stage disease detection, sports analysis, fitness tracking, and behavior analysis.
Android-based smartphones have a built-in motion sensor that provides accurate and precise acceleration
readings against physical activities. In early conditions, dedicated sensors were used for activity
recognition. There exist several techniques for physical activity recognition such as on-body obtrusive and
non-obtrusive sensors [10–13]. Non-obtrusive sensors are used in smart homes and smartphones. In smart
homes, different motion and door sensors are installed at different locations and the primary objective is
to recognize and assess activities but in smart homes, physical activities (i.e., running, cycling) cannot be
performed due to the nature of activities.

The most widely used sensors for recording physical activities data using a smartphone are the
accelerometer, gyroscope, and position sensor [8,14–20]. An accelerometer is capable of tracking activity
readings to infer complex user motions, such as tilt, swing, or rotation.

Researchers showed that the accelerometer sensor is the most reliable and cheapest alternate of
wearable sensors for physical activity recognition [19,21–23]. They showed that the accelerometer can
also be used in combination with other sensors such as a gyroscope, light, proximity, barometer, linear
acceleration and magnetometer sensor for better activity recognition. Furthermore, there is a large
increase in the inventions of daily monitoring systems that can detect the user’s health, lifestyle, activities,
behavior, and emotions [24–26]. Some sensors (i.e., GPS, Microphone, Radio-frequency and Near Field
Communication) are also useful in detailed health monitoring [27–30].

Numerous authors have presented various approaches for activity recognition [3,5–9]. These studies
mainly focuses on recognizing activities and the application of 3-axis of an accelerometer, which is not
an optimal approach. However, our study presents an analysis of the effectiveness and contribution
of each feature axis of an accelerometer in the recognition process and the use of only two axes (y and
z-axis) of the accelerometer to provide fast and accurate recognition of daily life activities using machine
learning models.

The key contributions of this research which also addresses the limitation of previous work can be
summarized as follows:

• Investigates the effectiveness and contribution of each axis of the accelerometer for activity recognition.
• Proposes an approach to recognize the activities using only two axes of an accelerometer, resulting in

fast and accurate recognition of physical activities.
• Presents an evaluation of variants of the sliding window.
• Uses three machine learning models and train their hyper-parameters for a more promising accuracy

than state-of-the-art studies [3,8,15].
• In addition to our own collected dataset, the proposed approach was tested and evaluated extensively

on a standard publicly available dataset WISDM [31] used in state-of-the-art studies.
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The remainder of the paper is organized as follows. Section 2 explains the state-of-the-art studies
related to physical activity recognition. Section 3 explains the proposed approach. Section 4 explains the
experimental setup, the results, and demonstrates the analysis of each axis of an accelerometer. Finally,
Section 5 concludes the work and details future directions.

2. Literature Review

Researchers have produced some frameworks and approaches that can recognize physical activities.
Some of the activity recognition and monitoring frameworks is based on the smartwatches and multiple
sensors worn on different body positions [4,32]. Some of these frameworks evaluate the classification
accuracy of on-body sensor devices on different body positions [21,33–35]. Some frameworks estimate
different time-domain features, sampling rates and analyze the trade-off between recognition accuracy and
computational complexity [18]. The physical activity recognition with tri-axial sensors has gained more
attention. By considering the effect of flexibility in orientation and placement, authors in [36] proposed an
approach based on the coordinate transformation, PCA, and SVM. Authors in [33] proposed an approach
for dynamic feature extraction and showed that feature selection is important for accurate recognition.
They analyzed that Convolutional Neural Networks (CNN) gives better recognition results with dynamic
features. In [37], the authors proposed an Ensemble Learning Machine (ELM) algorithm. According to the
authors, ELM is the fastest algorithm to train for activity recognition and promising result. Authors in [18]
proposed a methodology that utilizes data accumulated from an accelerometer to test it in a non-controlled
condition. This investigation was particularly completed for old participants to improve their everyday
life exercises. An older simulation unit was built that utilized three android cell phones that were put at
the client’s midsection, knee, and lower leg.

Authors in [38] proposed a low-pass recognition system to recognize human activity. A set of five
classifiers used was to classify physical activities using statistical features. Four participants were selected
to collect the data at a rate of 100 samples per second (100/s) for 180–280 s. They selected a sliding window
of 128 samples of each participant. They also showed different evaluation measures on a single classifier
with a combination of other classifiers for further analysis. Authors in [39] used two accelerometers.
They performed an offline evaluation of the dataset containing activities and different types of falls.

Researchers used a combination of sensors with an accelerometer for activity recognition. Authors
in [4], used “eWatch” for data collection of six activities. Each “eWatch” device comprises of a bi-axial
accelerometer and a light sensor. For training, they used different inductive learning models such as
Decision Trees, k-Nearest Neighbor, Naive Bayes, and Bayes Net and evaluated their approach using
five-fold cross-validation. Authors in [40–46] discussed the network protocol to use and process the
sensors and wearable devices data over the network. The research [13] proposed an assisted approach
that helps the participants to live healthily. The system recognizes physical activities (sleeping, walking
and running) and suggests an optimal health care plan to participants with the help of doctors, guardians,
and intelligent agent rankers.

In [33], the authors proposed an approach that extracts dynamic features from time-series human
activity data by using recurrence plots [47]. They analyzed the dynamic vs. static features for activity
recognition. First, the recurrence plots of each time series from gyroscope and accelerometer sensors were
considered as dynamic features for activity recognition then Convolutional Neural Network (CNN) [48]
was used for activity recognition. The study [49], present a smart-phone inertial sensors-based approach
in which efficient features such as mean, auto-regressive coefficients, median, etc. extracted from raw data
and then pass through Kernel Principal Component Analysis (KPCA) and Linear Discriminant Analysis
(LDA) for dimension reduction. Finally, the Deep Belief Network (DBN) was used for activity recognition
and was compared with Support Vector Machine (SVM) and Artificial Neural Network (ANN).
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Although these studies used various approaches for activity recognition, they were not capable of
recognizing a wide range of activities fast, accurately or efficiently. They also lacked battery limitation,
better sliding window selection for recognition using machine learning model. Some studies used
high-computational cost algorithms (i.e., Meta classifier, CNN and Random Forest) for recognition, which
may result in a late response time when these systems apply to real-time recognition.

3. Proposed Methodology

In this section, we present our proposed approach for activity recognition. The proposed approach is
comprised of pre-processing, feature extraction, data balancing, and recognition of activities. First, we
make an Android application to collect readings from the accelerometer sensor. We collected data from
twelve participants while performing six physical activities. Next, we pre-processed the raw data to remove
the noise added at the start and end time while performing activities. Next, we extracted the features from
the pre-processed data and make sliding windows of data. After that, we balanced all the activities so that
one activity could not take advantage of its number of occurrences. Finally, the classifier was trained to
recognize the activities. We used supervised machine learning classifiers i.e., Decision Tree (J48), Logistic
Regression (LR) and Multilayer Perceptron (MLP) for physical activity recognition. The subsections below
explain each part of the proposed approach. Figure 1 summarizes our proposed approach.

Figure 1. Block diagram of the proposed activity recognition approach.

3.1. Data Collection

This section shows the rules and techniques to collect data for activity recognition. The data were
collected using an Android application that runs on Android smartphones having an operating system
greater than 4.0. There are three labels on the application interface showing the tri-axis (x-axis, y-axis,
z-axis) readings of the accelerometer. Each axis returns a numeric value. Participants are asked to place
their smartphone in the right pocket while performing all the activities.

3.2. Preproscessing

Initially, We set the data collection frequency to 50 ms, which provides 20 samples per second.
After the axis analysis, as stated in Section 4.3, we observed that it is not an optimal way to set the
frequency of accelerometer for all activities statically as it produces similar instances of (standing, walking)
and (upstairs, downstairs) due to the indistinguishable nature of the activities. Due to this, we decreased
the sampling frequency to 1 sample instance per one second for upstairs, downstairs, standing and sitting
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and 10 sample instances per second for the other two activities walking and jogging. We noticed that using
this setting, it improves the battery timing as well as the recognition accuracy.

3.3. Feature Extraction

Next, we converted the data into the model window. Every window contains 200 examples.
This chosen window is sufficient for extricating the outcomes as it is favored by different research works
i.e., [3,21]. An accelerometer’s data consist of 3 float numeric axes (x, y, z) readings. All the identified
exercises lie between the range of [−20, 20] for all pivots. Afterward, we utilized these readings to
recognize six exercises (standing, sitting, upstairs, the first floor, strolling and running).

3.4. Data Balancing

We performed the SMOTE [50] data balancing method in which the minority class instances are
oversampled by generating new synthetic instances to improve the representation of minority classes.
To make a new instance, it calculates the distance between an original instance and the nearest neighbors.
Then, it multiplies the new distance with the range between 0 and 1 and then, it is added into the original
instance and thus, a new instance comes into existence. Below, we explain the example of generating
synthetic examples.

Suppose a sample (1,2) and let (3,4) be its nearest neighbor. (1,2) is the sample for which k-nearest
neighbors are being identified. (3,4) is one of its k-nearest neighbors.

Let
s11 = 1, s21 = 2

s12 = 3, s22 = 4
(1)

The new samples will be generated as

(s1
′
, s2

′
) = (1, 2) + rand(0− 1) ∗ (3− 1, 4− 2) (2)

where rand(0–1) generates a random number between 0 and 1.

3.5. Activity Recognition

We provide a brief overview of the algorithms that we use in this paper to recognize physical activities
in below section.

• Decision Tree (J48): J48 classifier builds the trees based on their information gain (IG) and entropy [51].
It compares the IG of all the features and split the tree with the feature having the best IG.

E = H( f ) = IE(k1, k2, ..., k J) = −
J

∑
i=1

ki log2 ki (3)

where k is the probability of class i. H(feature) is the entropy that basically measures the degree of
“impurity”.

IG(Fi) = H(C)− H(C|Fi) (4)

IG of a feature Fi is calculated using Equation (4) where C represents different classification classes
and Fi are the different features in the dataset.

• Logistic Regression (LR) LR is used for classification by adding some parameters in linear regression
algorithm like adding sigmoid function and threshold if the value is higher then 0.5 it will be yes and
if the value of predicator is less then 0.5 it will go to no class [51]. The logistic regression algorithm
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uses the logistic function of fitting a straight line or hyperplane to squeeze the output of a linear
equation between 0 and 1.

The mathematical definition of logistic regression is given below:

logistic (η) =
1

1 + exp (−η)
(5)

and it respected as shown in below Figure 2.

Figure 2. Illustration of LR classifier.

This research modelled the affiliation between outcome and attributes with the linear equations in the
linear regression classifier.

O∧(i) = β0 + β1x1
(i) + ..., βnxn

(i) (6)

Logistic regression prefers the probability between 0 and 1 for classification, so we put the right side of
the equation into logistic regression function. This emphasizes the output to assume values between 0
and 1.

P(O(i) = 1) =
1

1 + exp
(
−
(

β0 + β1x1
(i) + ..., βnxn(i)

)) (7)

log
(

P (y = 1)
1− P (y = 1)

)
= log

(
P (y = 1)
P (y = 0)

)
= β0 + β1x1

(i) + ..., βnxn
(i) (8)

The above equation represents the log function for logistic regression, also called the log odd function.
This theorem shows that the concept of logistic regression is a linear model for log changes. If one of
the xj attribute is changed by one element, prediction changes.

P (y = 1)
1− P (y = 1)

= odds = exp
(

β0 + β1x1
(i) + ..., βnxn

(i)
)

(9)

We then compare what happens if one of the feature values is increased by 1, yet we look at the ratio
of the two projections rather than looking at the difference:

oddsxj+1

odds
=

exp
(

β0 + β1x1 + ...β j
(
xj + 1

)
..., βnxn

(i)
)

exp
(

β0 + β1x1 + ...β jxj..., βnxn(i)
) (10)
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exp (a)
exp (b)

= exp (a− b) (11)

oddsxj+1

odds
= exp

(
β j
(
xj+1

)
− β jxj

)
= exp

(
β j
)

(12)

Finally, a one-unit change in a feature changes the odds ratio by an exp factor (β j). This can also be
represented as a one-unit shift in xj increases the log odds ratio by the same weight factor. Many
research studies interpreted the odds ratio because it is understood that thinking about something’s
log () is difficult to comprehend.

• Multilayer Neural Network (MLP): MLP is a feed-forward neural network, that maps the inputs to
an appropriate set of outputs [51]. Typically, the network consists of an input layer, a hidden layer(s),
and an output layer as shown in Figure 3. Given an input node xi, the output of the hidden node hj is
given as

hj = φ1 +

(
n

∑
i=1

wij + θj

)
(13)

where wi,j represents the weight between the ith input and jth hidden node, and θj represents the bias
value. In contrast, the output will be given as

output = φ2 +

(
n

∑
j=1

wjk + θk

)
(14)

The mapping of inputs to outputs is an iterative process, where in each iteration, weights wi,j are
updated. One of the commonly used algorithm is the Back Propagation algorithm, which updates the
weights using

Wji(t + 1) = Wji(t)− ε
∂E f
Wji

(15)

the error between computed and desired output is used to update the weights.

Figure 3. Structure of MLP classifier.

4. Evaluation and Analysis

In this section, we explain our experiments and present the range of evaluation measures which we
decided to use for experimentation purposes, then present and analyze our results. For experimental
evaluation, we first collected labelled data and then made a sample window of 200 samples and then
divided data into segments. We used J48, MLP, and LR to recognize the activities. We used the customized
setting for tuning the parameter of each classifier. We applied three-fold cross-validation for all experiments.
This works by leaving 1:3 part of data for testing and uses 2:3 part of data for training. To further evaluate
the significance of our proposed approach, we used Leave-one-Subject-out (LOSO) cross-validation on
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WISDM [31] dataset. We compared the results of our approach with state-of-the-art study [15] using LOSO
for a fair comparison. LOSO works by leaving one participant’s activities for testing and train the model
on other participant’s activities. As there are 26 participants in WISDM [31] dataset, this cycle repeats for
all participants 26 times randomly.

4.1. Evaluation Measures

We chose four evaluation measures: accuracy, recall, precision, and f-score to ensure the reliability of
the model. Below, we illustrate terms that can be useful for evaluation measure analysis. The accuracy
measure is calculated by TP (True Positive rate: correctly recognized samples) divided by N (all the
samples of all activities). The recall measure is calculated by TP (True Positive rate: correctly recognized
samples) divided by TP+FN (False Negative rate: samples wrongly recognized as other activities samples).
The precision measure is calculated by TP divided by TP+FP (False Positive rate: samples of other
activities wrongly recognized as one activity samples). F-score is computed as the harmonic mean of recall
and precision.

Accuracy =
TP
N

(16)

Recall =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

F− Score = 2× Precision× Recall
Precision + Recall

(19)

4.2. Results

Tables 1–5 demonstrates the results of our activity recognition approach. Table 1 and Figure 4
demonstrate the percentage of activities that are correctly recognized. For standing and sitting activities,
we achieved 5% more recognition rate using j48 than the LR. MLP achieve 2% better recognition rate than
j48 for both activities. For downstairs activity, using j48, we achieve 13% more recognition rate than LR,
while MLP achieves 6% more recognition rate than j48. For walking activity, MLP achieves 1% and 2%
more recognition rate than LR and j48. For upstairs, using j48, we achieve 14% more recognition rate than
LR, while MLP achieves 10% more recognition rate than j48. For jogging activity, using j48, we achieve 1%
and 2% better recognition rate than LR and MLP.

Table 1. Recognition rate comparison of j48, LR and MLP classifier with respect to each activity.

j48 LR MLP

Standing 91.5 86.6 93.7
Sitting 91.2 85.5 92.0

Downstairs 65.7 52.1 71.5
Walking 88.3 91.0 92.5
Upstairs 75.6 67.5 79.3
Jogging 96.2 95.3 94.0
Overall 85.0 79.6 87.2
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Figure 4. Recognition rate comparison of j48, LR and MLP classifier concerning each activity.

Table 2 and Figure 5 demonstrate the recognition in percentage. As a conclusion using MLP, we
achieve 87% accuracy which is 2% and 8% better than j48 and LR respectively. For further experiments,
we only use MLP classifier for axis analysis Section 4.3 and comparative analysis Section 4.4 with the
state-of-the-art.

Table 2. Comparison of evaluation measures with respect to j48, LR and MLP classifier.

Precision Recall F-Score Accuracy

j48 83.2 85.0 84.0 85.0
LR 78.1 79.6 78.1 79.6

MLP 86.7 87.2 86.9 87.2

Figure 5. Comparison of evaluation measures with respect to j48, LR and MLP classifier.

Figure 6 shows the correctly classified activities concerning misclassified activities using the Decision
Tree (j48) classifier. 19.5% of upstairs instances are misclassified as downstairs and 24.5% instances of
downstairs are misclassified as upstairs. The jogging activity is misclassified 2.5% as walking, while the
standing, sitting and walking are classified with minor confusions.
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Figure 6. Confusion matrix of activity recognition using j48 classifier.

Figure 7 shows the correctly classified activities concerning misclassified activities using the Linear
Regression (LG) classifier. 24.5% of upstairs instances are misclassified as downstairs and 24% of
downstairs instances are misclassified as upstairs. The jogging activity is misclassified 3.7% as walking
and 1.0 as standing, while the standing, sitting and walking are classified with minor confusions.

Figure 7. Confusion matrix of activity recognition using LG classifier.

Figure 8 shows the correctly classified activities concerning misclassified activities using the Multilayer
Perceptron (MLP) classifier. 15.5% of upstairs instances are misclassified as downstairs and 22.5% instances
of downstairs are misclassified as upstairs. The jogging activity is misclassified 4.0% as walking and 2.0 as
standing, while the standing, sitting and walking are classified with minor confusions. It is observed that
MLP classifier is an optimal choice amongst other fro activity recognition.
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Figure 8. Confusion matrix of activity recognition using MLP classifier.

4.3. Axis Analysis of Activities

In this section, we analyze the effectiveness and contribution of each axis of the tri-axial accelerometer
sensor to improve the recognition rate. We choose six daily life activities: upstairs, downstairs, sitting,
walking, jogging, and standing in this work. The experiment results of this analysis are carried through the
three-fold cross-validation. These activities strongly depict the human physical routine. The x-axis in
each graph depicts the horizontal movement [+x,−x] of the leg, y-axis depicts the motion in upward and
downward directions [+y,−y] while z-axis depicts the forward and backward motion [+z,−z] of the leg.

The acceleration plots for the Six Activities (a–f) shown below in Figure 9 represents the acceleration
and time of all the activities. Red curves are showing the x-axis of the accelerometer, blue lines are showing
the y-axis of the accelerometer and the purple line are showing the z-axis of the accelerometer. The x-axis
of the graphs shows the time in seconds, is accessed while the y-axis of the graph shows the acceleration of
each sensor ranging between [−20,20]. Below we show the behavior of each activity according to each axis.

• Walking: Figure 9a depicts that the periodic pattern of walking activity is quite similar to Figure 9b.
While walking upward and downward periodic motion can be seen as light blue strides while the
forward motion can be seen in purple strides and red lines showing horizontal movement is stable.
The value of the x-axis lies between [−12, 12], y-axis value [−18, 5] & the value of z-axis lies between
[−9, 16] which is quite unique. These observations can be proven by Table 3 and Figure 10 depicting
a combination of the different axis of the accelerometer to recognize the activities. In Table 3 the
recognition rate of walking activity against x− y axis is 89.5%, x− z axis is 90.0%, y− z axis is 95.0%,
and x− y− z is 92.5%. Hence, for walking activity, the y-axis and z-axis of the accelerometer sensor
are the potential features.

• Jogging: Figure 9b depicts periodic patterns quite similar to the Figure 9a. Upward and downward
motion can be seen as light blue strides while the forward motion can be seen in purple strides which
are quite high than walking and red lines showing horizontal movements are stable. In Table 3,
it is shown that the recognition rate of jogging activity against x − y axis is 92.2%, x − z axis is
94.1%, y − z axis is 96.5%, and x − y − z is 94.0%. Hence for this activity y-axis and z-axis of the
accelerometer sensor are the potential features. By looking at accelerometers detected readings, it
shows that the range of x-axis falls between [−8, 10], y-axis value [−20, 18] and the value of z-axis lies
between [−10, 14]. In the previous case, the same type of results are obtained which further strengthen
our observations.
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(a) Walking (b) Jogging

(c) Upstairs (d) Downstairs

(e) Sitting (f) Standing

Figure 9. Acceleration plots of daily life physical activities.

• Upstairs: The patterns in Figure 9c are quite similar to the Figure 9b of jogging. While going upstairs,
upward and downward motion can be seen as light blue strides while the forward motion can be
seen in purple strides and red lines showing horizontal movements are stable. This activity is getting
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confused with jogging activity as the only difference between both is of the z-axis. There is a high
upward positive peak and downward negative peak after a specific periodic interval which depicts
that a user stepped up a stair and then suddenly it goes to the initial stage. The range of x-axis lies
between [−12, 10], y-axis between [−4, 16] and z-axis lies between [−11, 13], which is quite similar to
the jogging. In Table 3, it is shown that the recognition rate of upstairs activity against x− y axis is
79.6%, x− z axis is 65.5%, y− z axis is 89.8%, and x− y− z is 79.3%. Hence, for this activity, y-axis
and z-axis of the accelerometer sensor are the potential features.

• Downstairs: Figure 9d depicts that the periodic patterns are slightly similar to the Figure 9b.
Each small peak represents movement down a single stair. The z-axis values show a similar pattern
showing negative readings, reflecting the regular movement down each stair which was positive
in the previous case (upstairs). While walking downstairs, downward motion can be seen as light
blue strides which show a negative axis while the forward motion can be seen in purple strides and
red lines, showing horizontal movements that are stable in the start but suddenly it shows a high
read peak which turns a mentioned earlier in the dataset collection section. The range of x-axis falls
between [−11, 13], y-axis between [−12,−3] and the range of z-axis lies between [−10, 15], which
is quite similar to the Upstairs. In Table 3, it is shown that the recognition rate of upstairs activity
against x− y axis is 70.7%, x− z axis is 68.5%, y− z axis is 87.1%, and x− y− z is 71.5%. Hence for
this activity y-axis and z-axis of the accelerometer sensor are the potential features.

• Sitting: Figure 9e depicts that all reading against each axis is, constant and stable patterns without
any regular periodic pattern. This activity shows a unique behavior. By looking at accelerometers
detected outputs, we observe that the range of x-axis lies between [−1, 0], y-axis value [−1, 1] and the
value of z-axis lies between [9, 11]. In Table 3, it is shown that the recognition rate of upstairs activity
against x− y axis is 90.2%, x− z axis is 86.8%, y− z axis is 94.7%, and x− y− z is 9.0%. Hence for
this activity, y-axis and z-axis of the accelerometer sensor are the potential features.

• Standing: This activity also shows a unique behavior as depicted in Figure 9f. It is seen that
accelerometer readings are constant and depicts stable patterns without any regular periodic pattern.
The range of x-axis lies between [0, 2], y-axis value [−9,−11] and the value of z-axis lies between
[−1, 1]. In Table 3, it is shown that the recognition rate of upstairs activity against x− y axis is 90.1%,
x− z axis is 88.2%, y− z axis is 96.4%, and x− y− z is 93.7%. Hence, for this activity y-axis and z-axis
of the accelerometer sensor are the potential features.

Besides our approach, authors in [52] used principal component analysis (PCA) for feature selection
from fall detection datasets. This dataset contains 3 accelerometer Axis as features. According to the
authors, PCA selects optimal features from the feature matrix. PCA measures the importance of a
feature based on variance. Feature having high variance are treated as principal components and low
variance feature are considered as noise. In this study, we focus on daily life six activities presented in
Section 4.3. Applying PCA on our dataset provides the X-axis and Y-axis of the accelerometer as a principal
component but provides an overall accuracy of 85.4% which is far less than our approach as shown in
Table 3. The rationale behind this is that activities such as standing, sitting, walking and jogging can be
recognized efficiently using x and y-axis but not other complex activities such as upstairs and downstairs.
These activities are efficiently recognized with the accuracy of 93.3% using y and z-axis as shown in Table 3.

To sum up all the discussion, observations and analysis, we strongly claim to use the y-axis and
z-axis of the accelerometer sensor to recognize activities: Walking, Standing, Sitting, Upstairs, Downstairs
and Jogging experimented extensively in this paper.
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Table 3. Recognition rate comparison of different combination of accelerometer axis with respect to each
activity using MLP.

(x-y) axis (x-z) axis (y-z) axis (x-y-z) axis

Standing 90.1 88.2 96.4 93.7
Sitting 90.2 86.8 94.7 92.0

Downstairs 70.7 68.5 87.1 71.5
Walking 89.5 90.0 95.0 92.5
Upstairs 79.6 65.5 89.8 79.3
Jogging 92.2 94.1 96.5 94.0
Overall 85.4 82.2 93.3 87.2

Figure 10. Recognition rate comparison of different combination of accelerometer axis with respect to each
activity using MLP.

4.4. Comparative Analysis

This section presents the results obtained by our approach in comparison with state-of-the-art
approaches [3,8,15]. For a fair comparison, we also use the WISDM dataset [31]. This dataset was collected
using a smartphone accelerometer from 36 participants. The participants were asked to carry a smartphone
in their front pant’s leg pocket while performing activities as we collect in this work. The participants were
asked to perform walking, walking upstairs, jogging, walking downstairs, sitting, and standing activities.
This dataset is also used by various recent studies to improve activity recognition [3,5–8,15]. The axis
analysis results in Table 3 and Figure 10 show that our approach achieves a promising recognition rate
using the y-z axis. We also use the (y-z) axis data of the WISDM dataset to compare the results.

The Tables 4 and 5 and Figure 11 demonstrate the recognition rates on each activity using proposed
approach and state-of-the-art studies. In Table 4, for standing activity, we achieve 1% and 4% better
recognition rate than [8] and [3] respectively. For sitting activity, we achieve same recognition rate as [8].
However, we achieve 1% less recognition rate than the study [3] on sitting activity. In case of downstairs
activity, we achieve 17% and 47% better recognition rate than [8] and [3]. For walking activity, we achieve
10% and 5% better recognition rate than [8] and [3]. In case of upstairs activity, we achieve 27% and 23%
better recognition rate than [8] and [3] respectively. However, we achieve 1% and 2% less recognition rate
than the study [15] and [3] on jogging activity. By using (y-z) axis of WISDM dataset, we achieve 93%
recognition rate which is 12% and 13% better recognition rate than [8] and [3] respectively.

The Table 5 shows the comparison results using Leave-One-Subject-Out (LOSO) cross-validation.
It shows that for standing activity, we achieve the same recognition rate as [15]. For sitting activity, we
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achieve an 8% better recognition rate than [15]. In the case of downstairs activity, we achieve a 2% better
recognition rate than [15]. However, for walking activity, we achieve a 3% less recognition rate than [15].
In the case of upstairs activity, we achieve a 10% better recognition rate than [15]. However, we achieve a
2% less recognition rate than the study [15] on jogging activity. By using (y-z) axis of WISDM dataset, we
achieve 91% recognition rate which is 3% better than [15].

Table 4. Comparison results of the proposed approach with state-of-the-art research works.

Activities [3] [8] Proposed Approach

Standing 91.9 94.9 95.7
Sitting 95.0 93.9 94.0

Downstairs 44.3 74.6 91.5
Walking 91.7 86.3 96.5
Upstairs 61.5 57.2 84.3
Jogging 98.3 N/A 96.0
Overall 80.7 81.4 93.0

Table 5. Comparison results of the proposed approach with state-of-the-art research work [15] using
leave-one-subject-out cross-validation.

Activities [15] Proposed Approach

Standing 93.3 93.2
Sitting 82.6 90.3

Downstairs 87.0 89.1
Walking 98.5 95.9
Upstairs 72.2 82.8
Jogging 97.8 95.5
Overall 88.5 91.13

Figure 11. Comparison results of the proposed approach with the state-of-the-art research works.
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5. Conclusions and Future Work

In this paper, an approach is proposed to recognize physical activities using only 2-axes of the
smartphone accelerometer sensor. The daily life activities data is collected and labeled using the
accelerometer from 12 participants.The experimental results show that the proposed method is practical
and capable of increasing the recognition rate of physical activities. Our approach achieved an accuracy of
93% and examined the role of each axis of an accelerometer to improve the recognition rate as shown in
Tables 4 and 5 . Hence, the proposed approach provides more promising results compared to the existing
techniques and presents a strong rationale behind the effectiveness and contribution of each axis of an
accelerometer for activity recognition. The impact of the proposed approach and findings are significant for
activity recognition. In the future, we would like to analyze more daily life activities using our technique.

Author Contributions: This research specifies below the individual contributions. “Conceptualization, A.R.J. and
M.U.S.; Data curation, M.U.S.; Formal analysis, A.R.J.; Funding acquisition, N.K.; Investigation, A.R.J.; Methodology,
A.R.J.; Project administration, C.I. and N.K.; Resources, S.K. and N.K.; Software, A.R.J.; Supervision, C.I., A.R.J. and
C.I.; Validation, M.U.S., and M.M.; Visualization, M.U.S. and C.I.; Writing—review & editing, S.K., N.K. and M.M.”
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kivimäki, M.; Singh-Manoux, A.; Pentti, J.; Sabia, S.; Nyberg, S.T.; Alfredsson, L.; Goldberg, M.; Knutsson, A.;
Koskenvuo, M.; Koskinen, A.; et al. Physical inactivity, cardiometabolic disease, and risk of dementia:
An individual-participant meta-analysis. BMJ 2019, 365, l1495. [CrossRef]

2. Bao, L.; Intille, S.S. Activity recognition from user-annotated acceleration data. In International Conference on
Pervasive Computing; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–17.

3. Kwapisz, J.R.; Weiss, G.M.; Moore, S.A. Activity recognition using cell phone accelerometers. ACM SigKDD
Explor. Newsl. 2011, 12, 74–82. [CrossRef]

4. Bulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors.
ACM Comput. Surv. (CSUR) 2014, 46, 1–33. [CrossRef]

5. Lockhart, J. Mobile sensor data mining. Fordham Undergrad. Res. J. 2013, 1, 11.
6. Kuspa, K.; Pratkanis, T. Classification of Mobile Device Accelerometer Data for Unique Activity Identification; Technical

Report; Stanford Center for Professional Development: Palo Alto, CA, USA, 2013.
7. Zeng, M.; Nguyen, L.T.; Yu, B.; Mengshoel, O.J.; Zhu, J.; Wu, P.; Zhang, J. Convolutional neural networks for

human activity recognition using mobile sensors. In Proceedings of the 6th International Conference on Mobile
Computing, Applications and Services, Austin, TX, USA, 6–7 November 2014; pp. 197–205.

8. Kolosnjaji, B.; Eckert, C. Neural network-based user-independent physical activity recognition for mobile
devices. In Proceedings of the International Conference on Intelligent Data Engineering and Automated
Learning, Wroclaw, Poland, 14–16 October 2015; pp. 378–386.

9. Ignatov, A.D.; Strijov, V.V. Human activity recognition using quasiperiodic time series collected from a single
tri-axial accelerometer. Multimed. Tools Appl. 2016, 75, 7257–7270. [CrossRef]

10. Cook, D.J.; Augusto, J.C.; Jakkula, V.R. Ambient intelligence: Technologies, applications, and opportunities.
Pervasive Mob. Comput. 2009, 5, 277–298. [CrossRef]

11. Wang, L.; Gu, T.; Tao, X.; Lu, J. A hierarchical approach to real-time activity recognition in body sensor networks.
Pervasive Mob. Comput. 2012, 8, 115–130. [CrossRef]

12. Kumari, A.; Tanwar, S.; Tyagi, S.; Kumar, N. Fog computing for Healthcare 4.0 environment: Opportunities and
challenges. Comput. Electr. Eng. 2018, 72, 1–13. [CrossRef]

http://dx.doi.org/10.1136/bmj.l1495
http://dx.doi.org/10.1145/1964897.1964918
http://dx.doi.org/10.1145/2499621
http://dx.doi.org/10.1007/s11042-015-2643-0
http://dx.doi.org/10.1016/j.pmcj.2009.04.001
http://dx.doi.org/10.1016/j.pmcj.2010.12.001
http://dx.doi.org/10.1016/j.compeleceng.2018.08.015


Sensors 2020, 20, 2216 17 of 18

13. Sarwar, M.U.; Javed, A.R. Collaborative Health Care Plan through Crowdsource Data using Ambient
Application. In Proceedings of the 2019 22nd International Multitopic Conference (INMIC), Islamabad, Pakistan,
29–30 November 2019; pp. 1–6.

14. Wang, J.; Chen, Y.; Hao, S.; Peng, X.; Hu, L. Deep learning for sensor-based activity recognition: A survey.
Pattern Recognit. Lett. 2019, 119, 3–11. [CrossRef]

15. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks.
Appl. Soft Comput. 2018, 62, 915–922. [CrossRef]

16. Jordao, A.; Torres, L.A.B.; Schwartz, W.R. Novel approaches to human activity recognition based on accelerometer
data. Signal Image Video Process. 2018, 12, 1387–1394. [CrossRef]

17. Wannenburg, J.; Malekian, R. Physical activity recognition from smartphone accelerometer data for user context
awareness sensing. IEEE Trans. Syst. Man Cybern. Syst. 2016, 47, 3142–3149. [CrossRef]

18. Morillo, L.M.S.; Gonzalez-Abril, L.; Ramirez, J.A.O.; la Concepcion, D.; Alvarez, M.A. Low energy physical
activity recognition system on smartphones. Sensors 2015, 15, 5163–5196. [CrossRef] [PubMed]

19. Su, X.; Tong, H.; Ji, P. Activity recognition with smartphone sensors. Tsinghua Sci. Technol. 2014, 19, 235–249.
20. Javed, A.R.; Beg, M.O.; Asim, M.; Baker, T.; Al-Bayatti, A.H. AlphaLogger: Detecting motion-based side-channel

attack using smartphone keystrokes. J. Ambient. Intell. Humaniz. Comput. 2020, 1–14. [CrossRef]
21. Shoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J. Fusion of smartphone motion sensors for physical

activity recognition. Sensors 2014, 14, 10146–10176. [CrossRef]
22. Pei, L.; Guinness, R.; Chen, R.; Liu, J.; Kuusniemi, H.; Chen, Y.; Chen, L.; Kaistinen, J. Human behavior cognition

using smartphone sensors. Sensors 2013, 13, 1402–1424. [CrossRef]
23. Du, R.; Santi, P.; Xiao, M.; Vasilakos, A.V.; Fischione, C. The sensable city: A survey on the deployment and

management for smart city monitoring. IEEE Commun. Surv. Tutor. 2018, 21, 1533–1560. [CrossRef]
24. Iwendi, C.; Khan, S.; Anajemba, J.H.; Bashir, A.K.; Noor, F. Realizing an Efficient IoMT-Assisted Patient Diet

Recommendation System Through Machine Learning Model. IEEE Access 2020, 8, 28462–28474. [CrossRef]
25. Huang, M.; Liu, A.; Xiong, N.N.; Wang, T.; Vasilakos, A.V. An Effective Service-Oriented Networking

Management Architecture for 5G-Enabled Internet of Things. Comput. Netw. 2020,173, 107208. [CrossRef]
26. Chen, M.; Gonzalez, S.; Vasilakos, A.; Cao, H.; Leung, V.C. Body area networks: A survey. Mob. Networks Appl.

2011, 16, 171–193. [CrossRef]
27. Wazid, M.; Das, A.K.; Kumar, N.; Conti, M.; Vasilakos, A.V. A novel authentication and key agreement scheme

for implantable medical devices deployment. IEEE J. Biomed. Health Inform. 2017, 22, 1299–1309. [CrossRef]
[PubMed]

28. Acampora, G.; Cook, D.J.; Rashidi, P.; Vasilakos, A.V. A survey on ambient intelligence in healthcare. Proc. IEEE
2013, 101, 2470–2494. [CrossRef] [PubMed]

29. Cao, L.; Wang, Y.; Zhang, B.; Jin, Q.; Vasilakos, A.V. GCHAR: An efficient Group-based Context—Aware human
activity recognition on smartphone. J. Parallel Distrib. Comput. 2018, 118, 67–80. [CrossRef]

30. Wazid, M.; Das, A.K.; Bhat, V.; Vasilakos, A.V. LAM-CIoT: Lightweight authentication mechanism in cloud-based
IoT environment. J. Netw. Comput. Appl. 2020, 150, 102496. [CrossRef]

31. Wisdm’s Activity Prediction Dataset. Available online: http://www.cis.fordham.edu/wisdm/dataset.php
(accessed on 12 March 2020).

32. Miao, F.; He, Y.; Liu, J.; Li, Y.; Ayoola, I. Identifying typical physical activity on smartphone with varying
positions and orientations. Biomed. Eng. Online 2015, 14, 32. [CrossRef]

33. Nakano, K.; Chakraborty, B. Effect of dynamic feature for human activity recognition using smartphone sensors.
In Proceedings of the 2017 IEEE 8th International Conference on Awareness Science and Technology (iCAST),
Taichung, Taiwan, 8–10 November 2017; pp. 539–543.

34. Sheng, Z.; Yang, S.; Yu, Y.; Vasilakos, A.V.; McCann, J.A.; Leung, K.K. A survey on the ietf protocol suite for the
internet of things: Standards, challenges, and opportunities. IEEE Wirel. Commun. 2013, 20, 91–98. [CrossRef]

35. Wazid, M.; Das, A.K.; Vasilakos, A.V. Authenticated key management protocol for cloud-assisted body area
sensor networks. J. Netw. Comput. Appl. 2018, 123, 112–126. [CrossRef]

http://dx.doi.org/10.1016/j.patrec.2018.02.010
http://dx.doi.org/10.1016/j.asoc.2017.09.027
http://dx.doi.org/10.1007/s11760-018-1293-x
http://dx.doi.org/10.1109/TSMC.2016.2562509
http://dx.doi.org/10.3390/s150305163
http://www.ncbi.nlm.nih.gov/pubmed/25742171
http://dx.doi.org/10.1007/s12652-020-01770-0
http://dx.doi.org/10.3390/s140610146
http://dx.doi.org/10.3390/s130201402
http://dx.doi.org/10.1109/COMST.2018.2881008
http://dx.doi.org/10.1109/ACCESS.2020.2968537
http://dx.doi.org/10.1016/j.comnet.2020.107208
http://dx.doi.org/10.1007/s11036-010-0260-8
http://dx.doi.org/10.1109/JBHI.2017.2721545
http://www.ncbi.nlm.nih.gov/pubmed/28682267
http://dx.doi.org/10.1109/JPROC.2013.2262913
http://www.ncbi.nlm.nih.gov/pubmed/24431472
http://dx.doi.org/10.1016/j.jpdc.2017.05.007
http://dx.doi.org/10.1016/j.jnca.2019.102496
http://www.cis.fordham.edu/wisdm/dataset.php
http://dx.doi.org/10.1186/s12938-015-0026-4
http://dx.doi.org/10.1109/MWC.2013.6704479
http://dx.doi.org/10.1016/j.jnca.2018.09.008


Sensors 2020, 20, 2216 18 of 18

36. Chen, Z.; Zhu, Q.; Soh, Y.C.; Zhang, L. Robust human activity recognition using smartphone sensors via CT-PCA
and online SVM. IEEE Trans. Ind. Inform. 2017, 13, 3070–3080. [CrossRef]

37. Chen, Z.; Jiang, C.; Xie, L. A novel ensemble ELM for human activity recognition using smartphone sensors.
IEEE Trans. Ind. Inform. 2018, 15, 2691–2699. [CrossRef]

38. Bayat, A.; Pomplun, M.; Tran, D.A. A study on human activity recognition using accelerometer data from
smartphones. Procedia Comput. Sci. 2014, 34, 450–457. [CrossRef]

39. Gjoreski, H.; Kozina, S.; Gams, M.; Luštrek, M. RAReFall—Real-time activity recognition and fall detection
system. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communication
Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 24–28 March 2014; pp. 145–147.

40. Das, A.K.; Wazid, M.; Kumar, N.; Khan, M.K.; Choo, K.K.R.; Park, Y. Design of secure and lightweight
authentication protocol for wearable devices environment. IEEE J. Biomed. Health Inform. 2017, 22, 1310–1322.
[CrossRef] [PubMed]

41. Saharan, S.; Bawa, S.; Kumar, N. Dynamic pricing techniques for Intelligent Transportation System in smart
cities: A systematic review. Comput. Commun. 2019, 150, 603–625. [CrossRef]

42. Chahal, R.K.; Kumar, N.; Batra, S. Trust management in social Internet of Things: A taxonomy, open issues,
and challenges. Comput. Commun. 2019, 150, 13–46. [CrossRef]

43. Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review,
solutions, and challenges. Veh. Commun. 2019, 20, 100184. [CrossRef]

44. Sun, G.; Zhou, R.; Sun, J.; Yu, H.; Vasilakos, A.V. Energy-Efficient Provisioning for Service Function Chains
to Support Delay-Sensitive Applications in Network Function Virtualization. IEEE Internet Things J. 2020. .
[CrossRef]

45. Iwendi, C.; Offor, K. Alternative Protocol Implementation for Wireless Sensor Network Nodes. J. Telecommun.
Syst. Manag. 2013, 2, 106.

46. Mittal, M.; Iwendi, C. A Survey on Energy-Aware Wireless Sensor Routing Protocols. EAI Endorsed Trans.
Energy Web 2019, 6, 24. [CrossRef]

47. Eckmann, J.; Kamphorst, S.O.; Ruelle, D. Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci.
Ser. A 1995, 16, 441–446.

48. LeCun, Y.; Bengio, Y. Convolutional networks for images, speech, and time series. Handb. Brain Theory
Neural Netw. 1995, 3361, 1995.

49. Hassan, M.M.; Uddin, M.Z.; Mohamed, A.; Almogren, A. A robust human activity recognition system using
smartphone sensors and deep learning. Future Gener. Comput. Syst. 2018, 81, 307–313. [CrossRef]

50. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique.
J. Artif. Intell. Res. 2002, 16, 321–357. [CrossRef]

51. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software:
An update. ACM SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]

52. Sukor, A.A.; Zakaria, A.; Rahim, N.A. Activity recognition using accelerometer sensor and machine learning
classifiers. In Proceedings of the 2018 IEEE 14th International Colloquium on Signal Processing & Its Applications
(CSPA), Batu Feringghi, Malaysia, 9–10 March 2018; pp. 233–238.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2017.2712746
http://dx.doi.org/10.1109/TII.2018.2869843
http://dx.doi.org/10.1016/j.procs.2014.07.009
http://dx.doi.org/10.1109/JBHI.2017.2753464
http://www.ncbi.nlm.nih.gov/pubmed/28922132
http://dx.doi.org/10.1016/j.comcom.2019.12.003
http://dx.doi.org/10.1016/j.comcom.2019.10.034
http://dx.doi.org/10.1016/j.vehcom.2019.100184
http://dx.doi.org/10.1109/JIOT.2020.2970995
http://dx.doi.org/10.4108/eai.11-6-2019.160835
http://dx.doi.org/10.1016/j.future.2017.11.029
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1145/1656274.1656278
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Proposed Methodology
	Data Collection
	Preproscessing
	Feature Extraction
	Data Balancing
	Activity Recognition

	Evaluation and Analysis
	Evaluation Measures
	Results
	Axis Analysis of Activities
	Comparative Analysis

	Conclusions and Future Work
	References

