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Abstract: High-speed railways have been one of the most popular means of transportation all over
the world. As an important part of the high-speed railway power supply system, the overhead
catenary system (OCS) directly influences the stable operation of the railway, so regular inspection
and maintenance are essential. Now manual inspection is too inefficient and high-cost to fit
the requirements for high-speed railway operation, and automatic inspection becomes a trend.
The 3D information in the point cloud is useful for geometric parameter measurement in the
catenary inspection. Thus it is significant to recognize the components of OCS from the point
cloud data collected by the inspection equipment, which promotes the automation of parameter
measurement. In this paper, we present a novel method based on deep learning to recognize point
clouds of OCS components. The method identifies the context of each single frame point cloud by
a convolutional neural network (CNN) and combines some single frame data based on classification
results, then inputs them into a segmentation network to identify OCS components. To verify
the method, we build a point cloud dataset of OCS components that contains eight categories.
The experimental results demonstrate that the proposed method can detect OCS components with
high accuracy. Our work can be applied to the real OCS components detection and has great practical
significance for OCS automatic inspection.

Keywords: catenary inspection; deep learning; LiDAR; OCS; point cloud recognition

1. Introduction

Since the 21st century, the high-speed railway has gradually become an important transportation
mode. As a faster and safer travel option, the high-speed railway system faces huge challenges in
operation and maintenance. To ensure safety and reliability, the periodical inspection and maintenance
of the railway system are essential [1]. With the increase of operation length, the cost of maintenance
has become a huge burden. Therefore, the efficiency and reliability of inspection are vital.

The overhead catenary system (OCS) undertakes the task of providing stable power for the
high-speed train. It consists of the catenary wire, dropper, contact wire, pole, and support structure,
as shown in Figure 1. The support structure supports and fixes the catenary wire. The catenary wire
and dropper are used to hang the contact wire to keep it level, and the pantograph above the train
contacts with the contact wire to get electricity. The geometric parameters of the components directly
affect the quality of the current collection and driving safety. The pantograph may hit the steady
arm if the slope of the steady arm is too small [2], and improper height of the contact wire is bad
for current collection and increases the wear between the pantograph and the contact wire. Due to
long-term operation in the outdoor environment and the impact of the pantograph, the components
might become loose and damaged, and geometric parameters also change, which would affect the
normal operation of OCS. The OCS inspection aims to find the abnormal conditions of components,
provide the basis for maintenance, and ensure safe operation. Geometric parameters measurement

Sensors 2020, 20, 2212; doi:10.3390/s20082212 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-8907-3139
https://orcid.org/0000-0002-1323-3175
https://orcid.org/0000-0003-4355-1737
https://orcid.org/0000-0003-4807-3703
https://orcid.org/0000-0002-4330-240X
http://dx.doi.org/10.3390/s20082212
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/8/2212?type=check_update&version=2


Sensors 2020, 20, 2212 2 of 17

and defect detection are important tasks of OCS inspection. Whether the geometric parameters meet
the requirement and the states of components determine if the catenary system works normally.

Figure 1. OCS structure.

Traditionally, manual operation is the most common OCS inspection method. The staff walk along
the rail track and work with portable measuring devices [3]. This inspection method is quite costly,
inefficient, prone to error, and requires high technical workers. It is hard to meet the large maintenance
requirements. To improve efficiency and decrease maintenance costs, many researchers have developed
some automatic inspection equipment and intelligent detection methods. The mobile non-contact
detection method is one; a camera or LiDAR (Light Detection And Ranging) is mounted on mobile
equipment to collect the information of OCS, then automatically identify particular OCS components
in the data, measure specific parameters or detect their fault states. In recent years, deep learning
has been widely used in computer vision [4] because of its excellent performance, and many scholars
have adopted this method to process the 2D images of OCS to improve the detection efficiency and
accuracy [5–7]. However, there are few works based on the point cloud. The image-based detection
method is often used to detect the abnormal state of components, such as slack, breakage, and missing.
Compared with 2D-image, the point cloud contains three-dimensional coordinate information of the
scene, which is useful to measure geometric parameters [8,9]. Therefore, the study of automatically
processing the catenary point cloud has great significance.

Automated analysis of catenary point clouds mainly includes automatic recognition of OCS
components from the point clouds and parameter measurement based on the recognition results
and spatial information, and the first is necessary and most important. The OCS consists of many
components, and the railway environment is very complicated, which makes identification quite
difficult. The deep learning can extract high-dimension features automatically and efficiently,
and a large number of models based on it are proposed for the point cloud recognition task [10].
Those models have superior performance and reach a higher benchmark. So the deep learning
is promising for point cloud classification and recognition of OCS and can be adopted to realize
automated inspection.

The objective of this work is to identify the catenary components with point clouds based on deep
learning. The contributions are as follows:

1. Introduce the deep learning to the multiple catenary components recognition based on the point
cloud, such as catenary wire, dropper, contact wire, pole, and support structure. The support
structure is further subdivided into the insulator, cantilever, registration arm, and steady arm.

2. Propose a recognition framework to deal with the problems about training and recognition caused
by large-scale point cloud in the catenary scene.

3. Design a segmentation model to improve the recognition accuracy of some OCS components in
complex scenarios.
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The experimental results show the effectiveness and performance of the method, providing a way
for target identification in automated OCS inspection.

This paper is organized as follows. Section 2 discusses related work about catenary recognition
and point cloud. Section 3 introduces the details of our method. Section 4 shows and discusses the
experimental results. The conclusions and future work are presented in Section 5.

2. Related Work

The point cloud recognition algorithms mainly include edge-based, region growing, model fitting,
clustering-based, and machine learning [11]. Now, many studies about point cloud recognition of
catenary are based on these methods. The work [12] proposed the region growing algorithm for
segmenting the railway scene, then adopted the KD tree and the closest point searching algorithm to
achieve the classification of the segmented point cloud. In [13], the catenary support structure was
divided by R-RANSAC (Region-Random Sample Consensus) algorithm and Euclidean clustering,
the geometric parameters of the steady arm could be calculated with the space vector information
of segmented linear part. The cantilever is a crucial part of the catenary support equipment.
For monitoring the state of the cantilever structure, the authors in [14] adopted the improved LCCP
(locally convex connected patches) to segment the cantilever structure and presented a new RANSAC
(random sample consensus) algorithm to measure the geometry parameters of cantilever structure.
The proposed approach could satisfy the practical inspection requirement. To automate the processing
of catenary point clouds obtained with the MMS (mobile mapping system), Pastucha [15] utilized
RANSAC to detect and classify the cantilevers, support structures, and catenary wires, then improved
the classification result with a modified DBSCAN clustering algorithm. The above methods are based
on strict handcrafted features from geometric rules and constrained by designed prior knowledge.
The extracted features have a limited ability to describe the statistical relation of data, so these methods
are mainly for specified detection targets. The methods based on machine learning can model the
representative feature distribution from the training data and identify multiple targets. Aiming at
improving the recognition result of complex railway scenes, Jung et al. [16] designed a classifier
based on the MrCRF (multi-range Conditional Random Field) and SVM (support vector machine) to
identify ten key components, introducing neighbor information for the misclassification caused by
similar features. The MrCRF only takes spatial information within limited ranges and not considers
the shape and size variance, so Chen et al. [17] introduced the hierarchical CRF model to solve the
problems. They also utilized the fully connected CRF model to gather all contextual information. Both
methods realize the simultaneous recognition for multiple catenary components based on the point
cloud, but not further divide the support structure.

Deep learning can extract features automatically from the data. It promotes the development
of computer vision greatly and has been applied to object classification, object localization,
semantic segmentation. Many researchers have used this method to process the captured 2D-images
of OCS for efficiently locating the components and identifying the faults. In [18], authors applied
deep learning algorithms to locate catenary support components in the images and detect their
faults, finding that deep learning methods can identify multiple categories and are greatly superior
to traditional methods based on artificial features in accuracy and timeliness. Chen et al. [19]
built a cascaded CNN architecture to detect the tiny fasteners in catenary support devices from
the high-resolution images and reported their missing states, with a good detection accuracy and
robustness. Due to the long-term impact of the environment, defects in the components are inevitable.
Aiming at achieving automated insulator defect identification, Kang et al. [20] presented a detection
system based on a deep convolutional neural network, which has an excellent detection performance
and can be applied to the inspection system. There are many other studies based on deep learning
processing the catenary image, but few for the point cloud.

The point cloud is irregular and unordered, so it is hard to utilize deep learning for point
cloud recognition. Inspired by feature learning approaches based on deep learning used for image
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recognition, researchers proposed some methods to process point cloud. These methods [21–24]
transform the point clouds to voxel-based representation or 2D images as input to deep neural
networks, obtaining better recognition results compared with traditional methods based on
handcrafted features. However, these methods generally miss much spatial information when
transforming and take a long time to train the model. To improve computing efficiency and
keep spatial information, some deep learning models based on raw point cloud are proposed.
PointNet [25] is a pioneering network architecture that works on raw point cloud and has been
used for 3D object recognition [26–28]. It improves the performance of point cloud classification
and segmentation. However, it does not take the local structure information within neighboring
points into account, which leads to loss of relevant information and a bad segmentation result in large
scenes. Drawing inspiration from PointNet, many researchers study how to improve the semantic
segmentation result by constructing local relationships among points. Point cloud recognition research
is driven by the development of deep learning techniques, which provides a theoretical basis for point
cloud recognition based on deep learning in intelligent OCS inspection.

3. Methodology

3.1. Target Components

The OCS structure is shown in Figure 1. There are eight important components: catenary wire,
dropper, contact wire, insulator, pole, cantilever, registration arm, and steady arm, respectively.
Their reliability is vital to the long-term stable operation of OCS, so they are the main targets of
inspection. The OCS is so large-distributed that it is very difficult to get access to each of its components.
Therefore, the inspection systems are mainly based on vehicle-mounted optical sensors, which allows
measurement without physical contact, and improves detection efficiency and security. LiDAR is one
of the optical sensors often used to collect spatial information of catenary for geometry inspection.
To achieve automatic detection, automatic processing of massive amounts of data acquired by LiDAR
is essential. Thus, our main goal was to recognize those key components in the point clouds.

3.2. Construction of Dataset

Dataset is indispensable to deep learning for the recognition tasks, providing a mass of labeled
samples for verifying the proposed methods. Efficient and rich datasets can make the model robust and
guarantee the results for subsequent processing. Some famous large-scale datasets such as S3DIS [29],
ShapeNet [30], and ScanNet [31] are built for promoting the study of point cloud recognition, but there
are no open point cloud datasets for the catenary system. To verify the proposed method, we need to
build a point cloud dataset.

Figure 2 shows the mobile inspection equipment used to collect data and the coordinate system
of the point cloud data. Portability, low-cost, automation, and good stability make the equipment
widely used in OCS inspection. A SICK LiDAR is mounted on a device to gather catenary data and
its scanning direction towards the sky. The range of scanning angle is 90◦ to 180◦, and the scanning
frequency is 25 Hz. The x, y are calculated by the distance measured by the LiDAR and angle, the z
is related to the movement distance of the equipment. The equipment is driven by a motor, and the
max move speed is set to 1 m/s to collect intensive data. About 16 km point cloud data are filtered
and labeled manually by self-made software. The annotated point clouds are visualized in Figure 3,
and the interested components mentioned above are set to different colors.
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Figure 2. Data collection equipment and coordinate system.

Figure 3. Annotated point cloud of catenary.

3.3. Recognition Framework

The point clouds of the catenary are large-scale, and a few hundred meters of railway scene can
contain more than 100,000 points. Therefore it is quite hard to train a good segmentation model with
whole scene data, which requires high memory and training time costs. Besides, the amount of data for
different types of components are very uneven, some are sparse like the dropper while some are dense
like the pole, and training a model with the whole scene leads to a bad recognition result for sparse
categories. For this problem, the most straightforward approach is to divide the whole scene into many
groups, and each group contains multi frame point clouds, then use a segmentation model to recognize
every group. If the numbers of frames in subdivided groups are same, it is hard to determine which
number is better for recognition, because the number of frames for the pole is quite different from
that for the dropper, and the data of a component are probably divided into two groups, which harms
recognition accuracy due to the lack of data integrity.

We propose a solution to address the problems mentioned above. The point cloud data of the
whole scene is composed of many single frames. According to the scan range of the LiDAR, a single
frame consists of point cloud data in the area of the XY plane from 90◦ to 180◦ at a certain movement
distance. It can be classified into wire, dropper, and pole, as shown in Figure 4. The wire context
contains the catenary wire and contact wire, the dropper context includes the wire and dropper, and the
pole context consists of the wire, insulator, pole, cantilever, registration arm, and steady arm. Therefore,
we use a single frame classification model to classify every frame, then combine adjacent frames based
on classification results. The whole scene can be separated into many groups with different numbers
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of frames, and the data integrity of each component is guaranteed. After that, a segmentation model is
adopted for recognition of the components in every group. The proposed method is shown in Figure 5
and Algorithm 1, and it has three advantages:

1. The large-scale catenary scene can be well compartmentalized for training and recognition.
The segmentation model training costs and the difficulty of identifying components are reduced.

2. The subdivided groups can be identified by different segmentation models based on classification
results. The simple model identifies the simple scenes (wire, simple dropper), while the complex
model identifies the complex scenes (complex dropper, pole).

3. It is applicable for subsequent processing after data collection of the entire railway scene,
and analysis during the inspection.

(a) Wire (b) Dropper (c) Pole

Figure 4. Context of the projection of a single frame point clouds onto the XY plane.

Figure 5. Recognition framework.
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Algorithm 1 Recognition Algorithm.

1: initial S← ∅; //The set of single frames.
2: initial C ← wire; //The category of S.
3: initial M← [M0, M1, M2]; //The minimum number of frames combined into a group.
4: repeat
5: F = ReadSingleFrame(); //Read single frame data.
6: L = SingleFrameClassi f ication(F); //Single frame classification model classifies the single

frame.
7: FS, S, C = CombineSingleFrames(F, L, S, C, M); //Combine single frames into a group. The

method is shown in Algorithm 2.
8: if FS 6= null then
9: R = MultiFramesSegmentation(FS); //Segmentation model recognizes the components in

the combined single frames.
10: end if
11: until without single frame data.

3.4. Single Frame Classification Model

According to the scanning direction and range of the LiDAR, the context of a single frame point
clouds of catenary can be classified into wire, dropper, and pole, as shown in Figure 4. There are two
sets of wires in some scenes, as shown in Figure 6, so there are two categories of wire and dropper
context. Here, we use a convolutional neural network (CNN) as the single frame classification model
to identify the context of each frame data. Its architecture was inspired by the PointNet [25] and shown
in Figure 7.

Figure 6. The wire scenes.

Figure 7. Single frame classification model.

The CNN takes the 3D coordinates of n points as input, applies feature transformations via
three fully convolutional blocks, then combines the point features through global max pooling,
finally outputs the classification scores of three classes with the three-layer perceptron. The one with
the highest score is the predicted category. Each fully convolutional block contains a 1d-convolutional
layer and a ReLU activation layer, and it is used as a feature extractor. The max-pooling is adopted to
obtain the global features.
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The CNN identifies the context of every single frame point cloud, and the adjacent frames
are combined into groups based on the classification results. The combined method is shown in
Algorithm 2. The set S is used to store the single frames. The minimum numbers of frames forming
a group (wire, dropper and pole) are denoted by M0, M1, M2. Every frame is added to the S. When
the length of S is greater than or equal to the minimum numbers, the single frame point clouds in S
form a group. For the wire, when M0 consecutive frames are classified into wire, the M0 frames are
combined into a group representing the wire. When a single frame point cloud is classified into the
dropper and pole, subsequent single frames are added to the S until the length of S meets the quantity
required and the last single frame is classified into the wire. The reason for the last single frame is
wire is to prevent the data of a component is divided into two groups. The combined result will be
recognized by a point cloud segmentation model.

Algorithm 2 Combine single frames into a group.
Input:
(1) F: A single frame point clouds.
(2) L: The classification result, the value is wire, dropper or pole.
(3) S: The set of single frames. This output is used as the next input.
(4) C: The category of S. The value is wire, dropper or pole, and the default is wire. This output is

used as the next input.
(5) M: The map consisting of C and the minimum number of frames forming a group representing C.

Output:
result: The combined single frames. It may be null.

1: initial result← null;
2: push the single frame into the set S.append(F);
3: if L 6= wire then
4: C ← L;
5: end if
6: if Length(S) ≥ M[C] and L = wire then
7: result← S;
8: S.clear();
9: C ← wire;

10: end if
11: return result, S, C

3.5. Point Cloud Segmentation Model

The single frames of point clouds are identified by the single frame classification model, and the
adjacent frames are combined into a group based on their categories. The combined result can be
classified into wire, dropper, and pole, as shown in Figure 8. There are eight types of components,
and the segmentation model is used to recognize them in every group.

(a) wire (b) dropper (c) complex dropper (d) pole

Figure 8. Categories of multi frame point clouds.

To work on point cloud directly and be invariant to input permutation, the PointNet extracts
features for each point independently with the multi-layer perceptron (MLP), and it does not capture
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the relationship between adjacent points, which leads to limited recognition performance in the
complex scenes. In the catenary system, the point clouds for some components are sparse, such as
dropper and steady arm, lacking local neighborhood information causes a bad recognition result of
them. Therefore it is necessary to combine the local neighborhood information to improve segmentation
results in catenary scenes.

Many researches have proven that exploiting local structure information is vital for the success of
convolutional architectures. The CNN captures local features progressively in a hierarchical way to get
global features, which has better generalizability to complex cases. The data format of an image likes
a regular grid, which makes the convolutional model can capture local features well and efficiently.
However, point clouds are inherently irregular. Any permutation order of them does not change the
spatial distribution and the represented shape. Thus, the methods used for extracting the local features
need to maintain permutation invariance, and the results do not change with the order of point clouds.

Consider a D dimensional point cloud with n points, the feature of each point is denoted by
Fxi ∈ RD, i = {1, ..., n}. In the simplest case of D = 3, the feature of a point is represented by its 3D
coordinates. In a deep neural network architecture, dimension D represents the feature dimension of
a network layer, which is also the dimension of high-level features constructed directly or indirectly
by the low-level features of the points.

For each point xi, i = {1, ..., n}, we take it as the center of a local region and construct its local
neighborhood N(xi) using the k-nearest neighbor (k-NN) algorithm, and extract the local feature with
its neighbors xj ∈ N(xi), j = {1, ..., k}. The local feature of point xi is denoted as Lxi ∈ RD, i = {1, ..., n}.
Based on the characteristics of point cloud mentioned above, the local feature should be invariant to
the order of points, so the methods of combining features need to satisfy the permutation invariance.
The common methods include summation, maximization, and so on, here we choose the summation.
In the three-dimensional space, the geometric relation reflects the spatial information and is favorable
to recognition, so we take the geometric relations between the center and its neighbors into account to
extract the local feature more effectively. As a consequence, the local feature is formulated as

Lxi = ∑
xj∈N(xi)

Wij · Fxj (1)

where Wij denotes the high-level relation between the center xi and neighbor xj, and it is constructed
by the geometric relation in the 3D space.

In the Euclidean distance algorithm, the correlation between points is related to their distance.
The point xj is considered to the same class as the point xi when their distance is less than a threshold.
The smaller the distance, the more likely the same class is, on the contrary, the possibility of falling in
the same category is lower. Inspired by this, we use the distance to construct Wij, and this process is
described as

Wij = hΘ(d(xi, xj)) (2)

where d(xi, xj) is the difference of the 3D coordinates, and hΘ is a nonlinear function with learnable
parameters Θ. Here we adopt a 2d-convolutional block to implement hΘ due to its powerful ability
for abstracting relation expression. The d(xi, xj) is only relevant to both xi and xj, hΘ is shared
to all neighbors, so Wij is independent to the irregularity of points, and the local feature Lxi is
permutation-invariant.

Finally the features of center and the local features are combined together to build high-level

features F
′
xi
∈ RD

′
of center, as shown below:

F
′
xi
= gΦ(Fxi , Lxi ) (3)

where gΦ is a nonlinear function implemented by a 1d-convolutional block and similar to hΘ.
The method mentioned above for extracting features of points is visualized in Figure 9a, it contains
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the features of center and neighbors, and takes their geometric relations into account. We take this
method as the feature extraction unit (FEU) of our point cloud segmentation model, which is inspired
by the network architecture for segmentation proposed in [25] and shown as Figure 9b. The model
adopts the feature extraction unit to obtain the high-level features of points, then aggregates multilevel
features to obtain the global features, after that concatenates the global and multilevel features as the
input of the multi-layer perceptron, finally outputs per point scores for classifying each point.

(a) Feature extraction unit

(b) Architecture

Figure 9. Segmentation model.

4. Experimental Results and Analysis

In this section, we quantify the performance of the proposed method on the point cloud dataset
of catenary mentioned in Section 3.2. The experimental environment is as follows: Deep learning
framework Pytorch, Intel(R) Xeon(R) E5-2623 v4 Processor, 32 GB RAM, and a GPU NVIDIA Quadro
P5000.

4.1. Single Frame Classification Performance

The proposed single frame classification model CNN has three fully convolutional blocks and
three-layer perceptron. From the first to third convolutional blocks, the output channel is set to 64, 128,
1024, and the output channels of three-layer perceptron respectively are 256, 128, 3. About 6500 frames
of the point cloud are selected in the experiment, 5200 samples are training set, and 1300 samples are
testing set. During the training process, we use Adam optimizer with an initial learning rate of 0.001,
and the learning rate decays by a factor of 0.5 every 25 epochs. The number of points per frame is
different, so the batch size is set to 1. This paper uses the overall accuracy (OA) as the performance
metric of the single frame classification model, and it is equal to the number of correctly classified
frames (Correct Number) divided by the total number of frames (Total Number).

Overall Accuracy =
Correct Number

Total Number
(4)
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As shown in Figure 10, during the training process, the overall accuracy of the testing dataset
increased rapidly and finally reached about 98.69%. Figure 11 visualizes the classification results for
two examples. It can be observed that the single frames are well classified as wire, dropper, and pole.
The points of the dropper in some single frames are so few that those frames are misidentified as the
wire, but the single frames with many points of dropper can be classified correctly. The approximate
positions of dropper are founded based on the frames with many points of the dropper, then a certain
number of frames can be selected around them as the groups representing the dropper scenarios.

Figure 10. The overall accuracy of single frame classification model curves.

(a) Ground Truth (b) Prediction

Figure 11. Classification results. The first column is the ground truth, and the second is prediction.
The point clouds in a single frame are set to the same color based on the category of the single frame
(wire in magenta, dropper in dark yellow, and pole in black). The arrows point to the projection of the
point clouds near the dropper on the YZ plane (the coordinate system is the one of the collected data).
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4.2. Segmentation Performance

The segmentation model has three feature extraction units, and the output channel of them is
denoted by D0, D1, D2. Here D0, D1, D2 is set to 64, 64, 128. The output channel of the 1d-convolutional
block is set to 1024. The multi-layer convolutional block consists of three 1d-convolutional blocks,
and their output channel respectively is 256, 128, and 8. In the experiment, we select multi frame
point clouds representing the wire, dropper, and pole from the dataset for training and verifying the
segmentation model.

To evaluate the performance of our segmentation model, we compare it with PointNet. They are
trained by Adam optimizer. The initial learning rate is 0.001, and it is divided by 2 per 50 epochs.
The number of points in every multi frame data is different, so the batch size is set to 1. Due to
uneven numbers of point clouds for catenary components, the overall accuracy is difficult to reflect the
performance of models, so we calculate the per category and mean accuracy.

Accuracy =
Number o f Correctly Classi f ied Points

Total Number o f Points
(5)

Mean Accuracy =
Summation o f Accuracy

Number o f Categories
(6)

In Table 1, we report per-category and mean accuracy. The k is the number of nearest neighbors.
As we can see, when k is 16, the mean accuracy of our segmentation model is 97.01%, the recognition
accuracy of each category is higher than with the use of PointNet, and the dropper and cantilever
show a notably better accuracy. The catenary wire, contact wire, and pole obtain a good segmentation
(about 99%) in both models, because of their simple structure and high density.

Table 1. Segmentation accuracy (%) comparison.

Method Mean CatenaryWire ContactWire Pole Insulator Dropper Cantilever RegistrationArm SteadyArm

PointNet 94.52 98.99 99.14 99.73 96.03 89.67 87.03 93.59 92.02

Ours (without local features) 95.55 98.97 99.52 99.85 96.57 91.61 92.06 93.6 92.19

Ours (k = 16) 97.01 99.45 99.79 99.8 97.36 96.39 92.81 95.23 95.27

In Figure 12, we visually compare the results of PointNet and our model. The wire and simple
dropper scenes are segmented well with both models. However, the PointNet classifies some points of
the dropper as the catenary wire in the complex dropper scenes, because it only uses the individual
point features and global features for recognition and does not capture the local neighborhood features.
On the horizontal plane corresponding to the misidentified part, the points of the catenary wire
are so dense that the extracted global features are mainly related to it, so the features combined by
individual features and global features are mostly obtained from the catenary wire, which leads to the
misidentification of the dropper. Due to the combination of local neighborhood information, our model
achieves improved segmentation results.
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(a) Ground Truth (b) PointNet (c) Ours

Figure 12. A comparison of the segmentation results. The first column is the ground truth. The second
and third columns are the prediction of the PointNet and our model. The points belonging to different
categories are colored differently (catenary wire in magenta, dropper in dark yellow, contact wire in
green, insulator in gray, pole in black, cantilever in dark green, registration arm in cyan, and steady
arm in dark red). The red areas are the main misclassified parts.
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4.3. The Segmentation Model Analysis

In this subsection, we analyze the effectiveness of the feature extraction unit and the different
numbers k of nearest neighbors.

To evaluate the performance of the feature extraction unit mentioned in Section 3.5, we replace
it with a 1d-convolutional block, which processes each point independently and does not extract
local neighborhood information. Table 1 shows the recognition accuracy comparison of the original
and modified model. The accuracy and loss of the training process are shown in Figure 13. We can
see that the model extracting local features outperforms the other one and has faster convergence
speed. Due to sparsity, the dropper, registration arm, steady arm have lower accuracy when lacking
neighborhood information. The local regions of points where the pole is connected to the cantilever or
insulator contain some points belonging to the cantilever or insulator, and the extracted local features
are quite related to them when the k is small, so the pole segmentation accuracy is reduced a little.
Table 2 shows their detection time for each sample. The model extracting neighborhood information is
slower because of the k-nearest neighbor (k-NN) algorithm for constructing the local neighborhood
and the convolution operation of the local neighborhood.

(a) (b) (c)

Figure 13. Training curves. (a) mean accuracy (b) dropper accuracy (c) loss.

Table 2. Comparison of the average inference time per sample.

Method Inference Time

PointNet 0.0014 s
Ours (without local features) 0.0012 s

Ours (k = 16) 0.0031 s

To investigate the impact of the number k of nearest neighbors, we experiment with different k,
as shown in Table 3. The segmentation model achieves 97.01% mean accuracy with k is 16. When k
is decreased to 8, the neighborhood information becomes less, and accuracy also decreases (96.6%).
When k increases, the neighborhood field is enlarged, the model captures more spatial information,
and the accuracy can reach 97.19%. The number of points far from the center increases, and those
points have less correlation with the center point, so the mean accuracy improves slowly. As k increases,
the number of convolution operations in the neighborhood of each point increases, so the prediction
speed becomes slower.

Table 3. Comparison of our model with different numbers of nearest neighbors.

Number of Nearest Neighbors (k) Mean Accuracy (%) Inference Time (s)

8 96.6 0.0030
16 97.01 0.0031
32 97.1 0.0034
64 97.19 0.0041
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5. Conclusions

This paper presents a method to identify some components of the catenary in point clouds based
on deep learning. Experiment results show that the proposed method has an excellent performance.
In our method, based on the classification results of the single frame identify model, it can segment the
components in different scenes with different models. The model which processes point independently
can obtain a segmentation of the wire and simple dropper environment with good performance,
and the proposed model which contains neighborhood information is more suitable for the complex
scenes.

Based on the recognition results and the 3D coordinate information, it can measure the geometric
parameters of OCS components, such as the height and stagger of the contact wire, the slope of the
steady arm, the mast gauge (the distance from the center of the railway line to the inside edge of the
pole). The point clouds in the areas where the components are connected are hard to be classified very
accurately, so some are misidentified. Besides, misidentification outliers may occur, although with
high accuracy. These effects on parameter measurement can be reduced by point cloud filtering or
clustering.

In the future, we plan to integrate the single frame classification model and segmentation model.
The measurement train is a common catenary inspection equipment, and we will test the performance
of the proposed method on the data collected by a moving measurement train.
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