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Abstract: In visual-inertial odometry (VIO), inertial measurement unit (IMU) dead reckoning acts as
the dynamic model for flight vehicles while camera vision extracts information about the surrounding
environment and determines features or points of interest. With these sensors, the most widely used
algorithm for estimating vehicle and feature states for VIO is an extended Kalman filter (EKF).
The design of the standard EKF does not inherently allow for time offsets between the timestamps
of the IMU and vision data. In fact, sensor-related delays that arise in various realistic conditions
are at least partially unknown parameters. A lack of compensation for unknown parameters often
leads to a serious impact on the accuracy of VIO systems and systems like them. To compensate
for the uncertainties of the unknown time delays, this study incorporates parameter estimation into
feature initialization and state estimation. Moreover, computing cross-covariance and estimating
delays in online temporal calibration correct residual, Jacobian, and covariance. Results from flight
dataset testing validate the improved accuracy of VIO employing latency compensated filtering
frameworks. The insights and methods proposed here are ultimately useful in any estimation
problem (e.g., multi-sensor fusion scenarios) where compensation for partially unknown time delays
can enhance performance.

Keywords: VIO; UAV; EKF; IMU; camera vision; time delay; latency compensation; online temporal
calibration; sensor fusion; navigation

1. Introduction

The most widely used algorithms for estimating the states of a dynamic system are a Kalman
Filter [1,2] and its nonlinear versions (e.g., extended Kalman filter (EKF) [3,4] and unscented Kalman
filter (UKF) [5]). The design of the standard Kalman filter does not inherently allow for significant
sensor-related delays in computation. Figure 2 shows that the delay is the time difference between
an instant when a measurement is taken by a sensor and another instant when the measurement
is available in the filter. As an example of key delay sources, some complex sensors such as vision
processors for navigation often require extensive computations to obtain higher-level information
from raw sensor data. Furthermore, a closed-loop system including control logic may be an overall
computational burden to a single processor. Delays resulting from heavy computation may distort
the quality of state estimation since a current measurement is compared to past states of a system
model. In other words, unless compensating delays in Kalman filtering, large estimation errors may
accumulate over time, or even cause the filter to diverge.
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The delay value is typically at least partially unknown and at least partially variable in many
real applications. As an example of delay uncertainty contributors, even though a local clock is
initially forced to synchronize with the centralized clock, deviations between clocks would occur
because of clock drift, skew, or bias. In sensor fusion systems, when the timestamps of each sensor
are typically recorded by triggered signals, non-deterministic, or non-quantized transmission delays
lead to unknown time offsets on sensor streams. Moreover, if low-cost sensors such as rolling shutter
cameras or software triggered devices are mounted on a vehicle, the variance of the uncertainty
of timestamps might be larger. In particular, in visual-inertial odometry (VIO), we do not know
the exact time instant when a camera opens and captures images for any particular pixel location.
Often, exposure time depends on surrounding illumination conditions. The timestamp of the latest
image by some cameras corresponds to some event such as when the shutter was triggered to start
or when the entire image was available in memory. In practice, these uncertainties may be small
compared to traditional sensors used for feedback in aerospace applications—but can be a major
contributor to errors in emerging estimation problems such as VIO. Indeed, when estimating faster
motions such as a highly agile unmanned aerial vehicle (UAV) or using progressive scan cameras,
the unknown time delays may be a major driver of navigation quality and achievable controller
bandwidth. We have experimentally observed the necessity of the time delay compensation to be
more accurate than typically demanded, specifically for a UAV flying closed-loop on a vision-based
navigation solution. With poor time delay compensation, we have observed oscillations and even
divergence of estimates and closed-loop tracking error as expected, but even when we use fixed/known
time delay compensation, we find time delay is still a limiting factor in accuracy and achievable control
bandwidth. To illustrate, consider a UAV with a body-fixed camera that maneuvers with a more
rapid rotation than reference design. Any time error produces a larger potential position estimation
error with this faster rotation. Thus, even after the very best job possible has eliminated as much
deterministic time delay error as is practical, we find that adapting to the non-deterministic error can
enhance performance. In particular, we find it can be beneficial to deal with unknown time delays in
VIO systems used in closed flight control and other systems like these.

1.1. Related Work

1.1.1. Visual-Inertial Odometry

In recent years, an increasing demand for the research of UAVs has prompted substantial
interest in VIO systems [6–9]. Delmerico and Scaramuzza [10] provide a benchmark comparison
of monocular VIO algorithms for flying robots. Similar to their comparison, Table 1 illustrates
state-of-the-art VIO techniques even including stereo VIO. Let us explain some relevant terms for
clarity. The tightly-coupled VIO jointly optimizes over all sensor measurements (i.e., visual and
inertial cost terms in VIO) within a single process which results in higher accuracy. The opposite is
referred to as the loosely-coupled. Indeed, the loosely-coupled VIO does not handle the correlation
of visual and inertial motion constraints, resulting in the loss of information. Moreover, at the
back-end of VIO, the optimization-based VIO solves a nonlinear least-squares problem (e.g., pose-graph
optimization or bundle adjustment [11]) to update a window of states, which allows for reducing
errors by re-linearization [12] but with a high computational cost and possibly stuck in the local
minima. In contrast, the filtering-based VIO updates only the most recent state by the Kalman filter
or EKF framework, resulting in computationally faster and more efficient, but one-time linearization
possibly leads to linearization errors into the estimator. For more details of the terminology,
see reference [13,14].
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Table 1. State-of-the-art Visual-Inertial Odometry.

Name ROVIO
[15]

VINS-MONO
[16]

SVO
+MSF

[17]

Alternating
Stereo

VINS [18]

S-MSCKF
[19]

OKVIS
[20]

Monocular × × ×
Stereo × × ×
Indirect × × × ×
Semi-direct ×
Direct ×
Loosely-Coupled ×
Tightly-Coupled × × × × ×
Optimization-based × ×
Filtering-based × × × ×
Open-source × × × × ×

VINS-MONO [16,21] is optimization-based visual simultaneous localization and mapping (SLAM)
including loop closure. Some processes in this approach are not efficient due to the following reasons.
VINS-MONO duplicates integration with the same IMU data at different timestamps for prediction
and optimization purposes. That is, for publishing odometry at IMU rate, it integrates whenever IMU
data arrives, whereas IMU data are also accumulated in a buffer for batch processing of integration
at the time of image measurement update steps. Mourikis first introduced a multi-state constraint
Kalman filter (MSCKF) [22,23], and Sun et al. [19] recently provided its stereo version. Although the
real-time high-frequency VIO outputs might be crucial for UAV attitude control, MSCKF does not
publish the odometry at the IMU rate but at the image rate. Furthermore, batch processing for IMU
data integration in MSCKF may add redundant time delays to the filter when vision measurements are
available. VINS-MONO and MSCKF are applicable to IMU and vision fusion. If we fuse other sensors
such as the global positioning system (GPS) and altimeters in navigation systems, those approaches
may not be operable since measurements from other sensors are available to update between images.
Another limitation is that assumptions for IMU pre-integration between keyframes and backward
propagation with loop closure in their approaches do not always hold. Hence, the EKF-based VIO
frameworks cover a greater scope of sensor fusion problems.

Faessler et al. [17] combined semi-direct visual odometry (SVO) [24,25] with modular multi-sensor
fusion (MSF) [26]. Even though this approach uses IMU data for fusing, since it is loosely-coupled,
its results are sub-optimal. Paul et al. [18,27] recently proposed alternating stereo VINS that
requires computation comparable to monocular VIO, yet provides scale information from the visual
observations. However, this method may not be sufficient for tracking fast motion in low-latency
demanding applications. Since the implementation is not open-source, this is not used for comparison
in this paper. Leutenegger et al. [20] introduced a consistent keyframe-based stereo SLAM algorithm
that performs nonlinear optimization over both visual and inertial cost terms. To maintain the
sparsity of the system, their approach employs an approximation rendering it sub-optimal. Since
it requires considerable computation resources or specific levels of sensors such as industrial grade
IMUs, operating OKVIS in real-time is more challenging. Among the six algorithms in Table 1, only
S-MSCKF and SVO+MSF handle an unknown time delay, so we will use their estimation results for
comparison in this study.
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1.1.2. State Estimation Using Time-Delayed Measurements

In a number of applications, a vital problem for combining data from various sensors is the fusion
of delayed observations, and if the computational delay is crucial, fusing the data in a Kalman filter is
challenging. During the last 20 years, the sensor time-delay problem has been addressed by a number
of methods, most of which modify the Kalman filter so that it handles delay in the sensor update
step. Alexander [28] derived a method of calculating a correction term and then added it to filter
estimates when lagged measurements arrive. However, because the uncertainty of measurements is
often an unknown quantity until the data are processed, applying the method in time-varying systems
is not addressed. To overcome the shortcoming, Larsen et al. [29] extrapolated a measurement to
a current time using the past and present estimates of the Kalman filter and calculated an optimal
gain for this extrapolated measurement. However, Larsen’s approach is exact for linear systems
only, but if the system dynamics and measurement equations are significantly nonlinear, it can be
highly inaccurate. For optimally fusing lagged sensor data in a general nonlinear system, Van Der
Merwe et al. [30,31] introduced a new technique called “sample-state augmentation,” based on
the Schmidt–Kalman filter [32] or stochastic cloning [33]. Appendix C provides detailed background
information about the new technique. Lastly, Gopalakrishnan et al. [34] provided a survey of all
previously noted methods.

All of the above methods assume that the amount of time delay is known. As an illustration,
those methods only work with synchronized sensors. However, the hardware synchronization
of most low-cost or customized sensors is not always available. Moreover, situations in which
a current, accurate time delay might not be known can arise in real applications. To deal with
the unknown time delays, Julier and Uhlmann [35] introduced the covariance union algorithm,
and Sinopoli et al. [36] modeled the arrival of intermittent observations as a random variable with a
probability. In addition, Choi et al. [37] and Yoon et al. [38] augmented a state vector with as many past
states as the maximum number of delayed steps. The size of this augmented state vector is extremely
large, and calculations with the large-size vector might require additional extensive computational
effort. Recently, for the uncertainty of time delays in state estimation, Lee and Johnson [39] also
suggested an approach combined with multiple-model adaptive estimation. However because of
imperfect information on a certain range of the delay value, this method might not be suitable if
uncertainty of time delay is high.

Instead, we directly estimate the time delay as an additional state since augmentation is a
straightforward means of handling the unknown delay. Nilsson et al. [40] investigated this idea using
the Taylor series expansion for small delays. However, delay values are typically larger than a time
step, and the linearization in their approach does not hold for large delays. Li and Mourikis [41] also
examined the state augmentation for estimating an unknown time offset between the timestamps of
two sensors. However, their approach is not optimal since it performs the measurement update of
delayed sensor data without the covariance correction that uses the cross-covariance term computed
during the delay period. Furthermore, in the recent optimization-based method proposed by Qin
and Shen [42], if cameras move at non-constant speed during the short time period like progressive
scan cameras, then their assumption does not hold. Despite the short time period, the camera
coordinate frame is still changing and moving. Their assumption of a constant time offset is also not
general since the unknown delay may be varying. To overcome all previously noted limitations,
this paper proposes a novel approach, “latency compensated filtering” based on the combined
parameter-state estimator [43,44].
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1.2. Summary of Contributions

To fuse visual measurements with unknown time delays in VIO systems and systems like them
(e.g., multi-sensor fusion), the approach in this paper incorporates three correction techniques into
state estimation. First, we directly estimate the unknown part of actual delays in online fashion by
augmenting vehicle-feature states. With the estimated unknown part and the approximately known
part of the delays, we find the most precise measurement times based on the definition of total delays
introduced in this paper. Next, at the calibrated measurement time, we evaluate the Jacobian and
the residual for the EKF using interpolated states. At the measurement update of the EKF, the third
correction is to formulate a modified Kalman gain by the cross-covariance term computed during
the delay period. The testing results of this study on flight datasets show that the proposed latency
compensated VIO is a more reliable and accurate navigation solution than the existing VIO systems.

1.3. A Guide to This Document

The remainder of this document contains the following sections. Section 2 introduces background
for all of this study. To estimate the unknown time delays and states of VIO, Sections 3 and 4 present
theory and implementation for a novel combination of the parameter estimation technique with the
modified EKF that compensates delayed measurements, respectively. Section 5 shows the testing
results of this study on the benchmark flight dataset. The last section concludes and plans future work.

2. Preliminaries

2.1. Sequential Measurement Update

When multiple measurements are observed at one discrete-time, sequential Kalman filtering,
shown in Figure 1, is useful [45]. In fact, we obtain N measurements, y1, y2, · · · , yN , at time k; that is,
we first measure y1, then y2, · · · , and finally yN .

Figure 1. A schematic of the sequential measurement update.

We first initialize a posteriori estimate and covariance after zero measurement is processed; that
is, they are equal to the a priori estimate and covariance . For i = 1, · · · , N, perform the general
measurement update using the i-th measurement. We lastly assign the a posteriori estimate and
covariance as x̂+k ← (x̂k)N and P+

k ← (Pk)N . To clarify, hat “^” denotes an estimate, and superscript −
and + a priori and a posteriori estimates, respectively. Based on Simon [45]’s proof that the sequential
Kalman filtering is an equivalent formulation of the standard EKF, the order of updates does not affect
the overall performance of estimation.
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2.2. Vehicle Model

The nonlinear dynamics of a vehicle is driven by IMU sensor data including specific force and
angular velocity. The estimated vehicle state is given by

x̂V =
[

i p̂T
b/i

i v̂T
b/i δθ̂

T b̂T
a b̂T

ω

]T
, (1)

where pb/i, vb/i are the position and velocity of the vehicle with respect to the inertial frame,
respectively. δθ is the error quaternion of the attitude of the vehicle, and its more details are explained
in references [46–48]. ba, bω are the acceleration and gyroscope biases of the IMU, respectively.
Left superscript i denotes a vector expressed in the inertial frame. The EKF propagates the vehicle
state vector by dead reckoning with data from the IMU. Raw IMU sensor measurements araw and ωraw

are corrupted by noise and bias as follows:

araw = atrue − Tb/i
ig + ba + ηa, ḃa = ηba (2)

ωraw = ωtrue + bω + ηω, ḃω = ηbω
, (3)

where atrue, ωtrue are the true acceleration and angular rate, respectively, and g is the gravitational
acceleration in the inertial frame. ηa, ηω are zero-mean, white, Gaussian noise of the accelerometer
and gyroscope measurement, and ηba , ηbω

are the random walk rate of the acceleration and gyroscope
biases. Tb/i = Ti/b

T denotes the rotation matrix from the inertial frame to the body frame.
The vehicle dynamics is given by

i ˙̂pb/i =
i v̂b/i (4)

i ˙̂vb/i = T̂i/b ( araw − b̂a ) +
ig (5)

˙̂qi/b′ =
1
2
Q(ωraw − b̂ω ) q̂i/b′ (6)

δ ˙̂θ = −
⌈
(ωraw − b̂ω )×

⌋
δθ̂ (7)

˙̂ba = 0 (8)
˙̂bω = 0, (9)

where dα×c is a skew symmetric matrix, and functionQ(·) maps a 3 by 1 vector of the angular velocity
into a 4 by 4 matrix [44]. The use of the 4 by 1 quaternion representation in state estimation causes
the covariance matrix to become singular, so it requires considerable accounting for the quaternion
constraints. To avoid these difficulties, engineers developed the error-state Kalman filter in which 3 by
1 infinitesimal error quaternion δθ is used instead of 4 by 1 quaternion q in the state vector. In other
words, we use attitude error quaternion δqb/b′ to express the incremental difference between tracked
reference body frame b′ and actual body frame b for the vehicle.

qi/b = q̂i/b′ ⊗ δqb′/b (10)

δqb′/b = q̂−1
i/b′ ⊗ qi/b '

[
1

1
2 δθ

]
, (11)

where ⊗ is quaternion product defined in reference [47]. Resulting rotation matrices with error
quaternion and with respect to the nominal reference body frame are

T (qi/b) = T̂b/i = T̂b/b′ T̂b′/i (12)

T̂i/b′ = T̂ T
b′/i = T (q̂i/b′)

T (13)

T̂b′/b = T̂ T
b/b′ '

(
I + [δ̂θ×]

)T
. (14)
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Jacobian matrix A = ∂ ẋ
∂ x |x̂ and B = ∂ ẋ

∂ η , where η = [ ηT
a , ηT

ω, ηT
ba

, ηT
bω

]T, are computed in Appendix A.

2.3. Camera Model

An intrinsically calibrated pinhole camera model [49,50] is given by

[
uj
vj

]
= yj = hj (x) + ζ j =

 fu
cXj
cZj

+ ζuj

fv
cYj
cZj

+ ζvj

 (15)

[
cXj, cYj, cZj

]T
= c p f j/c = Tc/i

(
i p f j/i − i pc/i

)
= Tc/b T (qi/b)

(
i p f j/i − i pb/i

)
− Tc/b

b pc/b (16)

where x is the state vector including the vehicle and feature state, and measurement yj is the j-th
feature 2D location on the image plane. fu, fv are the horizontal and vertical focal lengths, respectively,
and ζu, ζv are additive, zero-mean, white, Gaussian noise of the measurement. Vectors p f j/c, p f j/i
are the j-th feature 3D position with respect to the camera frame and the inertial frame, respectively.
Extrinsic parameter Tc/b and b pc/b are known and constant, and rotation matrix T̂c/i = Tc/b T̂b/b′ T̂b′/i.

Jacobian matrix Cj =
∂ yj
∂ x |x̂ is computed in Appendix A.

2.4. Feature Initialization

From Equation (16), if j-th measurement yj on an image is a new feature, then i p f j/i is unknown
so it needs to be initialized. In the first step of the measurement update, we employ Gauss–Newton
least-squares minimization [22,51] to estimate feature 3D position i p̂ f j/i. To avoid local minima,
we apply the inverse depth parameterization of the feature position [52] that is numerically more
stable than the Cartesian parameterization. In other words, by the derivation explained in Appendix B,
we obtain j-th feature 3D position c1 p̂ f j/c1 with respect to c1 left camera frame of a stereo camera.

The j-th feature 3D position with respect to the inertial frame is

i p̂ f j/i = T̂i/c1
c1 p̂ f j/c1 +

i p̂c1/i

= T̂i/b Tb/c1
c1 p̂ f j/c1 +

(
i p̂b/i + T̂i/b

b pc1/b

)
= T̂i/b′ T̂b′/b

(
Tb/c1

c1 p̂ f j/c1 +
b pc1/b

)
+ i p̂b/i. (17)

The new feature is initialized using only one image in which the feature is first observed. Although the
new feature is initialized, since it still entails uncertainty, the EKF recursively estimates and updates its
3D position by augmenting into the state vector:

x̂ =
[

x̂T
V

i p̂T
f j/i

]T
, (18)

where x̂V is the estimated vehicle state vector defined in Equation (1). The overall initialization includes
the initial value of the feature state and its error covariance assignment. The error covariance of the
new feature are initialized using state augmentation with Jacobian J:[

P ∗
∗ ∗

]
=

[
I
J

]
P
[

I JT
]
=

[
P P JT

J P JPJT + Pfnew

]
, (19)

where Jacobian J =
∂ p f /i

∂ x

∣∣
x̂ is computed as follows:
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J =
[

I3×3 03×3 −T̂i/b′
⌈
( Tb/c1

c1 p̂ f j/c1 +
b pc1/b )×

⌋
03×6 03×3N f

]
. (20)

N f is the number of all features and Pfnew is the initial uncertainty of the initialized new feature.
The error pertains to measurement noise and the error of the least-squares minimization. In fact,
since Montiel et al. [52] validate the initial uncertainty as a Gaussian distribution, the EKF
including the feature initialization still holds optimality. Equations (18)–(20) arise based on “consider
covariance analysis [53,54]”.

Once initialized, the EKF processes the feature state in the prediction-update loop. In the time
update of the EKF, we propagate P by[

Φ 0
0 I

] [
PVV PV f
Pf V Pf f

] [
ΦT 0
0 I

]
+

[
QV 0
0 Q f

]
=

[
Φ PVV ΦT + QV Φ PV f

Pf V ΦT Pf f + Q f

]
, (21)

where state transition matrix Φ ≈ I + A ∆t. PVV := E[ (xV − x̂V)(xV − x̂V)
T ], Pf f is the error

covariance of all features, and PV f = PT
f V represents vehicle–feature correlations. In addition, we

assume that the surroundings are static, so the dynamics of features ˙̂p f j/i = 0. In the measurement
update of the EKF, only tracked features are used for the update. For the efficient management of the
map database, if the size of the state vector exceeds than the maximum limit, then the feature with the
least number of observations is pruned and marginalized.

3. Theory

3.1. Definition of Time Delays

Based on dead reckoning, the EKF propagates state x and its error covariance P at time t when
IMU sensor data araw and ωraw are measured. Since an IMU is a discrete-time sensor, the time update
of the EKF is processed in discrete time step k = (integer) (t / ∆ tIMU), where (integer) defines the
conversion of all data types to integers, continuous time t ∈ [0, tfinal], and ∆ tIMU is the sampling rate
of the IMU. ∆ tIMU is generally almost constant since a micro controller such as Arduino and Pixhawk
calculates precise timestamps in milliseconds for each IMU measurement. Next, whenever new vision
data from an image are arrived at the filter, the EKF performs the measurement update for correcting
the state estimate and its error covariance. As introduced in Section 1, various reasons such as image
processing produce time delays that the time stamps of vision data contain. For clarity, this section
defines the time delay in detail.

Latency is the time difference between when an image was grabbed and when vision data from
the image are updated in the filter, shown in Figure 2.

That is, true delays ∆ td are written as

t = timg + ∆ td, (22)

where t is current IMU time and timg is the time when the current image was captured. In essence,
we treat IMU time as our common time reference, and we do not necessarily know the exact time
when images are grabbed. The timestamp of each image is encoded by indirect ways such as triggers.
In other words, true image time timg constitutes readable timestamps timg, raw and unknown δtd. Let
us define time differences ∆ t̄d between the time readouts of sensors as follows:

timg, raw = timg + δtd (23)

∆ t̄d := t− timg, raw = ∆ td − δtd (24)

∆ td = ∆ t̄d + δtd, (25)

where ∆ t̄d and δtd are the approximately known and the unknown parts of true delays td, respectively.
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Figure 2. Data streams of the IMU and the delayed vision data.

3.2. Approximately Known Part of Time Delays

∆ t̄d is either a fixed value determined by offline beforehand tuning or readable differences
between the time stamps of image and the time stamps of IMU data. Indeed, regardless of a constant
value or readable varying delays, approximate delay ∆ t̄d is a known value. Let the discrete steps of
the approximately known part be d = (integer) (∆ t̄d / ∆ tIMU), where (integer) means type conversion
to integer from other types; that is, d is the quotient of division ∆ t̄d

∆ tIMU
.

3.2.1. Jacobian and Residual—“Baseline Correction”

Since δtd is unknown, we first consider only the ∆ t̄d term as our delay of the system. From the
system models given in Sections 2.2 and 2.3, only measurements from the camera model depend on the
time delays. To correct the Jacobian and residual with approximately known delays, interpolation and
quaternion slerp are required. Since k− d 6= (integer)

(
t−∆ t̄d
∆tIMU

)
, we define new time notation [ k− d̄ ] as

[ k− d̄ ] :=
timg, raw

∆tIMU
=

t− ∆ t̄d
∆tIMU

.

When time [ k− d̄ ] is expressed at subscript (e.g., x[ k−d̄ ], P[ k−d̄ ]), we will use the shorthand notation
without [ ] (e.g., xk−d̄, Pk−d̄).

Although delay d in discrete-time systems is the number of delayed samples, time [ k− d̄ ] is not
required to be an integer by reading timestamps of each sensor. Since [ k− d̄ ] is not an integer, we
cannot directly access the values of either x̂k−d̄ or its corresponding error covariance Pk−d̄, so relevant
interpolation is required instead.

Mathematically, linear interpolation constructs a new data point within the range of two known
adjacent data points by the same slope of two lines [55]. Let us take the nearest integer time step k− d,
which is greater than or equal to [ k− d̄ ], shown in Figure 3a.
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(a) (b)

Figure 3. Examples of interpolation and slerp. (a) Linear interpolation, (b) Quaternion slerp.

With two data points, either (k − d − 1, x̂k−d−1) and (k − d, x̂k−d) or (k − d − 1, Pk−d−1) and
(k− d, Pk−d), the interpolants at time [ k− d̄ ] are given by

x̂k−d − x̂k−d−1 =
x̂k−d − x̂k−d̄

k− d− [ k− d̄ ]

x̂k−d − x̂k−d̄ '
(

t
∆ tIMU

− d− t− ∆ t̄d
∆tIMU

)
(x̂k−d − x̂k−d−1) (26)

x̂k−d̄ =

(
1− ∆ t̄d

∆tIMU
+ d
)

x̂k−d +

(
∆ t̄d

∆tIMU
− d
)

x̂k−d−1, (27)

where k = (integer)
(

t
∆ tIMU

)
≈ t

∆ tIMU
in Equation (26). Likewise,

Pk−d̄ =

(
1− ∆ t̄d

∆tIMU
+ d
)

Pk−d +

(
∆ t̄d

∆tIMU
− d
)

Pk−d−1.

Although we compute the interpolants at time [ k− d̄ ] using linear interpolation because of
the constraint and specialty of quaternion, another interpolation is required. Slerp is shorthand
for spherical linear interpolation, introduced by Ken Shoemake [56] in the context of quaternion
interpolation for the purpose of animating 3D rotation. Interpolants refer to constant-speed motion
along a unit-radius circle arc, shown in Figure 3b. Based on the fact that any point on the curve is
linear combination of the given ends, the geometric formula [56,57] is

Θ = cos−1 (qk−d · qk−d+1) (28)

q̂k−d̄ =
sin
[(

1− ∆ t̄d
∆tIMU

+ d
)

Θ
]

sin Θ
q̂k−d +

sin
[(

∆ t̄d
∆tIMU

− d
)

Θ
]

sin Θ
q̂k−d−1, (29)

where since only unit quaternions are valid rotations, normalization of each quaternion before applying
Slerp is a prerequisite.

Θ is a smaller angle between two end quaternions, so we ensure that −90 deg ≤ Θ ≤ 90 deg.
If the dot product in Equation (28) is negative, Slerp does not represent the shortest path. To prevent
long paths, we negate one of end quaternions since q and −q are equivalent when the negation is
applied to all four components. If two quaternions input qk−d, qk−d+1 are too close, then interpolants
by linear interpolation are acceptable. Otherwise, cos−1(·) in Equation (28) is safe computation because
the dot product is in the range of the threshold.
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With suitable interpolants at time [ k− d̄ ], a baseline approach modifies the feature initialization
in Appendix B and the measurement update. At time k, the vision data of an image grabbed at time
(t− ∆ td) arrive at the filter for either the feature initializations or the sequential measurement updates.
If j-th measurement yj on the last image is a new feature, then, from Equations (18) and (19), state x̂
and covariance P at current time k are augmented as follows:

x̂k
aug
=⇒

[
x̂T

k
i p̂T

f j/i

]T
(30)

Pk
aug
=⇒

[
Pk Pk (Jj)

T
k−d̄

(Jj)k−d̄ Pk (Jj)k−d̄ Pk (Jj)
T
k−d̄ + Pf jnew

]
(31)

where i p̂ f j/i = Ti/b
∣∣
k−d̄

b p̂ f j/b +
(i pb/i

)
k−d̄ and (Jj)k−d̄ =

∂p f j/i

∂x

∣∣
x̂k−d̄

. b p̂ f j/b is initialized by

Gaussian-Newton least-squares minimization derived in Appendix B. Although we assume static
features, since the feature initialization is related to estimated camera pose at the time when the delays
begin, corrected Jacobian Jj is required in the initialization steps.

If j-th measurement yj on the image is a tracked feature, then we correct only residual r and
Jacobian C in the following measurement update:

Kj = (Pk)j−1 (Cj)
T
k−d̄

(
(Cj)k−d̄ (Pk)j−1 (Cj)

T
k−d̄ + R

)−1
(32)

(x̂k)j = (x̂k)j−1 + Kj

(
yj
∣∣
t−∆ td

− hj(x̂k−d̄)
)

(33)

(Pk)j = (Pk)j−1 − Kj (Cj)k−d̄ (Pk)j−1 (34)

where corrected residual (rj)k−d̄ = yj
∣∣
t−∆ td

− hj(x̂k−d̄) and Jacobian (Cj)k−d̄ =
∂ hj(x)

∂ x

∣∣∣∣
x̂k−d̄

. R is the

measurement noise covariance of yj
∣∣
t−∆ td

, and Kj is sub-optimal Kalman gain computed by current
covariance. As sequential Kalman Filtering introduced in Section 2.1, if j is the first feature on the
current image (i.e., j = 0), then assign (x̂k)0 ← x̂−k , (Pk)0 ← P−k , and if j is the last feature on the current
image (i.e., j = Nk), then assign x̂+k ← (x̂k)N , P+

k ← (Pk)N . Before measurement updates (32)–(34),
a chi-squared gating test rejects outliers of each measurement. For only this test purpose in the case
of baseline correction, we add uncertainty due to time delay. Procedures in Equations (30)–(34) are
referred to as the “baseline correction.”

3.2.2. Cross-Covariance—“Covariance Correction”

During the delay period, even though an image was already captured in the past, since vision
data from the image have not yet arrived at the filter, the EKF is not able to perform the measurement
update. Indeed, the filter processes only time update. When a vision data packet from the image finally
arrives and is ready to update in the filter, we simply execute the Jacobian and residual correction in
Equations (32)–(34) using the delayed measurements. However, unlike the baseline correction, if the
filter updates as if the measurements arrive immediately without delays (like red lines in Figure 4),
then filter can achieve a more accurate estimate. In fact, covariance correction presented in this section
(like blue lines in Figure 4) is as if the filter accomplished the general measurement update at the time
instant when the image was captured. In other words, red lines in Figure 4 are ideal but unrealistic,
and blue lines in the figure are practical. The red lines process the measurement update first and then
time update; however, the order of the processes of the blue lines is the opposite. Only the order of the
processes has changed.
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Figure 4. A schematic of a modified measurement update using covariance correction.

Among a variety of fusing techniques for time-delayed observations discussed in Section 1.1.2,
the stochastic cloning [33]-based method (i.e., the Schmidt EKF [30,31]) is applicable to varying delays
and nonlinear functions such as the vehicle and camera models described in Sections 2.2 and 2.3,
respectively. Thus, this study modifies the method for finding the optimal navigation solution of
vision-aided inertial navigation systems.

Let us introduce new notation P dly. P dly is P covariance matrix at the time when the true delays
begin. In the scope of this section, P dly ' Pk−d̄. In addition, when this section uses corrected residual
(rj)k−d̄ and Jacobians (Jj)k−d̄, (Cj)k−d̄, we will use their shorthand notations as rj and Jj, Cj, respectively.
That is, each residual and Jacobian is corrected based on Section 3.2.1. In addition to the baseline
correction, we correct error covariance in both the feature initialization and the measurement update
when delayed vision data are available in the filter.

If j-th feature measurement yj on the recent image is a new feature, the augmentation of P dly in
the feature initialization is similar to Equation (31). On the other hand, since Jacobian Jj is computed
at the time when the delays begin, the augmentation of covariance matrix Pk at the current time is as
follows in a different way:

Pk
aug
=⇒

[
Pk 0
0 d Q f

]
(35)

P dly aug
=⇒

[
P dly P dly JT

j
Jj P dly Jj P dly JT

j + Pf jnew

]
, (36)

where d = (integer) ∆ t̄d
∆ tIMU

and Jj =
∂ p f j/i

∂x

∣∣
x̂k−d̄

. State estimate x̂k is augmented by Equation (30).
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When j-th delayed vision data yj is ready to update at time k, we modify the measurement update
steps of the sequential Kalman filtering as follows:

Sj = Cj

(
P dly

)
j−1

CT
j + R

Kcrs
j = (P crs)j−1 CT

j S−1
j (37)

(x̂k)j = (x̂k)j−1 + Kcrs
j rj (38)

(Pk)j = (Pk)j−1 − Kcrs
j Cj (P crs)T

j−1 , (39)

where rj = yj
∣∣
t−∆ td

− hj(x̂k−d̄) and Cj =
∂ hj(x)

∂ x

∣∣∣∣
x̂k−d̄

. P crs is the relevant cross-covariance term during

the delay period. This term, which fuses a current prediction of the state with an observation related to
the lagged state of the system, is used for formulating modified Kalman gain matrix Kcrs. Equation (39)
still holds Joseph’s form [58] that preserves the symmetry of the updated covariance and ensures its
the positive definiteness. By sequential update provisions, the state estimate and covariance at time
[ k− d̄ ] are also updated as follows:

Kdly
j =

(
P dly

)
j−1

CT
j S−1

j (40)(
x̂k−d̄

)
j =

(
x̂k−d̄

)
j−1 + Kdly

j rj (41)(
P dly

)
j
=
(

P dly
)

j−1
− Kdly

j Cj

(
P dly

)
j−1

. (42)

At time timg, when cameras open for capturing the image, the cross-covariance matrix is initialized
with covariance at that time; that is, P crs ← P dly ≈ Pk−d̄. During the delay period, from time [ k− d̄ ]
to current time k, if no other measurements are fused into the filter, the cross-covariance is only
propagated by the following computation based on the Schmidt–Kalman filter [30,32,33]:

Φ crs =
k−d

∏
i=k−1

[
Φi 0
0 I

]
=

[(
∏k−d

i=k−1 Φi

)
0

0 I

]
(43)

P crs = Φ crs P dly (44)

=

(∏k−d
i=k−1 Φi

)
P dly

vv

(
∏k−d

i=k−1 Φi

)
P dly

v f

P dly
f v P dly

f f

 (45)

where Φ is the state transition matrix. In the sequential measurement update, based on updated(
P dly)

j in Equation (42), updating (P crs)j−1 is straightforward as follows:

(P crs)j = Φ crs
(

P dly
)

j
(46)

If other measurements from other sensors such as an altimeter and GPS are fused during the
delay period, then P dly and cross-covariance P crs are also recursively updated using the Kalman gain
of the other measurements. For this case, Equations (43)–(46) do not hold any longer. For more details,
see Appendix C. All modification in this section is referred to as “covariance correction.” Furthermore,
the optimality of this covariance correction is guaranteed based on the fact that the standard Kalman
filter is an optimal filter since Appendix C proves that the covariance correction is identical to the
standard EKF. Hence, the proposed correction still holds its optimality. Section 4 will describe its
practical implementation.
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3.3. Unknown Part of Time Delays—“Online Calibration”

Although residual, Jacobians, and covariance are corrected for measurements with time delays,
if ∆ t̄d is uncertain readouts or δtd is the larger portion of true delays, we cannot guarantee the reliability
of the correction algorithm (Figure 5). For the robustness of vision-aided navigation systems, we need
to additionally investigate the unknown part of true delays.

Figure 5. Three corrections in the latency compensated VIO.

Figure 5 shows three corrections in the latency compensated VIO presented in this study. From
the standard Kalman filter, if one does not account for time delay, propagation, and measurement
update look like grey lines in Figure 5. For the last correction, we estimate the unknown part of time
delays to obtain more precise time instant when the delays begin. As discussed in Section 1, unknown
phenomena such as clock bias, drift, skews, and asynchronization cause δtd, so δtd may be a positive
or negative value.

State estimation theory can be used to estimate not only the states but also the unknown
parameters of the system [59]. Numerous researchers [60–62] have proved that state augmentation
functions are easy to use with state observers, so we enable design a state observer by state
augmentation to estimate the unknown part of the time delays. To estimate unknown delay value δtd,
we first augment state estimates x̂V and covariance Pvv of the vehicle as follows:

xV
aug
=⇒

[
xT

V , δtd

]T
, Pvv

aug
=⇒

[
Pvv Pv δtd

Pδtd v Pδtd

]
. (47)

Like the modeling of the IMU biases in Equations (2) and (3), we model the dynamics of δtd using a
small artificial noise term

δ̇td = ηd, ˙̂δtd = 0, (48)

where ηp is a random walk rate that allows the EKF to change its estimate of δtd; that is, the power
spectral density of ηp represents the variability of δtd. In fact, this is a conventional random walk
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model for an unknown parameter that may be varying—commonly seen for things like gyro bias,
as done here. If additional modeling information about the way time delays is expected to vary is
known, then it could be captured here with a more complex model.

Let us rewrite the definition of time delays:

t− timg = ∆ td

∆ td = ∆ t̄d + δtd =
(
t− timg, raw

)
+ δtd.

For clarity, we define new time notation [ k− d̂ ] as

[ k− d̂ ] :=
timg, raw − δ̂td

∆tIMU
≈

timg

∆tIMU

=
t− (∆ t̄d + δ̂td)

∆tIMU
,

where now time [ k− d̂ ] is the most precise time instant when the image was captured. To apply the
relevant interpolation techniques to the state estimates and covariance at time [ k− d̂ ], we access their
values at the nearest integer time step k− s, where s = (integer)

(
∆ t̄d + δ̂td

)
/∆tIMU. In other words,

s, discrete delayed samples including estimated latency, is greater than or equal to [ k− d̂ ], as shown
in Figure 2.

To operate the augmented system, we match its dimension by augmenting other matrices. In the
time update, since ˙̂δtd = 0, the state transition matrix and the process noise covariance matrix
are augmented

Φ
aug
=⇒

[
Φ 0
0 I

]
, Qv

aug
=⇒

[
Qv 0
0 Qd

]
(49)

where I is due to ˙̂δtd = 0 and the Gaussian white noise ηd ∼ N (0, Qd). Under the assumption of static
features, since estimated latency δtd pertains to only vision measurements, we compute augmented
elements of Jacobian matrices J and C [41,43]. In fact, from Equation (20), Jacobian Jj in the feature
initialization is augmented as follows:

(Jj)k−d̂
aug
=⇒

[
I3×3 03×3

∂ p̂ f j/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

03×6 Jjδtd

∣∣0 · · ·] ,

where

Jjδtd
=

∂ p̂ f j/i

∂ δ̂td

∣∣∣∣
[ k−d̂ ]

'
∂ p̂ f j/i

∂ x

∣∣∣∣
x̂k−d̂

· ∂ x
∂ t

∣∣∣∣
[ k−d̂ ]

· ∂ t
∂ δ̂td

∣∣∣∣
[ k−d̂ ]

= (Jj)k−d̂
˙̂xk−d̂

=

[
I3×3 03×3

∂ p̂ f j/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

03×3 03×3
∣∣0 · · ·]



i ˙̂pb/i
i ˙̂vb/i

δ ˙̂θ
0
0

(0 · · · 0)T


[ k−d̂ ]

=
(i v̂b/i

)
k−d̂ +

(
∂ p̂ f j/i

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

)
δ ˙̂θk−d̂

(50)
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Furthermore, from Equation (A2), augmented Jacobian Cj in the measurement update is

(Cj)k−d̂
aug
=⇒

[
∂ yj

∂ i p̂b/i
0

∂ yj

∂ δθ̂
0 0

∂ yj

∂ δ̂td

∣∣ 0 · · · ∂ yj
∂ i p̂ f j/i

· · · 0
]
[ k−d̂ ]

,

where
∂ yj

∂ δ̂td

∣∣∣∣
[ k−d̂ ]

' ∂ yj
∂ x

∣∣∣∣
x̂k−d̂

· ∂ x
∂ t

∣∣∣∣
[ k−d̂ ]

· ∂ t
∂ δ̂td

∣∣∣∣
[ k−d̂ ]

= (Cj)k−d̂
˙̂xk−d̂

=

(
∂ yj

∂ i p̂b/i

∣∣∣∣
[ k−d̂ ]

) (i v̂b/i
)

k−d̂ +

(
∂ yj

∂ δθ̂

∣∣∣∣
[ k−d̂ ]

)
δ ˙̂θk−d̂.

(51)

Here, let us call the combination of the estimation of the unknown latency in this section with the
baseline correction “online calibration.” Therefore, to reliably estimate the state variable and effectively
compensate the total delays, we incorporate all three corrections, called “latency-adaptive filtering.”

4. Implementation

This section summarizes and describes an implementation of the proposed method. Figure 6
illustrates a flow chart of the overall process.

Figure 6. A flow chart of the overall process of the latency compensated VIO.

4.1. Forward Computation of Cross-Covariance

Even though delays begins ∆td time prior, estimated delay value t̂d is only accessible when delay
finished. That is, during the delay period from timg to t, ∆t̂d is unknown yet. ∆t̂d is estimated at current
time k. Since estimated delay value ∆t̂d is unknown up to time k, we are not sure when the covariance
correction begins computing cross-covariance P crs. Theoretically, when ∆t̂d is estimated at time k, we
compute Pdly and Pcrs by backward from time k to time [ k− d̂ ] with saved Jacobians and covariance
during the delay period. This is an ideal computation, but not realistic. Backward computation that is
used in [43] is impossible for real-time operations since storing large matrices such as sequences of
Jacobian and covariance matrices allocates huge memory uses. Furthermore, backward computing is
not efficient because it iterates backward at time k like batch processing.

Instead, for a real-time framework, an approximated way of forward computation of
cross-covariance is introduced. Since δ̂td = 0, we assume that the time delay does not change
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in state propagation during the delay period, so a posteriori estimate of time delay when the last
measurement update is assumed to be a priori estimate of the delay at the current time. Next, under
this assumption, we predict when the time delay of the next image begins. At the predicted time
instant, we store the covariance matrix once for Pdly and recursively calculate Φ crs for P crs.

4.2. Summarized Algorithm

When the size of the state after augmentation in the feature initialization steps exceeds a maximum
threshold, we prune the number of features in the database. The system in this study finds an index
for the best place to insert a new point in the database. The one with the least number of observations
or frequent outliers is marginalized. Unlike Lee at al. [43], this study does not estimate the total parts
of time delays, so the latency compensated filter does not entail specific constraints. That is, this study
estimates only unknown part δtd that is a possible positive or negative value. To save computation,
constrained Kalman filtering is not necessary. Instead, interpolation and quaternion Slerp explained in
Section 3.2.1 are tractable.

From the definition of time delays presented in Section 3.1, the total time delay is not estimated
as negative. For example, if the estimated delay is negative (i.e., an exceeded index), estimation is
impossible since this case is forecasting states or obtaining measurements from the future, so the total
delay has to be bounded by zero. Moreover, in the sequential measurement update, if estimated
time delay δtd is larger than the sampling time of the IMU, ∆tIMU, then we indicate another
slot in the delay buffer. Algorithm 1 is a summarized algorithm of the overall processes of the
latency compensated VIO.

Algorithm 1 The Latency Compensated VIO

Require: x̂+0 (= x̂+V0
), P+

0 , Q, R, Pdly(= P+
0 ), Φcrs(= I), χ2

1: for k = 1 : T do

2: if new IMU packet arrival then
3: Time Update:

4: ˙̂xV = f
(

x̂+Vk−1
, araw, ωraw

)
. static features

5: Numerically integrate with ∆ tIMU(= tk − tk−1)

6: x̂−k = x̂+k−1 +
∫ tk

tk−1
˙̂x(τ) dτ

7: Φk−1 = exp
(∫ tk

tk−1
A(τ) dτ

)
. A = ∂ f

∂x

∣∣
x̂V

8: (Pvv)
−
k = Φk−1 (Pvv)

+
k−1 ΦT

k−1 + Bk−1 Qv BT
k−1 . B = ∂ f

∂η

∣∣
x̂V

9: P−k =

[
(Pvv)

−
k Φk−1 (Pv f )

+
k−1

(Pf v)
+
k−1 ΦT

k−1 (Pf f )
+
k−1 + Q f

]
10: Store the state estimates into the delay buffer

11: if during delay period then
12: Φcrs ← Φk−1 Φcrs . recursive

13: else
14: Pdly ← P−k
15: Φcrs ← I
16: end if
17: end if
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18: if new vision data packet arrival then

19: Compute index d̂− of delay

20: Interpolate using the state estimates from the buffer

21: for j = 1 : ] of observed features do
22: if new feature then
23: Feature Initialization:

24: p̂ f j/i = gj

(
x̂k−d̂, yj

)
. least-squares minimization

25: Augment state if feature is valid . if positive depth

26: x̂k
aug
=⇒

[
x̂T

k p̂T
f j/i

]T

27: Pdly aug
=⇒

[
Pdly Pdly JT

j
Jj Pdly Jj Pdly JT

j + Pf jnew

]
. Jj =

∂p f j/i

∂x

∣∣
x̂k−d̂

28: Pk
aug
=⇒

[
Pk 0
0 d̂ Q f

]
29: Prune state vector if exceed maximum

30: else . tracked feature

31: Measurement Update:

32: Update if gating test is passed . rT
j S−1

j rj
?
< χ2

j

33: rj = yj − hj(x̂k−d̂)

34: Sj = (Cj)k−d̂ Pdly (Cj)
T
k−d̂

+ R . (Cj)k−d̂ =
∂hj
∂x

∣∣
x̂k−d̂

35: Pcrs ←

Φcrs Pdly
vv Φcrs Pdly

v f

Pdly
f v Pdly

f f


36: Kcrs

j = Pcrs (Cj)
T
k−d̂

S−1
j

37: ∆ x̂k = +Kcrs
j rj . ∆t̂d

?
< ∆tIMU

38: ∆ Pk = −Kcrs
j (Cj)k−d̂ (Pcrs)T

39: Sequentially update the buffer

40: Kdly
j = Pdly (Cj)

T
k−d̂

S−1
j

41: ∆ x̂k−d̂ = +Kdly
j rj

42: ∆ Pdly = −Kdly (Cj)k−d̂ Pdly

43: end if
44: end for
45: Store index d̂+ of the posterior estimated delay

46: Pdly ← P+
k , Φcrs ← I

47: Erase used slots in the delay buffer

48: end if

49: end for
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5. Results

This section provides results from Monte Carlo trials and flight datasets testing. First, in a
simulation environment, since we can set true time-delay values at measurements, we test if the
proposed framework estimates the actual time delays accurately. The next subsection presents the
performance of the proposed approach by testing with benchmark flight datasets for validating
whether it solves real-world problems.

5.1. Monte Carlo Simulations of a Simple Example

To show actual-time delays being estimated accurately, this section simulates a simple example
problem by 100 Monte Carlo trials. The vehicle and measurement models of this simulation are direct
from Lee and Johnson’s previous work [43]. The models are a second-order dynamic system with a
non-delayed speed measurement and two delayed bearing angles measured from each location of two
stations. From Equation (49), variance Qd value of this simulation is 0.25 s2.The actual time delay of
the delayed measurements in this simulation is 0.9 s, and this value is identical to 18 delayed samples
since the propagation rate of the simulation is 0.05 s. Monte Carlo simulations estimate the values of
time delays, shown in Figure 7.
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Figure 7. Estimation of total delays in simulation. (a) A static delay, (b) Varying delays.

Figure 7a shows that the estimated delay rapidly converges to the true delay value. That is, the
estimation error of the delayed samples gradually decreases toward zero. Moreover, we may wonder
whether the latency compensated filtering algorithm works when the delay is not static. See Figure 7b,
which illustrates a response to a change in time delay. Although the values of unknown delays vary
over time, estimation resulting from the online calibration method converges to true delay values.

5.2. Flight Datasets’ Test Results

To validate the reliability of the proposed approach for estimating states and unknown delay
values, we test one of the benchmark datasets, so-called “EuRoC MAV datasets [63].” The visual-inertial
sequences of the datasets were recorded onboard a micro aerial vehicle while a pilot manually flew
around indoor Vicon environments. For more details, see reference [63]. Although the datasets include
noise model parameters from the IMU at rest, we need to tune each variance of process noise covariance
Q for the best performance. Likewise, to estimate the unknown part of time delays, we set the standard
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deviation of random walk ηd in Equation (48) as 1.0× 10−5 since the order of this value is set to the
same order of the smallest value among the provided noise parameters.

Given that datasets provide various levels of challenging sequences such as faster motion and poor
illumination in each environment, to articulate the significance of time delays defined in Section 3.1,
we select two datasets of slow motion, called “EuRoC V1 Easy,” and fast motion, called “EuRoC V1
Medium.” Since the vehicle in the medium dataset maneuvers twice as fast, we hypothesize that the
time delays have greater impact on the navigation solution of the medium dataset. Algorithms of
image processing and filtering are developed under the robot operating system (ROS) [64], given that
IMU data and images from the stereo camera are also subscribed under the ROS, shown in Figure 8.

Figure 8. ROS rqt graph of the latency compensated VIO linked to the EuRoC dataset.

The simplest solution to the estimation problem of the given datasets is to run the baseline in
Section 3.2.1 that corrects only Jacobians and residual. However, the novel latency compensated filter
described in Algorithm 1 compensates for delayed measurements at the time when the vision data
are fused at the filter and estimate the refined state and the delay values. This compensated filtering
follows the processes of all three corrections, shown in Figure 6.

The EKF estimates relative location from a starting point. Since we do not know the exact absolute
location of origin of given datasets, to compare with ground truth data given in the datasets, certain
evaluation error metrics such as so-called “absolute trajectory error [65]” are required.

After applying the absolute trajectory error, Figure 9 illustrates the top-down view of the
estimated flight trajectory of the medium dataset. Figure 10 exhibit estimated x, y, z position and
their estimation errors.
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Figure 9. Top-down view of flight trajectory of the EuRoC V1 medium dataset by the latency
compensated VIO.
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Figure 10. Position and estimation error of the EuRoC V1 medium dataset by the latency compensated
VIO. (a) Position x, (b) Position y, (c) Position z.
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All estimation errors are bounded within each standard deviation σ bounds. We should expect
significant time correlation in error plots and a generally growing error covariance for vision-aided
inertial navigation problems like this one. Conceptually, position error gets “locked in” and to the
extent new features are being mapped the position error will tend to grow with the length of the
trajectory. Starting from the noise model parameters reported for the datasets, the compensated filter
is a well-tuned estimator—the performance of doing runs with ×3 or ×10 (/3 or /10) multiplier on the
R term used in the filter is worse for all of those, shown in Table 2. In other words, the fact that using
those multipliers shows larger root mean square (RMS) estimation errors indicates that our approach
is a well-tuned filter.

Table 2. Indication that the latency compensated VIO is well-tuned for EuRoC V1 medium dataset.

Multiplier on R /10 /3 1 ×3 ×10

RMS error [m] 1.5096 0.1969 0.1619 0.2636 0.2850

Figure 11 shows the advantages of each correction in the latency compensated VIO by comparing
it with the baseline and the covariance correction. The baseline discards cross-covariance and unknown
part of the delays, and, although the latency compensated filter might increase the computational
effort of the entire system, it significantly improves the accuracy of estimation.

BASE x CROSS x ADAPTIVE x BASE y CROSS y ADAPTIVE y BASE z CROSS z ADAPTIVE z

0

0.1

0.2

0.3

0.4

0.5

0.6

a
b
s
o
lu

te
 p

o
s
it
io

n
 e

rr
o
r 

[m
]

Figure 11. Box plot of absolute estimation error of position of the EuRoC V1 medium dataset by the
latency compensated VIO.

Unlike either the baseline or the covariance correction, the latency compensated filter calibrates
the unknown part of time delays. Figure 12 shows that estimation resulting from the compensated filter
converges to a certain, final delay value, and its variance rapidly decreases although initial uncertainty
is high.
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Figure 12. Estimation of unknown part of time delays of the EuRoC V1 medium dataset.

As shown in Figure 13, the average of estimated total delays is around 45 ms that could generate
about 4 cm drift and offset during the delay period when the vehicle fly at 0.91 m/s average speed.
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Figure 13. Estimation of time delays of the EuRoC V1 medium dataset. (a) Readable delays, (b) Estimated
total delays.
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When readable delay values are negative, the timestamps of images might indicate wrong pairs
or packets.

Table 3 lists the RMS position errors of cases for sensitivity analysis. Approximately known part
of time delays introduced in Section 3.2 are either fixed t̄d by tuning or readouts t̄draw , which is the
difference of readable timestamps of current IMU and image. In addition, we can directly estimate
entire parts of time delays without information on the approximately known part. For another case,
using the final value of the estimated unknown part of time delays, we add a fixed δ̄td to the total
delays at every time. However, this case might not work when the delay is varying, and we can know
the final value only after running the proposed filter. In other words, before applying the compensation
filtering, fixed δ̄td is still unknown. The estimation results from the latency compensated VIO approach
depict the influence of the delays and the effectiveness of the corrections in the sensor fusion of the
lagged measurements.

Table 3. Sensitivity analysis in RMS position error [m] of latency compensated VIO.

Method

Dataset EuRoC V1 Easy EuRoC V1 Medium
Slow Motion 0.41 m/s, 16.0 deg/s Fast Motion 0.91 m/s, 32.1 deg/s
Cross-Cov OFF Cross-Cov ON Cross-Cov OFF Cross-Cov ON

Fixed t̄dconst 0.3376 0.2677 0.4644 0.3135
Entirely Estimated t̂d 0.2282 0.2406 0.4734 0.3538

Readouts t̄d

+ N/A 0.2558 0.2032 0.4163 0.3121
+ Fixed δ̄td 0.2869 0.2285 0.3281 0.2218
+ Estimated δ̂td 0.2019 0.1461 0.3353 0.1619

Fast motion datasets are more sensitive to time delays since the improvement is larger when
applied to those datasets.

Although numerous researchers have explored the VIO of the EuRoC datasets, few of them
thoroughly considered measurements with unknown time delays. Table 4 reveals that the proposed
estimator, the latency compensated VIO, outperforms the existing state-of-the-art methods, called
“S-MSCKF” and “SVO+MSF” in which stereo is available.

Table 4. Comparison with other methods in RMS position error [m] of latency compensated VIO

Method
Dataset EuRoC V1 Easy EuRoC V1 Medium

Slow Motion 0.41 m/s, 0.28 rad/s Fast Motion 0.91 m/s, 0.56 rad/s

Latency Compensated VIO 0.1461 0.1619

S-MSCKF (stereo-filter) 0.34 0.20
SVO+MSF (loosely-coupled) 0.40 0.63

6. Discussion

This study develops a practical extended Kalman filter (EKF)-based visual-inertial odometry (VIO)
accounting for vehicle-feature correlations; that is, we develop tightly-coupled VIO for autonomous
flight of unmanned aerial vehicles (UAVs). In particular, this paper has presented the development
of a reliable and accurate filtering scheme for measurements with unknown time delays. We define
time delays of vision data measurements in VIO. For compensating delayed measurements and
estimating unknown delay values, this paper presents latency compensated filtering that includes
state augmentation, interpolation, and residual, Jacobian, covariance corrections. The optimality of the
three corrections and the observability of the state augmentation are validated; in other words, the
appendix shows that the proposed latency compensated filter results in optimal estimates as if there
were no delays in the data.

We test the performance of VIO employing the latency compensated filtering algorithms in the
benchmark flight datasets for comparison to other state-of-the-art VIO algorithms. Results from flight
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datasets testing show that the novel navigation approach in this paper improves the accuracy and
reliability of state estimation with unknown time delays in VIO. With the latency compensated filtering,
the root mean square (RMS) errors of estimation are decreased. In particular, we show improved
accuracy of our method over previous approaches for state estimation in the fast motion datasets.

The overall approach in this document can be easily employed in other filter-based, sensor-aided
inertial navigation frameworks and is suitable to monocular VIO although this study uses a stereo
camera to showcase the methods. Although the reliability and robustness of this study are validated
by testing benchmark flight datasets, validating with other datasets is of interest.
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Abbreviations

The following abbreviations are used in this manuscript:

VIO Visual-Inertial Odometry
IMU Inertial Measurement Unit
EKF Extended Kalman Filter
UAV Unmanned Aerial Vehicle
ROS Robot Operating System

Nomenclature

x state
y measurement
t continuous time
k discrete time
j index of measurements
P error state covariance
Q process noise covariance
R measurement noise covariance
r residual

Appendix A. Jacobians of Models

A =



0 ∂ i ˙̂pb/i
∂ i v̂b/i

0 0 0

0 0 ∂ i ˙̂vb/i
∂ δθ̂

∂ i ˙̂vb/i
∂ b̂a

0

0 0 ∂ δ ˙̂θ
∂ δθ̂

0 ∂ δ ˙̂θ
∂ b̂ω

0 0 0 0 0
0 0 0 0 0


, B =



0 0 0 0
∂ i ˙̂vb/i

∂ ηa
0 0 0

0 ∂ δ ˙̂θ
∂ ηω

0 0

0 0 ∂ ḃa
∂ ηba

0

0 0 0 ∂ ḃω
∂ ηbω


(A1)

∂ i ˙̂pb/i

∂ i v̂b/i
= I3×3,

∂ i ˙̂vb/i

∂ δθ̂
= −T̂i/b′

⌈
( araw − b̂a )×

⌋
,

∂ i ˙̂vb/i

∂ b̂a
= −T̂i/b,

∂ δ ˙̂θ
∂ δθ̂

= −
⌈
(ωraw − b̂ω )×

⌋
,

∂ δ ˙̂θ
∂ b̂ω

= −I3×3,

∂ i ˙̂vb/i
∂ ηa

= −T̂i/b,
∂ δ ˙̂θ
∂ ηω

= −I3×3,
∂ ḃa

∂ ηba

= I3×3,
∂ ḃω

∂ ηbω

= I3×3,
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Cj =

[
∂ yj

∂ i p̂b/i
0

∂ yj

∂ δθ̂
0 0

∣∣ 0 · · · ∂ yj
∂ i p̂ f j/i

· · · 0
]

(A2)

∂ yj

∂ i p̂b/i
=

(
∂ yj

∂ c p̂ f j/c

)
(−T̂c/i),

∂ yj

∂ i p̂ f j/i
= −

∂ yj

∂ i p̂b/i
, (A3)

∂ yj

∂ δθ̂
=

(
∂ yj

∂ c p̂ f j/c

)
Tc/b

⌈
b′ p̂ f j/b×

⌋
(

∂ yj

∂ c p̂ f j/c

)
=

1
cẐj

 fu 0 − fu
cX̂j
c Ẑj

0 fv − fv
cŶj
c Ẑj

 , (A4)

where, for more detailed derivations, see reference [66].

Appendix B. Feature Initialization

We assume that the intrinsic and extrinsic parameters of a stereo camera are known and constant
values. c1, c2 frames are the left and right camera frame of the stereo, respectively. Since the baseline
of the stereo is fixed, rotation Tc2/c1 and translation c2 pc1/c2 between both cameras are constant and
known values. Feature coordinates c[X, Y, Z]T with respect to both cameras are

c2 p f j/c2 = Tc2/c1
c1 p f j/c1 +

c2 pc1/c2 (A5)[
c2 Xj

c2Yj
c2 Zj

]T
= Tc2/c1

[
c1 Xj

c1Yj
c1 Zj

]T
+ c2 pc1/c2 (A6)

= c1 Zj

 Tc2/c1


c1 Xj
c1 Zj
c1 Yj
c1 Zj

1

+
1

c1 Zj

c2 pc1/c2

 (A7)

= c1 Ẑj

 Tc2/c1

ûj,1 / fu1

v̂j,1 / fv1

1

+
1

c1 Ẑj

c2 pc1/c2

 . (A8)

Simplifying Equation (A8), c2 Xj
c2Yj
c2 Zj

 = c1 Ẑj


mx

my

mz

+
1

c1 Ẑj

trx

try

trz


 , (A9)

where mx, my, and mz are scalar functions of given j-th measurement and constant extrinsic
rotation matrix.

Based on Equation (15), since measurement equations from the stereo camera are

yj =


uj,1
vj,1
uj,2
vj,2

 =



fu1

c1 Xj
c1 Zj

fv1

c1 Yj
c1 Zj

fu2

c2 Xj
c2 Zj

fv2

c2 Yj
c2 Zj


+ ζ j,
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right c2 camera measurements are expressed in Ax = b form:

[
ûj,2 / fu2

v̂j,2 / fv2

]
=

mx + ( trx / c1 Ẑj )

mz + ( trz / c1 Ẑj )

my + ( try / c1 Ẑj )

mz + ( trz / c1 Ẑj )

 (A10)

[
mx − (ûj,2 / fu2)mz

my − (v̂j,2 / fv2)mz

]
c1 Ẑ =

[
(ûj,2 / fu2) trz − trx

(v̂j,2 / fv2) trz − try

]
, (A11)

where

x = c1 Ẑ, A =

[
mx − (ûj,2 / fu2)mz

my − (v̂j,2 / fv2)mz

]
, b =

[
(ûj,2 / fu2) trz − trx

(v̂j,2 / fv2) trz − try

]
. (A12)

Hence, Gauss-Newton least-squares minimization estimates depth c1 Z of left c1 camera using the
pseudo-inverse of A:

Ax = b ⇒ (AT A)x = AT b ⇒ x̂ = (AT A)−1 AT b.

If either estimated depth c1 Ẑ or c2 Ẑ is negative, the solution of the minimization is invalid since
the feature is always in front of both camera frames observing it. By substituting estimated c1 Ẑ into
Equation (A8),

c1 p̂ f j/c1 =
[
(ûj,1 / fu1)

c1 Ẑ ((v̂j,1 / fv1)
c1 Ẑ c1 Ẑ

]T
, (A13)

where p̂ f j/c is not related to the pose of the vehicle.
Likewise, if a monocular camera is used instead, c1 is the camera frame in which the feature was

observed at the first time, and c2 is the camera frame at a different time instance.

Appendix C. Stochastic Cloning (or the Schmidt–Kalman filter)

For shorthand expressions in this Appendix, we denote state x and covariance P without the
augmented state by the feature initialization.

First, we prove Equations (43)–(46). During the delay period, cross-covariance term P crs is
propagated from time k− d̂ to time k− s Pk−d̂ P crs

(k−s) | (k−d̂ )
T

P crs
(k−s) | (k−d̂ )

Pk−s


=

[
I 0
0 Φk−d̂

] [
Pk−d̂ Pk−d̂
Pk−d̂ Pk−d̂

] [
I 0
0 Φk−d̂

]T

+

[
0 0
0 Q ∆tIMU

]

=

[
Pk−d̂ Pk−d̂ ΦT

k−d̂
Φk−d̂ Pk−d̂ Φk−d̂ Pk−d̂ ΦT

k−d̂
+ Q ∆tIMU

]
,

where Pk−d̂ ≈ P dly and Φ denotes the state transition matrix.
After s time steps, at time k, the final cross-covariance term computed during the delay period is Pk−d̂ P crs

k | (k−d̂)
T

P crs
k | (k−d̂)

P−k

 =

 Pk−d̂ Pk−d̂

(
∏k−1

i=k−d̂
ΦT

i

)(
∏k−d̂

i=k−1 Φi

)
Pk−d̂ P−k

 . (A14)
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Next, we prove Equations (37)–(42). The modified Kalman gain is computed as follows:[
Ks

K crs

]
=

 Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

 [Ck−d̂ 0
]T

(Ck−d̂ Pk−d̂ CT
k−d̂ + R )−1

=

[
∗

P crs
k | (k−d̂)

CT
k−d̂

(Ck−d̂ Pk−d̂ CT
k−d̂

+ R )−1

]
, (A15)

where Ks denotes the stationary Kalman gain and

Ck−d̂ Pk−d̂ CT
k−d̂ =

[
Ck−d̂ 0

]  Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

 [Ck−d̂ 0
]T

.

The update of covariance matrix using the cross-covariance term is[
∗ ∗
∗ P+

k

]
=

 Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k

− [ Ks

K crs

] [
Ck−d̂ 0

]  Pk−d̂ P crs
k | (k−d̂)

T

P crs
k | (k−d̂)

P−k


=

[
∗ ∗
∗ P−k − K crs Ck−d̂ P crs

k | (k−d̂)
T

]
. (A16)

We finally prove the optimality of the latency compensated filtering in this paper. Since the
standard EKF is an optimal estimator, if we prove that the latency compensated filter is identical to the
standard EKF, then the latency compensated filtering approach becomes also optimal estimation.

Let us recall Equations (37)–(39):

K crs = P crs
k | (k−d̂) CT

k−d̂ (Ck−d̂ Pk−d̂ CT
k−d̂ + R )−1

= Φk−1Φk−2 · · ·Φk−d̂Pk−d̂ CT
k−d̂ (Ck−d̂ Pk−d̂ CT

k−d̂ + R )−1 (A17)

x̂+k = x̂−k + K crs rk−d̂ (A18)

P+
k = P−k − K crs Ck−d̂ P crs

k | (k−d̂)
T

= P−k − K crs Ck−d̂ Pk−d̂ ΦT
k−d̂ΦT

k−s · · ·Φ
T
k−1 , (A19)

Next, we assume that delayed measurement y is available immediately without delays. In
other words, for this assumed case, measurement update is first performed and then propagation
steps are processed. At time [ k − d̂ ], given x̂−

k−d̂
and P−

k−d̂
, the standard measurement update

performs as follows:

Kk−d̂ = P−
k−d̂

CT
k−d̂ (Ck−d̂P−

k−d̂
CT

k−d̂ + R )−1

x̂′
+
k−d̂ = x̂−

k−d̂
+ Kk−d̂ rk−d̂

P
′ +
k−d̂

= P−
k−d̂
− Kk−d̂Ck−d̂P−

k−d̂
,

where x̂′
+
k−d̂ 6= x̂k−d̂ and P

′ +
k−d̂
6= Pk−d̂ since x̂′

+
k−d̂ and P

′ +
k−d̂

are values after the corrections by the
measurement update, shown in Figure A1. That is, red lines illustrate the original processes of the
latency compensated filtering and blue lines present the processes of the assumed case.
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Figure A1. Optimality of the latency compensated VIO.

From time (k− s) to time k during the delay period, the assumed case propagates state estimates
and covariance recursively. At time (k− s),

x̂′
−
k−s ≈ Φk−d̂ x̂′

+
k−d̂

= Φk−d̂ x̂−
k−d̂

+ Φk−d̂ Kk−d̂ rk−d̂

P
′ −
k−d̂+1

= Φk−d̂ P
′ +
k−d̂

ΦT
k−d̂ + Q ∆tIMU

= Φk−d̂ P−
k−d̂

ΦT
k−d̂ + Q ∆tIMU −Φk−d̂ Kk−d̂Ck−d̂P−

k−d̂
ΦT

k−d̂.

Likely, at time k, only time update is processed since the measurement was already used to update:

x̂+k = x̂′
−
k ≈ Φk−1 x̂′

+
k−1

= Φk−1Φk−2 · · ·Φk−d̂ x̂−
k−d̂

+ Φk−1Φk−2 · · ·Φk−d̂ Kk−d̂ rk−d̂

= x̂−k + Φk−1Φk−2 · · ·Φk−d̂ Kk−d̂ rk−d̂

= x̂−k + K crs rk−d̂

(A20)

P+
k = P

′ −
k = Φk−1Φk−2 · · ·Φk−d̂ P−

k−d̂
ΦT

k−d̂
ΦT

k−s · · ·Φ
T
k−1

+Q ∆tIMU + Φk−1Q ∆tIMU ΦT
k−1 + · · ·

−Φk−1Φk−2 · · ·Φk−d̂ Kk−d̂ Ck−d̂P−
k−d̂

ΦT
k−d̂

ΦT
k−s · · ·Φ

T
k−1

= P−k −Φk−1Φk−2 · · ·Φk−d̂ Kk−d̂ Ck−d̂P−
k−d̂

ΦT
k−d̂

ΦT
k−s · · ·Φ

T
k−1

= P−k − K crs Ck−d̂P−
k−d̂

ΦT
k−d̂

ΦT
k−s · · ·Φ

T
k−1.

(A21)

Since Equations (A18) and (A19) are identical to Equations (A20) and (A21), respectively,
the hypothesis was completely proved. In other words, the latency compensated filter for VIO acts as
if the delayed vision data from an image are available at the right time when the image was captured.
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