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Abstract: The theory of belief functions has been extensively utilized in many practical applications
involving decision making. One such application is the classification of target based on the pieces of
information extracted from the individual attributes describing the target. Each piece of information
is usually modeled as the basic probability assignment (BPA), also known as the mass function. The
determination of the BPA has remained an open problem. Although fuzzy membership functions
such as triangular and Gaussian functions have been widely used to model the likelihood estimation
function based on the historical data, it has been observed that less emphasis has been placed on the
impact of the spread of the membership function on the decision accuracy of the reasoning process.
Conflict in the combination of BPAs may arise due to poor characterization of fuzzy membership
functions to induce belief mass. In this work, we propose a multisensor data fusion within the
framework of belief theory for target classification where shape/spread of the membership function
is adjusted during the training/modeling stage to improve on the classification accuracy while
removing the need for the computation of the credibility. To further enhance the performance of
the proposed method, the reliability factor is deployed not only to effectively manage the possible
conflict among participating bodies of evidence for better decision accuracy but also to reduce the
number of sources for improved efficiency. The effectiveness of the proposed method was evaluated
using both the real-world and the artificial datasets.
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1. Introduction

An integral component of an effective and efficient defense system to aid the commander in
situational awareness of the battlefield is target classification. The task of classifying targets into a
predefined set of classes depend on a group of features or attributes that characterize the different
categories. Sensors such as radar, infrared (IR) camera, and electronic support measure (ESM) are
often deployed to acquire relevant information regarding the different attributes [1,2]. Attributes may
include signature and kinematic features such as speed, acceleration, altitude, radar cross-section
(RCS), shape, length, transmission frequency, pulse repetitive frequency interval (PRI) [1,2].

Classification of a target requires data about the different attributes. The information extracted
from the data is usually characterized by uncertainty due to ambiguity, imprecision, vagueness,
incompleteness, noise, and conflict [3–5]. This uncertainty corrupts the quality of the information
fusion system. Consequently, how to effectively and efficiently deal with uncertainty has become a
topic of interest among researchers in the field of information fusion systems. Multisensor data fusion
can effectively address this problem. Dealing with uncertainty through data fusion provokes three
fundamental problems of (1) representation of uncertain information (2) aggregation of two or more
pieces of uncertain information and (3) making a reasonable decision based on the aggregated pieces
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of information [6]. Different mathematical theories of uncertainty, such as probability theory, fuzzy
set theory, possibility theory, and belief theory, can be used to tackle these problems. The framework
of belief theory, also known as the Dempster Shafer (DS) theory, was first introduced by Dempster
in [7] and later extended in [8] by Shafer. The theory of belief functions has an established nexus with
the probability theory, the possibility theory, and by extension, the fuzzy set theory. The DS theory
offers provision for the representation of ignorance. The DS theory of belief functions has been widely
accepted as a powerful formalism for modeling and reasoning under uncertainty.

Implementation of the framework of belief theory entails three building blocks: the modeling,
the reasoning, and decision making. The modeling involves the representation of historical data to
build the belief function model. The reasoning stage is characterized by the generation, analysis, and
the combination of belief functions from the various uncertain evidence sources. The transformation
of the fused mass into the probability distribution and the application of an appropriate decision
rule is the focus of the decision-making block. How to generate the mass function, also known
as the basic probability assignment is an open problem [9]. There is a rich collection of articles to
address this problem. At the emergence of the theory, in its various deployments, masses are assigned
based on expert opinion [2]. In [9], masses are assigned based on the normal distributions. Fuzzy
membership functions have been utilized in [10–13]. The heart of the reasoning stage is the DS rule of
combination. The DS rule of combination can be used to fuse multiple pieces of evidence. However,
the DS combination rule suffers a major setback of counter-intuitive results when it is required to
aggregate pieces of evidence that are highly conflicting with one another. This phenomenon was first
pointed out by Zadeh in [14], and it has since become another open issue. An attempt to address this
problem has given birth to two schools of thought among researchers [15]. One school of thought
believes that the high conflict is due to a problem with the original combination rule. Consequently,
they proposed a modification of the traditional DS rule of combination. Some of the significant
contributions in this category can be found in [16]. This approach is such that the conflicting masses are
transferred to the universal set. According to [17], the resulting masses obtained from the combination
of conflicting sets are assigned to the union. Philippe Smets in [18] proposed an alternative method
where the conflicting mass is assigned to the empty set. The other school of thought attributed the high
conflict to bad evidence or a faulty sensor. As a result, they believe in the modification of the original
basic probability assignment (BPA) before the application of the traditional DS rule of combination.
These methods are similar to the discounting measure proposed by Shafer in [8]. A simple average
combination rule was proposed in [19]. In [20], it was argued that Murphy’s approach does not
account for the relationship among the participating bodies of evidence; consequently, a weighted
combination approach based on the distance of evidence was proposed. Also, in [21], Zhang proposed
a weighted evidence combination that is capable of identifying and reducing the impact of the conflict.
The method explores the cosine similarity among the Pignistic transformations of the various belief
functions. Leveraging the strength of methods proposed in [19,20] in terms of simplicity and taking
into consideration the relationship among participating belief functions, a new combination method
based on the average/consensus belief function was proposed in [22].

In [11], a target classification algorithm was proposed that employed fuzzy membership functions
to generate belief functions where belief functions are combined using the traditional DS rule of
combination. The method did not account for possible conflict among the participating BPA, despite
the availability of information regarding the BPA, which can be harnessed to mitigate the effect of
conflict. To deal with conflict, in [12], the fusion stage takes into consideration the credibility of each
piece of evidence before the combination. The credibility is based on information contained in the
BPAs. Also, in [13], a fusion method termed reliability credibility Dempster Shafer rule of combination
(RCDSRC) was introduced that utilizes the credibility of each BPA as well as the reliability of the source
for proper adjustments of BPAs prior to the DS fusion. It has been observed that in [12,13], the spread
of the membership function was set to 2 standard deviation from the mean. According to [23], conflict
in the combination of evidence can be attributed to three main factors: (1) abnormal measurement by
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sensor usually a direct consequence of sensor defect and poor calibration, (2) improper belief function
model due to poor estimation of the likelihood function and inappropriate selection of metric for the
distance-based method, and (3) Large number of information sources. The membership functions are
used to estimate the likelihood of the various classes; this means improper characterization of the
fuzzy membership functions may induce conflicts. The idea behind this study is that by adjusting the
spread of the membership function, we can improve on the decision accuracy of the method proposed
in [13].

In this study, we propose a reliability-based multisensor data fusion, which is coined as
reliability-based Dempster Shafer rule of combination (RDSRC), within the framework of the belief theory
for target classification where shape/spread of the membership functions is adjusted during the
training/modeling stage. Only the reliability is used to assign weights to the various information
sources. The proposed method does not utilize credibility. Since every attribute (information source)
of the unknown target produces a local declaration in the form of a belief function, calculation of
the credibility for each belief function for every query target will incur additional overhead costs of
the reasoning process. Besides the computational requirement, the credibility based on distance or
similarity measure is with the assumption that the majority of the belief functions are reliable.

The proposed method is closely related to the work in [24]. However, they are different in
the following respects: in this approach, we use triangular membership functions to model the
historical data regarding the different attributes of the various target classes as opposed to the
Gaussian membership function used in [24]. The reliability in this approach was calculated using
an evaluation criterion based on the concordance index, while the Jaccard index was utilized in the
determination of the static reliability in [24]. The spread of membership function is adjustable in
our proposed method while it is fixed in [24]. Although the tuning of the spread of the membership
function in the proposed method introduces additional overheads, it is only incurred offline. In [13,24],
credibility/dynamic reliability is calculated at the reasoning phase, which creates an extra cost for
on-line identification. The method of generating the BPA is different from the one used in [24]. This
work is basically an extension/modification of [13]. The major contributions of the newly proposed
method are summarized as follows.

1. We introduced a tuning parameter for the likelihood estimation function and demonstrated its
impact on the decision accuracy of the classification system.

2. We proposed the average pairwise discordance index (APDI) as a selection criterion to reduce the
number of evidence sources before the deployment of the DS framework.

3. Three real-world and one artificially generated datasets were used to show the performance of
the proposed method in terms of accuracy.

The rest of the paper is organized as follows: The basic preliminaries are briefly discussed in
Section 2. In Section 3, the proposed reliability based multisensor data fusion with application in target
classification is presented. The focus of Section 4 is to show the effectiveness of the proposed approach
on both the real and artificial datasets. The conclusion is contained in Section 5.

2. Preliminaries

2.1. Dempster-Shafer Theory (DST)

The Dempster Shafer (DS) theory, often referred to as the theory of belief functions, was originally
introduced by Dempster in [7] and later developed by Shafer in [8]. The theory of belief functions
allows probabilities to be assigned to subsets instead of only mutually exclusive singletons. It can
model uncertainty better than the probability theory [16]. The basics of the DS theory include the
frame of discernment, functions, the DS rule of combination, and the probability transformation.
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2.1.1. Frame of Discernment

Let Ω, a set of M mutually exhaustive and exclusive hypotheses be defined as

Ω = {ω1, ω2, ..., ωM} (1)

Ω is known as the frame of discernment. A power set 2Ω is the set of all possible subsets of Ω.

2.1.2. Functions

For all A, B ⊆ Ω, evidence can be represented by functions which include: mass function, belief
functions, and plausibility functions [25].

Mass function m : 2Ω → [0, 1] satisfies the following conditions:

∑
A⊆Ω

m(A) = 1 (2)

m(∅) = 0

Belief function Bel : 2Ω → [0, 1] is defined as:

Bel(A) = ∑
B⊆A

m(B) (3)

Plausibility function Pl : 2Ω → [0, 1] is defined as

Pl(A) = ∑
A∩B 6=∅

m(B) (4)

2.1.3. The DS Rule of Combination

To fuse evidence from multiple independent sources, the DS rule of combination is used. Suppose
m1 and m2 are two mass functions obtained from two independent sources on the same frame of
discernment Ω. The combined mass is defined as [8]

m(A) =
∑B∩C=A m1(B)m2(C)

1−∑B∩C=∅ m1(B)m2(C)
(5)

∀A, B, C ⊆ Ω and A 6= ∅.

2.1.4. Probability Transformation

The mass function obtained after the application of the DS combination rule is not adequate for
decision making, consequently probability transformation is required to obtain probability values
from the fused mass function. The Pignistic probability function introduced in [18] is often applied
and it is formally defined as

BetP({A}) = ∑
A⊆B

|A ∩ B|
|B| m(B) (6)

2.2. Fuzzy Set Theory

Fuzzy set theory is a theoretical framework for handling imperfection in data [26]. Its concept is
built on fuzzy sets to model uncertainty due to imprecision and vagueness. A fuzzy set is described by
a membership function which allows an object to belong to different classes with varying degree of
membership ranging from [0 1] [26].
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2.2.1. Fuzzy Membership Function

The membership function µ is the mapping of each element x to a value µ(x) on [0, 1]. Although,
there are several membership functions, the commonly used ones are Gaussian, triangular and
trapezoidal functions. Gaussian membership function for set A is defined as

µA(x) = e−
x−x̄ij
2σ2 (7)

A triangular fuzzy number A can be described by the triplets (a, b, c) with the membership value
defined as

µA(x) =


0, x ≤ a
x−a
b−a , a < x ≤ b
c−x
c−b , b < x ≤ c

0, x > c

(8)

Nonetheless the structure of the triangular fuzzy number is not as smooth as the Gaussian
membership function, it is simpler and easier to use.

2.2.2. Type−2 Fuzzy Sets

The selection of the right type of membership function is one of the major challenges of using
Type−1 fuzzy membership function for data and uncertainty representation. Type−2 fuzzy set can be
used to solve the problem. The fact that different spreads of the membership function will produce
different accuracy corroborates one of the reasons for the use of Type−2 fuzzy sets to model uncertainty
about the appropriate type of membership function. Type −2 fuzzy set can be viewed as a collection
of many embedded Type−1 fuzzy sets [27,28]. The membership value in a Type−2 fuzzy set is
itself a fuzzy set. The traditional Type-1 fuzzy set is two dimensional (2D), however, the Type−2
fuzzy set is three dimensional (3D) to include element, primary membership value and secondary
membership value denoted by x, u and, µ respectively as shown in Figures 1 and 2. The area between
the lower membership function (LMF) and the upper membership function (UMF) is termed footprint
of uncertainty (FOU) [28]. We provided a brief introduction to Type−2 fuzzy set because it forms the
basis of the intuition for varying the spread factor of the membership function to model uncertainty
about the membership function.

It can be observed that Type−2 fuzzy set can represent and deal with uncertainty associated
with membership function by leveraging the additional degree of freedom provided by the newly
introduced third dimension and the footprint of uncertainty.

Figure 1. Representation of Type−2 fuzzy sets with primary membership function.
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Figure 2. Representation of Type−2 fuzzy sets with secondary membership function.

2.2.3. Similarity Between Fuzzy Sets

In the literature, there are several measures of similarity between two fuzzy sets. Jaccard index
and concordance index are of interest to us in this context. As shown in Figure 3, let us assume that µ1

and µ2 are two Gaussian membership functions for class C1 and class C2. The concordance index SC
and Jaccard index SJ are defined as [29]

SC(C1, C2) = sup min
x
{µ1(x), µ2(x)} (9)

SJ(C1, C2) =

∫
R min(µ1, µ2)dx∫
R max(µ1, µ2)dx

(10)

Figure 3. Concordance and Jaccard similarity indices.

3. Proposed Method

Target classification problem can be formulated in the same way as the general data classification
problem as follows. Let X = {x1, x2, ..., xn} be a set of n training samples with corresponding class
labels {y1, y2, ..., yn}, xk is a N−dimensional attribute vector with class label yk, where yk ∈ Ω =

{C1, C2, ..., CM}, which is a set of M classes. Suppose in a target classification system, a set of
N− sensors {s1, s2, ..., sN}measuring different attributes of the target produces a collection of basic
probability of assignment (BPA) defined as {m1, m2, ..., mN}. The primary goal of a target classification
system is to assign the unknown target x to one of the members of the frame of discernment based on
the combination of different pieces of evidence induced by the different attribute measurements.

In [23], it was asserted that the conflict within the framework of belief theory could be attributed
to improper likelihood estimation function. Since fuzzy membership function is employed as the
likelihood estimation model which is parameterized by the spread factor, poor characterization using
the spread factor γ may result in high conflict and consequently, a degradation in the performance
of the reasoning process. The motivation for this study was triggered by the application of interval
Type−2 fuzzy set for the representation of uncertainty. An interval type 2 fuzzy set is a form of Type2
fuzzy set with uniform secondary membership function. Interval type2 fuzzy set is characterized by
upper and lower membership functions. It was discovered that using the lower membership function
at the modeling stage did not yield the same value of accuracy as utilizing the upper membership
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function. Moreover, the only difference between the two is the spread/width. This gives the insight
that by varying the spread parameter, we can actually improve on the performance of the proposed
method in terms of accuracy. In this work, the theory of belief functions is being proposed as a
multisensor data fusion approach for target classification. Individual attributes of the unknown target
induce local declarations in the form of belief functions by assigning masses to each of the subsets
of the frame of discernment. To address possible conflict, a reliability degree, which is essentially
the normalized average pairwise discordance index (APDI), is proposed based on the discriminatory
power of each evidence source (attribute or feature). The reliability degree is then used as a weighting
factor to obtain a weighted average belief function. The weighted average basic probability assignment
(BPA) is fused to produce the final BPA. Decisions are taken based on the probability transformation of
the final BPA. The flowchart of the proposed method is shown in Figure 4.

Figure 4. The flowchart of the proposed multisensor data fusion for target classification.

The entire flowchart can be summarized using the three building blocks of modeling, reasoning,
and decision making. The reasoning block corresponds to the credal level with the decision-making
block representing the Pignistic level of the transferable belief model (TBM) [18].

3.1. Modeling

3.1.1. Representation of Historical/Training Data

Fuzzy membership functions are used to model every attribute for the various target classes.
In other words, the fuzzy membership functions are deployed to estimate the likelihood of the various
target classes. The membership functions are built from the statistical information (the mean and the
standard deviation) extracted from the training set.

Individual class i having an attribute j is represented by a triangular membership function using
the statistical information. The mean x̄ij and the standard deviation σij for every class Ci(i = 1, 2, ..., M)

and attribute Aj(j = 1, 2, ..., N) are defined as:

x̄ij =
1
T

T

∑
t=1

xijt (11)

σij =

√√√√ 1
T − 1

T

∑
t=1

(xijt − x̄ij)
2 (12)

xijt is the tth sample value given attribute j and class i. T is the sample size for the class. Therefore,
for class i and a given attribute j the triplets for the triangular fuzzy number shown in Figure 5 is
defined as

a = x̄ij − γσij
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b = x̄ij

c = x̄ij + γσij

where γ is a tuning parameter (adjustment factor) as opposed to being set to 2 in [12,13].

Figure 5. Triangular fuzzy model.

3.1.2. Determination of the Reliability Degree

A reliability factor was proposed in [13] and its defined as follows

rj = 1− 2
M(M− 1)

M−1

∑
i=1

M

∑
k=i+1

SC(Ci, Ck) (13)

where, M is the number of classes, SC(Ci, Ck) is the concordance index between class i and k. We define
the reliability degree as the average pairwise discordance index (APDI). Therefore the normalized
reliability of source j can be expressed as

ηj =
rj

∑N
j=1 rj

(14)

The normalization is required to satisfy the constraint imposed by the DS combination rule.
Such that

N

∑
j=1

ηj = 1 (15)

In [13], the reliability factor was not normalized, normalization occur after its combination with
the credibility degree before the DS fusion.

3.2. Reasoning

The reasoning entails the generation, analysis, and the combination of BPAs. As can be seen,
no calculation of credibility is required at the reasoning. Only the (static) reliability obtained at the
modeling stage is used. The credibility using the similarity among evidence is with the assumption
that a greater proportion of the evidence sources are credible. This assumption may not always be true.

3.2.1. Generation of the Basic Probability Assignment (BPA)

This is where information modeled as belief functions are extracted from sensor measurement.
The attribute values of the unknown target are of lower abstraction level, which is mapped into a higher
information abstraction level in the form of BPAs. The BPAs are generated based on the similarity
between the different attribute values and the fuzzy models(membership functions) obtained from the
historical/training data. Due to its simplicity, a similar method used in [11–13] is adopted in this work.
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3.2.2. Computation of the Weighted Average BPA

Suppose there are N evidence sources provided by N sensors. For any proposition A, a subset of
the frame of discernment, the weighted average mass function is a weighted combination of confidence
polled from the different evidence sources and it is defined as [20]

mwae(A) =
N

∑
j=1

ηj ∗mj(A) (16)

3.2.3. Dempster Shafer (DS) Fusion

Having obtained the weighted average evidence, the next step is to apply the traditional DS Rule
of combination on mwae in (N − 1) times [19].

3.3. Decision Making

This essentially consists of the transformation of the belief function and the application of an
appropriate decision rule.

3.3.1. Pignistic Transformation

The final BPA retrieved from the DS fusion cannot be employed directly for decision making,
hence, a transformation of the final mass function to probability distribution is required. A well-known
probability transformation is the Pignistic probability transformation of the transferable belief model
defined as [18]

BetP({A}) = ∑
A⊆B

|A ∩ B|
|B| m(B) (17)

B ∈ F

The ultimate goal of target classification is to assign the unknown target to one of the known
classes, thus |A| equals 1, hence, (17) reduces to (18).

BetP({A}) = ∑
A⊆B

m(B)
|B| (18)

We adopted the Pignistic probability for decision making following the justification of its
suitability provided in [30]

3.3.2. Decision Rule

Assign the unknown target to the class with the highest Pignistic probability.

A∗ = arg max
A∈Ω

BetP({A}) (19)

3.3.3. Selection of Spread Factor γ

The following example is used to illustrate the impact of γ on the accuracy of the proposed model
on the Iris dataset using only reliability as a weighting factor. Three models are built using 3 different
values of γ, as shown in Figure 6 with the triangular fuzzy numbers (TFN1: TFN3). Model1, Model2,
and Model3 can be viewed as the lower, the mid, and the upper membership functions, respectively.
By applying 5 fold cross-validation 10 times, the associated accuracy with the three different values
of γ is shown in Table 1. The focus of this study is not to deploy Type−2 fuzzy set as the likelihood
estimation model but demonstrate a type−2 fuzzy set as part of the intuition behind this study.

• Model1: TFN1 = (a1, b, c1), a1 = b− 1.5sd, c1 = b + 1.5sd
• Model2: TFN2 = (a, b, c), a = b− 2sd, c = b + 2sd
• Model3: TFN3 = (a2, b, c2) , a2 = b− 2.5sd, c2 = b + 2.5sd
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Figure 6. Three models including the upper, the mid, and the lower membership functions.

Table 1. Average accuracies of the three models.

Model Model1 γ = 1.5 Model2 γ = 2.0 Model 3 γ = 2.5

Accuracy 92.33 93.73 95.67

Having discovered that by changing the value of γ, we can alter the decision accuracy of the
DS model. The next question is how to select the value of γ. The training set is used to determine a
suitable value of γ. With 5-fold cross-validation, we increase γ from 1.5 with a step size of 0.1 to 4.5,
and their corresponding accuracies on the training set are recorded. The value of γ that returns the
maximum accuracy is selected to build the fuzzy models.

3.4. Selection of Evidence Source

In the proposed framework, every attribute measurement is considered as a source of evidence
to induce a corresponding belief function. The implication is that the utilization of every attribute
obtained from signature and kinematic sets of the targets for characterization will unavoidably lead to
high processing costs [31]. The long processing time comes from the combination of the various belief
functions using the DS rule of combination. In addition to high processing costs, conflict in evidential
reasoning can also be attributed to a large number of evidence sources [23]. Reducing the number
of sources is analogous to the challenge of dimensionality reduction in the conventional machine
learning algorithm.

Dimensionality reduction is one of the most well-known strategies to remove irrelevant and
redundant features. The strategies can be broadly categorized into feature extraction and feature
selection [32]. In feature extraction, the original feature space is transformed into a new feature space
with a reduced dimension. However, in feature selection, a subset of the original feature space that
enhances the performance of the machine learning algorithm is selected. In this study, feature selection
is of importance to us for enhanced interpretation. As a result, we will incorporate a preprocessing
stage that will involve a reduction of the cardinality of the measurement set based on the significance
of each attribute in relation to its discriminatory capability for the various target classes. Only a set of
significant attributes is selected as sources of information to produce the basic probability assignment
(BPA). In the traditional machine learning, feature selection can be subdivided into two groups [33]:

• Filter: Features are ranked based on evaluation criteria independent of learning algorithms. Filter
methods have proven to be computationally efficient for feature subset selection.

• Wrapper: In wrapper, the ranking of individual features utilizes learning algorithms. Wrapper
method is more computationally expensive than the filter methods.

Suppose there are N information sources, Ij(j = 1, ..., N). The proposed selection method is a
filter-based approach that utilizes the average pairwise discordance index(APDI). It is implemented
through the following steps:

1. Evaluation of sources using average pairwise discordance index (APDI)
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APDI(Ij) = 1− 2
M(M− 1)

M−1

∑
i=1

M

∑
k=i+1

SConc(Yi, Yk) (20)

where, M is the # classes, and Yi and Yk are class i and k respectively. SConc(Yi, Yk) is the
concordance index between class i and k

2. Selection of sources based on certain threshold

• Compute the mean APDI
• Select source whose APDI is at least equal to the mean APDI

A pseudo code for the proposed method of selection of information sources is presented in Algorithm 1.

Algorithm 1 Feature Selection Using APDI

INPUT: Given a set of information sources I = [I1, ...IN ]

OUTPUT: Selected set of information sources S

1: S = ∅
2: for j = 1 ≤ N do
3: Compute the APDI APDI(Ij)

4: End
5: Compute the mean of the APDI ¯APDI
6: for j = 1 ≤ N do
7: if APDI(Ij) ≥ ¯APDI then
8: S = S ∪ Ij

9: else
10: S = S
11: endif
12: endfor
13: return S

4. Simulation & Results

4.1. Simulation

Four problems consisting of three real datasets and one synthetic dataset were used to demonstrate
the capability of the proposed reliability-based multisensor data fusion approach. The performance
of the proposed method was compared with the recently proposed method in [13], and Decision
Trees (DT) using five-fold cross-validations.

4.1.1. Real Datasets

The three real datasets: IRIS, Wine, and Breast cancer, were obtained from the UCI Machine
Learning Repository. Information with respect to the datasets are depicted in Table 2.

Table 2. Description of datasets.

Datasets Number of Features Number of Instances Number of Classes

Iris 4 150 3
Wine 13 178 3

Breast Cancer 9 699 2
Artificial 3 300 3
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4.1.2. Synthetic Dataset

A similar method of generating a synthetic dataset for an airborne target recognition problem for
an air surveillance system used in [34] is adopted to illustrate the capability of the proposed method.
Each target is described by three features: speed, acceleration, and length. The target belongs to one
of the three classes of Commercial plane, Bomber, or Fighter. Recognition is based on a multisensor
system to measure the average speed, the maximum acceleration, and the average length. The feature
intervals for the various airborne target classes are shown in Table 3. A total of 300 samples were
generated with 100 samples for each of the classes based on the information provided in Table 3.

Table 3. Attribute intervals for the three airborne target classes.

Classes Average Speed (km/h) Max Acc (g) Ave Length (m)

Commercial [600, 800] [0, 1] [25, 65]
Bomber [400, 700] [0, 4] [15, 45]
Fighter [500, 1000] [0, 6] [10, 30]

4.2. Results

We repeated the 5− fold cross validation 10 times, and the average accuracy of each of the different
methods is displayed in Table 4 and Figure 7.

Table 4. Average accuracy.

Datasets RCDSRC RDSRC DT

Iris 94.53 95.80 94.93
Wine 91.91 96.01 89.89

Breast Cancer 97.67 97.69 94.50
Artificial 97.00 98.10 95.10

Figure 7. The average accuracy.

With the introduction of the proposed attribute selection method, the experimental results are
displayed in Tables 5–7. The ranking order of the various attributes for the different datasets are shown
in Table 5 and their associated APDI displayed in Table 6. The average accuracy for both full and the
reduced dataset after repeating the 5 fold cross-validation 10 times is shown in Table 7 and Figure 8.

Acc1 is the accuracy with the full set, while Acc2 is the accuracy with the reduced set. |Full set|
and |Reduced set| are the cardinalities of the full and the reduced sets respectively.

Figures 9–12 show the effect of the spread factor on the average recognition accuracy of the
proposed method with 5 fold cross validation after 10 trials for both the full and the reduced sets for
the different problems.
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Table 5. Feature ranking using APDI.

Datasets Ranking Order

Iris [4 3 1 2]
Wine [7 12 13 11 10 6 1 4 9 2 8 5]

Breast Cancer [2 9 3 6 7 4 1 5 8]
Artificial [3 2 1]

Table 6. Corresponding APDI in the same order.

Datasets APDI Values

Iris [0.8882 0.8501 0.4355 0.2007]
Wine [ 0.6161 0.5562 0.4788 0.4135 0.3961 0.3775 0.3687 0.1663 0.1593 0.1474 0.1351 0.0522 0.0483]

Breast Cancer [ 0.6618 0.6568 0.6553 0.4918 0.4347 0.4119 0.4102 0.3749 0.1175 ]
Artificial [0.7275 0.6168 0.5053]

Table 7. The average accuracy for the full and the reduced datasets.

S/N Dataset |Full Set| |Reduced Set| Acc1 Acc2

1 Iris 4 2 95.70 96.07
2 Wine 13 7 95.87 96.13
3 Breast Cancer 9 4 97.70 96.90
4 Artificial 3 2 98.20 93.70

Figure 8. The average accuracy for the full and the reduced datasets.

Figure 9. The average accuracy versus the adjustment factor for the full and the reduced Iris dataset.
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Figure 10. The average accuracy versus the adjustment factor for the full and the reduced Wine dataset.

Figure 11. The average accuracy versus the adjustment factor for the full and the reduced Wisconsin
Breast Cancer dataset.

Figure 12. The average accuracy versus the adjustment factor for the full and the reduced artificially
generated dataset.

4.3. Discussion

It can be observed from the simulation results that the spread factor is of crucial importance to
the decision accuracy of the classification system. It can be seen that the average accuracy of the newly
proposed method, RDSRC, is better than the earlier method, RCDSRC, as well as DT. To reduce the
number of evidence sources, we propose the APDI as an evaluation index. The average accuracy
with the reduced evidence source is better than that of the full evidence source for both Iris and Wine
datasets. However, for the Wisconsin breast cancer dataset and the artificially generated data set for
the target classification problem, the classification accuracy with the full set is better than that of the
reduced set.



Sensors 2020, 20, 2192 15 of 16

5. Conclusions

We have proposed a reliability-based multisensor data fusion with application in target
classification. This approach fundamentally consists of the representation of the training sets using
triangular fuzzy membership functions, the generation of the local declarations in the forms of belief
functions by mapping the various attribute measurements into the basic probability assignment (BPA).
The various BPAs are preprocessed using the normalized reliability degree based on the goodness/
importance of the attribute to obtain the weighted average BPA. The weighted average BPA is fused
with itself using the traditional DS rule of combination to obtain a final declaration (BPA). Then,
decisions are made based on the Pignistic probability transformation of the final BPA. It is evident that
this approach does not require the computation of the credibility. Through extensive simulations, the
average accuracy of the newly proposed method is better than RCDSRC and DT on both the real and
artificial datasets. The proposed selection method does not capture redundancy among information
sources. The future research effort will be channeled towards incorporating a strategy to handle
redundancy among the different sources.
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