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Abstract: A new ionospheric tomography model is presented in this work. In the new model,
the traditional voxel basis function is replaced by the blob basis function. Due to the overlapping
nature of their rotational symmetric basis functions, the new model introduces certain weighting
from nearby tomographic spherical blobs. To confirm the feasibility of the new tomography model,
a numerical simulation scheme is devised, and the simulation demonstrates that the reconstructed
quality of the blob basis tomographic model is higher than that of the voxel basis tomographic
model. Meanwhile, the variable blob radius is adopted in order to improve the efficiency of the new
model. Finally, the new ionospheric tomography model is applied to reconstruct the temporal-spatial
distribution of ionospheric electron density using actual global navigation satellite system observations.
The comparisons between the tomographic profiles and those obtained from ionosonde data further
demonstrate the reliability and the superiority of the new ionospheric tomography model.
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1. Introduction

The ionosphere is the upper atmosphere of the earth which is ionized by the radiation of the sun’s
energetic particles. Vertical total electron content (VTEC) and electron density are the two important
physical parameters to study the temporal-spatial structure of the ionosphere. Ionospheric electron
density (IED) distributions typically vary with seasons, solar activity, and geographic location [1].
In general, VTEC values are obtained from the single-layer ionospheric model in which all electrons are
assumed to be concentrated on a thin layer with a fixed altitude. Therefore, VTEC can be used to image
two-dimensional structure of the ionosphere in the latitude and longitude cross section, but it ignores
the vertical variation of the ionospheric structure [2,3]. To grasp the ionospheric vertical structure,
Austen et al. [4] introduced computerized tomography technique to reconstruct two dimensional
ionospheric images in the latitude and height cross section. However, it cannot reflect the longitudinal
variations of the ionosphere because the ground receiver is arranged along a fixed longitudinal chain.
It is necessary to know and map the temporal-spatial variations of three-dimensional ionosphere
structure for high-accuracy ionospheric delay correction. Kunitsyn et al. [5] confirmed that it was
possible to reconstruct three-dimensional IED distributions using the simulated high orbit satellite
data. From then on, three-dimensional computerized ionospheric tomography has become a popular
reconstruction technique of IED distributions. Theoretical and experimental research has been
thoroughly carried out in order to reconstruct IED images by using global navigation satellite System
(GNSS) data. Mitchell and Spencer [6] studied a three-dimensional time dependent algorithm to image
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the ionosphere based on global positioning system (GPS) data. Ma et al. [7] introduced neural network
to map the three-dimensional ionospheric structure by assimilate the GPS data and the ionosonde data;
Lee et al. [8] reconstructed the three-dimensional images of ionospheric variability using a dense GPS
receiver array; Xiao et al. [9] investigated the abnormal distribution of the IED during November 2004
super-storm by 3D tomographic reconstruction from international GNSS service, low earth orbit and
GPS observations. Yao et al. [10] proposed a hybrid regularization method to resolve the ill-posed
problem of GPS ionospheric tomography. Zheng et al. [11] investigated ionospheric tomography
technique based on variable pixel height.

In ionospheric tomography studies, most scholars usually used the voxel basis tomographic
model to reconstruct the IED distributions [12–18]. In that model, the selected function is the voxel
basis function and the image region is divided into non-overlapping cubic voxels. It results in that the
model cannot effectively reconstruct the continuity of IED distributions. The imaging quality of IED
distributions is relatively poor. For image reconstruction, Matej and Lweitt [19] validate the blob basis
function is superior to the voxel basis function by using simulation experiment, and high-resolution
reconstructed images are obtained. Considering the advantages of the blob basis function, we attempt
to use the blob basis function to reconstruct ionospheric electron density distribution. The ionospheric
space is divided into overlapping spherical blobs in order to resolve the above problem, and blob basis
function is innovatively introduced to replace traditional voxel basis function in this work. We can
efficiently reconstruct the higher-quality IED images due to the overlapping nature of its rotational
symmetric basis function by using the blob basis ionospheric tomographic model. To validate the
feasibility and the superiority of the blob basis ionospheric tomographic model, numerical testing and
actual experiments are carried out. The experimental results show that the reconstructed IED images
of the blob basis model are usually better than those reconstructed from the traditional voxel basis
model, and the efficiency of the new tomographic model is higher than the voxel basis model.

2. Methodology

In general, ionospheric slant total electron content (STEC) is the linear integration of IED along a
ray propagation path. It is written as

STECi =

∫
Si

Ne
(⇀

p
)
ds (i = 1, 2, · · · , m), (1)

where si is the ith ray propagation path. Ne
(⇀

p
)

is the IED distribution along the ray paths.
⇀
p is the

position vector. m represents the number of STEC measurements.
To simplify the inversion of the IED, the reconstructed ionospheric space is usually discretized

into some small voxels, and then Equation (1) can be represented as

STECi =
∑n

j=1
Ne j

∫
Si

b j
(⇀

p
)
ds =

∑n

j=1
Ai jNe j, (2)

where Aij is the distance of the ith ray traversing jth volume element. bj is the selected basis function.
Nej is the electron density in jth volume element. n is the number of the volume elements. Taking the
discretization error and observation error into account, Equation (2) can be represented as

STECi =
n∑

j=1

Ai jNe j + Ei. (3)

Equation (3) can be generally written in simple matrix notation as

Y = AX + E. (4)
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Y is a column vector of m known STEC measurements. A is a coefficient matrix. X is the column vector
consisting of the unknown IED. E is a vector associated with discretization errors and measurement
noises.

From Equation (2), it can be seen that the selection of basis function is very important for the
linearization. As shown in Figure 1, the imaging area is first divided into some non-overlapping
discrete voxels when the voxel basis tomographic model is used. The chosen basis function is the voxel
index function, which is a piecewise function.

b j
(⇀

r
)
=


1

(⇀
r ∈ voxel

)
0 (otherwise)

. (5)

Using the voxel index function, the Aij in Equation (2) is assumed to be the crossing distance of the
ith straight ray path traversing jth the voxel in order to simplify the computation. This is inconsistent
with the real situation of ray propagation. However, the accuracy of the crossing distance is very
important to obtain high-accuracy IED distributions.
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Figure 1. Sketch map of the discrete voxels partition.

To overcome the disadvantages of voxel representation, the traditional voxel basis ionospheric
tomography model is replaced by the blob basis ionospheric tomography model. Different from the
method of traditional voxel partition, the ionospheric space is discretized into some overlapping
spherical blobs when the blob basis reconstruction model is used to reconstruct IED distributions.
Figure 2 illustrates the sketch map of spherical blob division.

In the new model, the basis function is constructed using the generalized Kaiser-Bessel (KB)
window functions

b(r) =



(√
1−(r/a)2

)h

Ih

(
α
√

1−(r/a)2
)

Ih(α)
(0 ≤ r ≤ a)

0 (otherwise)

, (6)

where r is the radial distance from the blob center, which is associated with the location of the cross
point of the ray traversing the spherical blob. Ih denotes the modified Bessel function of h orders [20],
which controls the continuity condition of the blob boundary. a is the radius of the spherical blob,
and α is the non-negative real number controlling the shape of the blob.

According to the above selections of basis function and the spherical blob, the series crossing
point can be found when the ray traversing the spherical blob, and then the real crossing distance
in Equation (2) can be obtained. This means that the integration path is closer to the real state of
ray propagation.
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3. Results and Discussions

3.1. Numerical Simulation Experiment

The calculation of high accuracy STEC is very important to ensure the reconstructed accuracy
of the IED. Although the absolute STEC can be obtained by using the differential pseudoranges,
its accuracy is usually low. In general, the high accuracy differential phases can be applied to derive
the STEC. However, the STEC represents the relative changes of ionospheric TEC due to the existence
of the ambiguity in the phase measurements. To obtain the high absolute STEC, an extra term BL is
introduced in this work. It can be formulated as follows [7,21,22]

STEC = STECΦ + BL. (7)

If N measurements are obtained during a satellite pass, the extra term BL can be written as

BL =

√∑N
i=1

(
STECPi − STECφi

)2

N
. (8)

The method described by Blewitt [23] is used to preprocess the selected GNSS observations.
The L4 combination is formed to remove the effects of geometry, clock bias, and tropospheric delay
error. In general, the instrumental bias of satellite and receiver is usually stable in one day. In this
work, the instrumental bias is fitted using the least square technique.

To validate the feasibility and the superiority of the new tomographic model, a numerical
simulation experiment is carried out in this work. For this purpose, the projection matrix A in
Equation (4) can be created using the coordinates of the observed GNSS satellites and 124 ground
stations from the continuously operating reference system (CORS) of Hunan province in China.
The distribution of CORS GNSS stations and the ionosonde station are shown in Figure 3.

Using the internation reference ionospheric (IRI) model, such as IRI 2016 model, the IED true value
Xsim can be obtained. The simulated STEC without noise can be computed using the following equation.

Ysim = AXsim. (9)

To make the simulated STEC closer to its actual situation, the simulated STEC vector Ysim is added
a small amount of random white noise Esim. The added amount equals the 5% of the simulated STEC
data in this work. The STEC vector with random white noise can be then represented as

Ynoise = Ysim + Esim. (10)

To ascertain the parameters of blob basis function and compare characteristics of the two
tomographic models, the hybrid reconstruction algorithm [24], which combines the truncated singular
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value decomposition (TSVD) with algebraic reconstruction technique (ART), is introduced to perform
the two tomographic models, and the true IED value is simulated by using the IRI 2016 model.
Since the geomagnetic activity is quiet, the selected data is the GNSS observations on June 15, 2015.
The simulated time period is 00:00 UT–00:30 UT. The latitude ranges from 24◦ N to 30◦ N. The longitude
varies from 109◦ E to 114◦ E, and the height ranges from 100 km to 1000 km.
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For the simulation experiment, the key problem is to determine the parameters h, α, and a
that affect the quality and efficiency of the imaging reconstruction. Whether the observation data
is sufficient or not, Matej and Lweitt [19] have verified that the blob basis function and the first
derivative are continuous when h equals 2. For the blob basis tomographic model, the selection of the
parameters of α and a is different from the imaging reconstruction of all view angle. Considering the
computational efficiency and the electron mainly concentrating on the height range from 200 km to
500 km, the variable parameter a is variable in different height ranges. To define the two important
parameters, some schemes are devised, and the error statistic results of the different schemes are given
in Table 1.

Table 1. Statistics of the reconstructed IED error using different schemes of parameters selection.

Range of Height
(km) Scheme Average IED Errors

(1011 el/m3)
Root Mean Square
Error (1011 el/m3)

500–1000
1 a = 50, α = 3.0 0.14 0.10
2 a = 50, α = 3.5 0.08 0.07
3 a = 50, α = 4.0 0.13 0.12

200–500
1 a = 15, α = 3.0 0.47 0.43
2 a = 15, α = 3.5 −0.18 0.15
3 a = 15, α = 4.0 0.38 0.40

100–200
1 a = 50, α = 3.0 0.26 0.23
2 a = 50, α = 3.5 0.15 0.10
3 a = 50, α = 4.0 −0.20 0.16

From Table 1, it can be seen that the reconstructed errors of scheme 2 is minor compared to other
schemes in a different height range. In the following simulation experiments, the parameters α and a
of scheme 2 are adopted, and the unit of a is kilometer. Therefore, the ionospheric space is discretized
using scheme 2.

Figure 4 compares the reconstructed results of two models with the true value. From Figure 4,
it can be seen that the reconstructed image of the blob basis tomographic model coincides with
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that obtained from IRI 2016 model. It demonstrates that the blob basis functional model is feasible
to reconstruct the IED distributions. Meanwhile, Figure 4 also shows that the reconstructed IED
distributions of the blob basis tomographic model have better agreement with the simulated true
values of IED obtained from IRI 2016 model.
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Figure 5 illustrates the contour maps of the reconstructed errors of the two tomographic models.
In Figure 5a, the maximum absolute error of IED reconstruction is 3.3 × 1010 el/m3, and the
root mean square error (RMSE) is 1.05 × 1010 el/m3. However, for the voxel basis tomographic
model, the maximum absolute error of IED reconstruction is 1.41 × 1011 el/m3, and the RMSE is
4.36 × 1010 el/m3. The comparison of the reconstructed errors validates that the accuracy of the blob
basis model is higher than that of the voxel basis model. These facts confirm that the blob basis
tomographic model is superior to the voxel basis tomographic model.
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To test the convergence speed of the blob basis tomographic model, different blob divisions
scheme is devised. One is the discretized space adopted in the simulation experiment, and the other
scheme is the fixed radius of the blob, which is 15 km. In this work, the iteration convergence condition
is defined as follows

S =
‖ x0 − x1 ‖2

‖ x1 ‖2
, (11)

where x0 is the initial IED value of each spherical blob, which is roughly given by Truncated singular
value. x1 represent the final IED solution vector of each spherical blob.

In the simulation, the convergence of the iteration is terminated when S < 10−3. Figure 6 shows
the variation of the convergence speed. From Figure 6, we can see that the convergence is terminated
when the iterative numbers is 12, and the convergence speed of the variable blob basis model is faster
than that of the fixed blob basis model. It validates that the variable blob basis model is an efficient
tomographic model.
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3.2. Tomography Reconstruction of IED Using Actual GNSS Data

To further validate the reliability of the new tomographic model, it is necessary to reconstruct
the IED distributions by combining the new model with real GNSS observations. In this work,
the reconstructed geographic region and the discrete intervals are the same as those of the simulated
experiment. The GNSS data of 124 ground stations are obtained from the CORS network in Hunan
province. The sample interval of the GNSS data is 30 seconds and the elevation mask angle is 15◦.
The method proposed by Blewitt [22] is used to preprocess the selected GNSS data. Using the new
model and the preprocessed GNSS data, the time-series variations of the three-dimensional IED
distributions are effectively reconstructed and analyzed on 15 June 2015.

Figure 7 shows the diurnal variations of IED distributions in the cross section of latitude and height.
It can be seen that the IED varies from small to large between 01 UT and 05 UT, and then the IED varies
from large to small as the time evolves, which is consistent with the normal change laws in daytime
and nighttime over Hunan province. At 05 UT, the IED reaches the maximum that is 1.95 × 1012 el/m3.
However, the minimum of IED occurs at 21 UT, the value 2.82 × 1011 el/m3. Comparing all panels in
Figure 7, it can be seen that the peak height of the IED gradually rises from 260 km to 350 km between
01 UT and 05 UT, and then it falls to 290 km between 09 UT and 21 UT. It roughly reflects the vertical
variation characteristics of the ionosphere in the reconstructed geographical region.
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of latitude and height at 111.5◦ E. The recording time for each panel is given at the top right corner of
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Sensors 2020, 20, 2182 8 of 11

Figure 8 illustrates the time-series variations of IED with longitude and latitude at 350 km on
June 15, 2015. It can be seen that the IED in eastern Hunan is higher than that in western Hunan from
01 UT to 05 UT. With the time elapses, the IED in western Hunan gradually increases. The IED in
western Hunan is higher than that in the eastern Hunan from 09 UT to 17 UT. At 21 UT, the IED in the
eastern Hunan is higher than that in western Hunan. From Figures 7 and 8, we can also see that there
are larger differences between the characteristics of the ionosphere in mid-latitude and low-latitude
regions, and the IED values over northern Hunan are smaller than those over southern Hunan as a
whole. This indicates a strong correlation between the variation of IED and latitude.
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Figure 8. Tomographic images of IED on June 15, 2015, in the longitude and latitude plane at 350 km.
The recording heights for each panel are given at the top left corner of each panel. The unit of the IED
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Figure 9 illustrates the comparison of the reconstructed IED profiles using the two models with
that obtained from ionosonde data recorded by Shaoyang Station at 09 UT and 17 UT. From Figure 9,
it can be seen that the reconstructed IED profiles of the blob basis tomographic model have better
agreement with that obtained from ionosonde data than those of the voxel basis tomographic model
as a whole. The same conclusion can also be draw from other reconstructed IED vertical profiles.
The bottom IED profile shows that the peak height of the reconstructed profiles of the blob-based
model is lower than that of ionosonde. The reconstructed results further validate that the blob basis
tomographic model is superior to the voxel basis tomographic model. It can reconstruct the IED
distributions using higher accuracy.
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The Kp index of geomagnetism is more than 5 betwee 15 UT on 22 June 2015, and 12 UT on 23 June
2015. In this time period, the Kp indexes range from 5 to 8. This indicates that a strong geomagnetic
storm happened in this time period. Using the blob basis tomographic model, we calculate the
differences between the storm-time IED and the reference values, which equal the 3-day IED average
values before the storm occurrence.

Figure 10 shows the latitude-altitude variations of the differential IED along the longitude of
111◦ E on 22 and 23 June 2015. From Figure 10, it can be seen that the weak positive phase storm
appeared between 280 km and 360 km at 16 UT on 22 June 2015, and then the intensity of the positive
phase storm decreases with time. Then the IED values are almost unchanged at 20 UT on 22 June and
00 UT on 23 June, except for a small decrease ranging from 29◦ N to 30◦ N at the altitude of about
280 km. As the storm developed, the positive phase storm covering a wider height range appeared
at 04 UT on 23 June. Afterwards, the strong negative phase storm occurred from 260 km to 300 km
in the northern Hunan, where the IED values obviously decreased. Then the negative storm almost
disappeared, and the IED values showed a slight increase from 200 km to 280 km in the northern
Hunan province at 12 UT on 23 June.
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4. Conclusions

A new ionospheric tomography model is presented. The new model uses the overlapping blobs
to replace the voxels in the traditional voxel basis model. To validate the new tomographic model,
two tests are carried out. The reliability of the new model is first confirmed by a simulated experiment
in which the IED distributions are generated from the IRI 2016 model. The simulated test shows that
the new model is superior to the voxel basis ionospheric tomography model. Finally, the new model
is further introduced to reconstruct the three dimensional IED distributions in a geomagnetically
quiet day. The temporal and spatial variation characteristics of the three dimensional ionospheric
structure are carefully investigated. The profiles obtained from the new tomographic model have
better agreement with ionosonde than those reconstructed from the voxel basis tomographic model.
The fact shows that the reconstructed accuracy of blob basis tomographic model is higher than that
of the voxel basis tomographic model. The test results show that the new model is effective for the
tomographic reconstruction of IED.

Although the new model is successfully applied to reconstruct three-dimensional IED distributions
in the geomagnetically quiet day, it can also be extended to investigate the large-scale ionospheric
disturbance under the condition of a magnetic storm and pre-earthquake in the further work. Using the
new model, we can know and map the details of ionospheric anomalies caused by these special
phenomena. In addition, the blob basis tomography can be exploited in other fields, such as medical
science and seismic science.
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