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Abstract: The paper proposes a method of visual attention-based emotion classification through eye
gaze analysis. Concretely, tensor-based emotional category classification via visual attention-based
heterogeneous convolutional neural network (CNN) feature fusion is proposed. Based on the
relationship between human emotions and changes in visual attention with time, the proposed
method performs new gaze-based image representation that is suitable for reflecting the characteristics
of the changes in visual attention with time. Furthermore, since emotions evoked in humans
are closely related to objects in images, our method uses a CNN model to obtain CNN features
that can represent their characteristics. For improving the representation ability to the emotional
categories, we extract multiple CNN features from our novel gaze-based image representation and
enable their fusion by constructing a novel tensor consisting of these CNN features. Thus, this
tensor construction realizes the visual attention-based heterogeneous CNN feature fusion. This is
the main contribution of this paper. Finally, by applying logistic tensor regression with general
tensor discriminant analysis to the newly constructed tensor, the emotional category classification
becomes feasible. Since experimental results show that the proposed method enables the emotional
category classification with the F1-measure of approximately 0.6, and about 10% improvement can be
realized compared to comparative methods including state-of-the-art methods, the effectiveness of
the proposed method is verified.

Keywords: tensor analysis; visual attention; change with time; feature fusion; convolutional neural
network

1. Introduction

Due to the increasing number of images on the Web, the demand for image understanding has
increased [1–3]. Image understanding mainly focuses on two types of information: image-based
information and human-based information. By using image-based information such as textures and
luminance gradients, many researchers have tried to investigate semantic segmentation and object
recognition [4–9]. Moreover, by using human-based information such as brain activities and gaze
movements, many researchers have tried to investigate image emotion recognition and interest level
estimation [10–14]. Therefore, we divide image understanding into image-based understanding and
human-based understanding corresponding to the first and second types of information, respectively.
Although the recent development of convolutional neural networks (CNNs) [4] has enabled the
realization of image-based understanding with high performance [4–9], human-based understanding
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is still difficult since it is closely related to abstract semantics perceived by humans [15]. Image
emotions lie on the highest level of abstract semantics, which can be defined as semantics describing
the intensities and types of feelings, moods, affections, or sensibility evoked in humans viewing
images [16]. In this study, we focus on the classification of images into emotional categories.

In studies on estimation of emotions evoked by humans gazing at images, the effectiveness of the
use of several bio-signals has been mentioned [17–20]. It has been shown in the fields of psychology
and neuroscience that human emotions are evoked by objects included in images [21,22]. Moreover,
there is a relationship between emotional properties of an image and visual attention, i.e., the changes
with time in visual attention are closely related to human emotions [23]. Therefore, in the same manner
as emotion estimation, it is expected that the use of information on objects gazed at and information
on changes in visual attention with time can be effective for emotional category classification.

In order to use the information on objects gazed at and information on changes in visual attention
with time, we should obtain gaze data including the gazed locations of images and their duration
times. Moreover, the objects in gazed areas need to be characterized by using CNNs which have
been successfully implemented for object recognition. Therefore, the acquisition of gaze data and
the training of CNNs for object recognition are needed for emotional category classification. Due
to the burden of users to get a large amount of training gaze data, the number of images with gaze
information is limited. On the other hand, CNNs need a large amount of training data. Thus, by using
eye gaze data, the use of CNNs trained from scratch is not suitable for emotional category classification.
It is necessary to use CNNs that are pre-trained by other domain datasets and extract outputs of an
intermediate layer of the pre-trained CNN as CNN features. Extraction of CNN features is well known
as one of transfer learning approaches [24]. In addition to consideration of objects that are gazed at,
information on changes in visual attention with time is effective for emotional category classification
as described above. Thus, this information should be dealt with together with consideration of objects
gazed at. Then, in order to extract CNN features, we simply represent superimposed images and
changes in visual attention with time. The superimposed representation is simple but effective for
emotional category classification [25]. Therefore, for the collaborative use of CNN features and visual
attention with changes over time, we treat the new image representation based on the superimposation
and extract its CNN features.

Although CNN features have high representation ability for categories of the source domain,
they do not necessarily have the ability for our target domain. Thus, for obtaining more semantic
features and improving the representation ability to the image emotional category, it is desirable to
use multiple CNN features calculated from multiple CNN models. Then, we have to consider the
heterogeneous feature fusion method. For fusing heterogeneous CNN features, we should deal with
not only changes over time but also interactions between CNN features. However, since CNN features
have high dimensions, the fusion and analysis of the information are difficult. We therefore focus on
tensor-based feature fusion like vector concatenation. The dimension of each mode of the constructed
tensor is a lower dimension than that of vector concatenation. Thus, tensor-based feature fusion
enables analysis of the changes over time and interactions between CNN features. However, we need
to handle high-order information including information on CNN features themselves, the number
of CNN features, and the changes over time. Consequently, for emotional category classification, a
learning methodology with tensor analysis is strongly needed.

In this paper, we propose a new method for tensor-based emotional category classification
via visual attention-based heterogeneous CNN feature fusion. In the proposed method, the new
gaze-superimposed image representation [25] is adopted for associating images with eye gaze data
as shown in Figure 1. Moreover, we extract multiple CNN features from each frame of the image
representation. Note that the frame in the proposed method means the pair of the image and visual
attention at each time unit that is divided the total gaze time in this image representation, although
the term of frame is generally used for a movie. Furthermore, we extract several CNN features and
construct a new CNN feature-based tensor (CFT) for considering the interactions of CNN features.
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Since each feature of the CFT is calculated from the gaze-based image representation, it can be expected
that the proposed method will enable visual attention-based heterogeneous CNN feature fusion and
that it will lead to improvement of the representation ability. Therefore, this CNN feature fusion
based on a CFT is the main contribution of this paper. Finally, for the newly derived novel CFT, we
perform supervised feature transformation based on general tensor discriminant analysis (GTDA) [26],
which can transform original features into highly discriminant features, and realize emotional category
classification based on logistic tensor regression (LTR) [27]. Consequently, accurate emotional category
classification via the new feature fusion approach becomes feasible.

Figure 1. Overview of our new gaze-based image representation. Note that we handle color images in
our method, but this figure shows a gray-scale version to visually explain our image representation.
GIW matrices represent “gaze and image weight matrices”, which are explained in Section 3.1.

The rest of this paper is organized as follows. Related works and placement of this study
are described in Section 2. In Section 3, tensor-based emotional category classification via visual
attention-based heterogeneous CNN feature fusion is explained. The effectiveness of the proposed
method verified from experimental results is shown in Section 4. In Section 5, we summarize this
paper and present some discussions. Note that, in Appendix A, the mathematical notations, e.g., the
tensor algebra, in this paper are shown.

2. Related Works

In this section, we introduce related works that focus on emotional category classification. Many
researchers have focused on the dominant emotional category (DEC) when they classified images
into emotional categories [28–30]. DEC means the emotional category that many humans evoke
when they gaze at an image. There are several methodologies for tackling the DEC classification
problem [28,31,32]. Furthermore, for constructing classifiers of emotional categories in these methods,
image datasets with emotional categories have been published [29,30]. In [30], the dataset consists
of images collected from Flickr, and the images are mainly realistic photos. Moreover, an abstract
painting dataset for classifying different types of images closely related to emotional categories has
been published [29]. In contrast to realistic photos, abstract paintings do not consist of clear objects
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and uniform colors. Thus, classification of such images by using only features directly calculated from
the images is difficult .

Pasupa et al. proposed a classification method [28] using both eye gaze data, which are closely
related to human emotions, and simple handcrafted visual features. On the other hand, since CNN
features, which have more semantic information, have been used for visual features in recent years [24],
Chen et al. proposed a CNN feature-based DEC classification method [32], and Rao et al. handled the
outputs of some layers of a CNN trained from scratch [31]. In the DEC classification problem, it has
been expected that CNN features are effective and that the collaborative use of eye gaze data and CNN
features enables improvement in performance. Although these CNN-based methods certainly classify
images into DECs with high performance, e.g., approximately 70% of classification accuracy [31,32],
the large number of images which are pre-classified by humans for the training from scratch. Thus,
CNN-based DEC classification methods are effective in the case that there exists the dataset with a
large number of images already labeled emotional category [33], but images obtained from the domain
which is different from the above dataset cannot be classified with high performance due to the lack
of labeled data. Thus, in order to train CNN-based DEC classification methods for images obtained
from the new domain, our method can help the label assignment problem since we can perform the
training from the small number of training images. Therefore, human-based information such as gaze
information is needed. In particular, since it is difficult to extract the emotion-related characteristics,
gaze information is suitable for the DEC classification.

For improving the performance of the emotional category classification, it was reported in [10,34]
that the use of multiple visual features is effective. Zhao et al. focused on the common factor between
emotion features and each visual feature for predicting emotion distribution [10,34]. Based on the
assumption that many images are pre-given to the emotion distribution, they extracted emotion
features based on the emotion distribution from these images. Then, even though different visual
features represent different semantics, they considered the relationships between emotion features and
visual features but did not consider the relationships between visual features. Thus, although they
used multiple visual features, their method cannot consider the interactions between visual features.

From the above discussion, we focus on the collaborative use of eye gaze data and multiple CNN
features for image emotional category classification. In order to use multiple CNN features with
consideration of their interactions, we newly introduce their feature fusion.

3. Tensor-Based Emotional Category Classification

In this section, we explain the proposed method. Our method classifies images into emotional
categories via tensor-based analysis that enables realization of visual attention-based heterogeneous
feature fusion suitable for our target problem. An overview of the proposed method is shown in
Figure 2. Construction of the new gaze-based image representation for relating images and visual
attention with changes over time is shown in Section 3.1. CNN feature extraction and construction of
the CFT are shown in Section 3.2. Feature transformation based on GTDA and LTR-based emotional
category classification using the transformed CFT are shown in Sections 3.3 and 3.4, respectively. Since
the effectiveness of the use of the combination of GTDA and LTR has been confirmed in [35], we adopt
them in our method.
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Figure 2. Overview of our method. We construct the new gaze-based image representation and extract
multiple convolutional neural network (CNN) features. By aligning these CNN features, we construct
a CNN feature-based tensor (CFT) and apply both general tensor discriminant analysis and logistic
tensor regression to the CFT. Finally, our method classifies images into emotional categories using
outputs of the proposed network. Details of the procedures are shown in Sections 3.1–3.4.

3.1. Construction of Gaze-Based Image Representation

In order to perform the new gaze-based image representation, the proposed method associates
images with eye gaze data. We denote training images as X image

n ∈ Rd1×d2×d3 (n = 1, 2, · · · , N; N
being the number of training images). Note that the dimensions d1, d2, and d3 correspond to the width
and the height of an image and the number of color channels, i.e., three. In our method, a fixation
map of each frame f (= 1, 2, · · · , d4; d4 being the number of frames) is constructed on the basis of eye
gaze data, and a Gaussian filter is applied to the obtained fixation map to obtain Wgaze

n, f ∈ Rd1×d2 . Eye
gaze data include data of gazed locations and their duration times, and we construct the fixation map
by voting for pixel locations based on gazed locations. Then, a gaze and image weight (GIW) matrix
Wn, f ∈ Rd1×d2 of each frame f is calculated as follows:

Wn, f = d4
Wgaze

n, f

∑d4
f=1 Wgaze

n, f

+ O, (1)

where O ∈ Rd1×d2 is a matrix for which the elements are all one. Finally, the image representation
X 4th

n ∈ Rd1×d2×d3×d4 is calculated by using GIW as follows:

X4th
n,col, f = X image

n,col ◦Wn, f , (2)

where X4th
n,col, f ∈ Rd1×d2 and X image

n,col ∈ Rd1×d2 (col = 1, 2, · · · , d3) are respectively obtained by

matricizing X 4th
n and X image

n for the mode of color channels. The operator “◦” means the calculation of
the Hadamard product. The fourth-order GIT can reconstruct the original images as follows:

X image
n =

1
2d4

d4

∑
f=1
X 4th

n, f . (3)
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Thus, this representation consists of the image and the visual attention. By adopting this image
representation, we extract CNN features with consideration of the changes in visual attention with
time. In this way, construction of the new image representation, which is the input for the emotional
category classification, becomes feasible.

3.2. Extraction of CNN Features and Construction of CFT

The proposed method extracts CNN features from the outputs of the last pooling layer of
pre-trained CNNs. Specifically, we extract CNN features by using three kinds of state-of-the-art
CNNs, DenseNet201 [36], InceptionResNet-v2 [37], and Xception [38]. It should be noted that the
kinds and the number of CNNs are experimentally set in Section 4 since the purpose of this paper is to
reveal the effectiveness of the use of multiple CNN features for the emotional category classification.
Then, in this paper, we choose the above CNNs as the state-of-the-art methodologies. The dimensions
of these CNN features are 1920, 1536, and 2048, respectively. In the proposed method, we construct the
CFT by aligning these features. However, since the dimensions of these CNN features are different,
their direct spatial concatenation is difficult. Thus, we apply supervised dimensionality reduction to
these CNN features to unify their dimensions to the lowest one, i.e., 1536. In the proposed method, we
simply adopt Fisher discriminant analysis (FDA) [39], which is one of the most well-known supervised
dimensionality reduction methods. Finally, by aligning the CNN features, the proposed method

constructs the CFT V3rd
n ∈ Rd f

1×d f
2×d f

3 . Note that d f
1 means the minimum dimension of these CNN

features and is equal to 1536, d f
2 means the number of CNN features, i.e., three, and d f

3 is the number

of frames, d f
3 = d4. The procedures shown in this subsection correspond to “construction of CFT” in

Figure 2.
In the proposed method, we adopt the multiple CNN features for improving the representation

ability. Moreover, our novel representation, CFT, can consider the dimensions of each CNN feature,
changes in visual attention with time and kinds of CNN features. In this way, the proposed method
simultaneously enables consideration of the interactions of multiple CNN features. Therefore, the
proposed heterogeneous CNN feature fusion, i.e., the construction of the CFT, is expected to have high
representation ability.

3.3. Feature Transformation Based on GTDA

We apply GTDA to V3rd
n to obtain discriminative features that are suitable for emotional category

classification. We define the class label yn ∈ {0, 1} annotated to an image X image
n . Then, yn = 1 means

that n-th image X image
n includes a target label, i.e., a target emotional category. Note that, since each

image has multiple emotional categories, the proposed method has to deal with multi-label problems,
and the binary classification for each emotional category is thus adopted. In order to calculate the

projection set {PG∗
l ∈ Rd f

l ×d f
l
∗
}3

l=1 (d f
l
∗
< d f

l ), we solve the following optimization problem:

PG∗
l |

3
l=1 = arg max

PG
l |

3
l=1

tr
(

PG
l
> (

Sb
l − ηlS

w
l

)
PG

l

)
, (4)

where ηl is obtained as the largest eigenvalue of (Sw
l )
−1Sb

l as shown in [26]. In addition, Sb
l and Sw

l are
defined as follows:

Sb
l = ∑

y∈{0,1}

[
nymatl

((
My −M

)
×l̄ PG

l
>)

mat>l
((
My −M

)
×l̄ PG

l
>)]

, (5)

Sw
l =

N

∑
n=1

[
matl

((
V3rd

n −Myn

)
×l̄ PG

l
>)

mat>l
((
V3rd

n −Myn

)
×l̄ PG

l
>)]

, (6)
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where

My =
1

ny

N

∑
n=1

(1− |y− yn|)V3rd
n , (7)

M =
1
N ∑

y∈{0,1}
nyMy. (8)

Note thatMy (y ∈ {0, 1}) is the class mean tensor belonging to class y, andM is the total mean tensor
of all training tensors. Note that ny is the number of images belonging to class y. Moreover,My and

M are all third-order tensors that lie in Rd f
1×d f

2×d f
3 . Finally, we obtain a tensor V̂3rd

n by transforming
the CFT V3rd

n as follows:

V̂3rd
n = V3rd

n

3

∏
l=1
×lP

G∗
l . (9)

Therefore, we can calculate highly discriminative features by using GTDA considering the
categorical information.

3.4. Emotional Category Classification Based on LTR

In order to construct the LTR-based classifier, we use the transformed CFT V̂3rd
n as the input of

LTR. Given V̂3rd
test ∈ Rd f

1
∗
×d f

2
∗
×d f

3
∗

from a test image, we try to estimate its class label ytest. The LTR
model used in the proposed method is formulated as follows:

Pr[ytest | V̂3rd
test ,Z ] =

1
1 + exp(−〈Z , V̂3rd

test〉)
, (10)

where Z , which is a parameter tensor of regression coefficients, is the same size as that of the
transformed CFT V̂n. In order to obtain the optimal parameter tensor Ẑ of Z , we solve the following
maximum log-likelihood problem:

Ẑ = arg max
Z
L(Z), (11)

where

L(Z) =
N

∑
n=1

(
ynln

(
〈Z , V̂3rd

n 〉
)
+ (1− yn)ln

(
1− 〈Z , V̂3rd

n 〉
))

. (12)

We can solve the above maximization problem by adding L1-norm regularization of Z based on the
idea of [27].

Finally, the proposed method estimates the class label as follows:

ytest = arg max
y∈{0,1}

Pr[y | V̂3rd
test , Ẑ ]. (13)

In this way, the proposed method realizes the heterogeneous CNN feature fusion and the tensor-based
analysis with consideration of the changes in visual attention with time.

4. Experimental Results

We show experimental results in this section in order to verify the effectiveness of the proposed
method. The experimental conditions are shown in Section 4.1 and the performance evaluation is
shown in Section 4.2.
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4.1. Experimental Conditions

A dataset of abstract paintings that contains 280 images [29] was used in the experiment. Each
image was annotated by at least one emotion label(Images were rated by at least 14 persons in
web-survey which was performed by Machajdik et al.) [29]. among eight emotional categories (awe,
amusement, contentment, anger, excitement, sad, disgust, and fear). It should be noted that these emotional
categories were defined by the psychological study on affective images [40]. We used these annotations
as ground truths, and most of images have several emotion labels. Thus, we trained our method and
comparative methods for each emotional category and each subject. From the 280 images, 224 images
were randomly selected as training images and the remaining 56 images were used as test images to
evaluate the performance of our emotional category classification method. For the evaluation measure,
we adopted the F1-measure (F) obtained as follows:

F =
2× Recall× Precision

Recall + Precision
, (14)

where Recall and Precision are calculated by using the obtained classification results as follows:

Recall =
TP

TP + FN
, (15)

Precision =
TP

TP + FP
. (16)

TP, FN, and FP mean the numbers of images estimated to be true positive, false negative, and false
positive, respectively. Since the number of images in the dataset was limited, evaluation was performed
with a statistical test, Welch’s t-test [41], between our method and other methods, and the results are
shown with the F1-measure.

Thirteen able-bodied subjects who were eleven healthy males and two healthy females, aged
between 22 and 26 years (mean age : 23.5 ± 1.2 years) participated in the experiment. These subjects
were normal or corrected-to-normal vision, and their eye gaze data were collected. The eye gaze data
were obtained through Tobii Eye tracker 4C (https://tobiigaming.com/eye-tracker-4c/). Each subject
gazed at images until evoking some emotions (This human research was conducted with the approval
by the ethical committee in Hokkaido University.). These subjects just gazed at images, but we did
not collect their evoked emotions, i.e., the ground truths were not their evoked emotions but labeled
emotion labels provided by [29]. Their gaze was adjusted to the center of a display before showing a
new image in one second. The gazing time length was normalized in such a way that it became d4.

For comparison of the proposed method (PM), we adopted eight comparative methods as shown
in Table 1. Comparative method 1 (CM1) does not use changes in visual attention with time. Therefore,
in CM1, d4 = 1 in the new image representation. Furthermore, CM1 uses only one CNN feature
among three kinds of CNN features shown in Section 3.2. CM1 was adopted for evaluating the novel
approaches introduced in this paper. We also adopted comparative method 2 (CM2), which uses
only eye gaze features extracted on the basis of the state-of-the-art method [42], and we performed
emotional category classification based on an extreme learning machine (ELM) [43]. CM2 was adopted
for evaluating the use of the combination of image information and gaze information in our method.
We also performed a comparison with the following three methods. We adopted a recently PM [28]
that collaboratively uses eye gaze information and hand-crafted visual features as comparative method
3 (CM3). In the experiment, since multi-modal features such as gaze features and visual features
were used, this fusion method is considered to be suitable for comparison. Qiu et al. proposed an
emotional category classification method [44] by performing fusion of bio-information based on deep
canonical correlation analysis (Deep CCA) [45]. Thus, we used the above state-of-the-art method as
comparative method 4 (CM4) by using gaze features [42] and CNN features. Comparative method 5
(CM5) classifies images into emotional categories by applying feature fusion based on CCA [46] to
both CNN features and gaze features [42]. Comparative method 6 (CM6) and comparative method

https://tobiigaming.com/eye-tracker-4c/
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7 (CM7) use the CNN feature-fusion based on the vector concatenation. Concretely, CM6 makes the
second-order CFT whose modes are the dimension of CNN features and the change over time. CM6
concatenates multiple CNN features at each time and applies GTDA to the constructed second-order
CFT. Then, CM7 concatenates all of the CNN features, that is, CM7 treats the vector whose dimension
is the dimension of CNN features times the kinds of CNN features. We took the average of the change
with time in CNN features so as to prevent becoming a higher dimension. In order to handle the
vector, CM7 applies FDA [39] instead of GTDA. CMs 6 and 7 classify these features into emotional
categories based on a support vector machine (SVM) [47], which is one of the simplest classifiers, and
ELM. Finally, comparative method 8 (CM8) fuses CNN features based on late fusion. In CM8, we first
constructed a second-order CFT that consists of CNN features with consideration of the change over
time for each CNN feature. Then, we applied GTDA and SVM or ELM to each second-order CFT and
determined the final emotional category based on a softmax function, which is one of the simple but
effective late fusion methods. Actually, in the use of multiple modalities, late fusion used in CM8 is
applied [48,49].

Table 1. The difference of the proposed method (PM) and comparative methods (CMs). The marks ’X’
and ’X’ mean that the corresponding method considers or does not consider the time change. Moreover,
“Softmax” means that we applied the softmax function to the outputs of several classifiers and obtained
probabilities. Then, classification was performed based on the value obtained by multiplying these
probabilities. Furthermore, “Hand-crafted feature” means that CM3 extracted hand-crafted visual
features such as Gabor filter-based and Sobel filter-based visual features from images obtained by
superimposing original images and fixation maps.

Time Change Gaze Feature Fusion

PM X GIT CFT
CM1 X GIT CFT
CM2 X Novel gaze feature [42] Only gaze feature
CM3 X Hand-crafted feature [28] Concatenation
CM4 X Novel gaze feature [42] DeepCCA [45]
CM5 X Novel gaze feature [42] CCA [46]
CM6 X GIT Concatenation
CM7 X GIT Concatenation
CM8 X GIT Softmax

4.2. Performance Evaluation

Tables 2 and 3 show the results of the experiment. Table 2 shows the average of F1-measures of all
emotional categories that were calculated for each subject. Table 3 shows those of all subjects that were
calculated for each emotional category. “D”, “I”, and “X” represent DenseNet201, InceptionResNet-v2,
and Xception, respectively. In our method, the combination order of CNN features influences the
emotional category estimation performance by comparing PM (D-I-X), PM (D-X-I), and PM (X-D-I),
and PM (D-I-X) outputs the best results on average. This is related to the mode expansion in the second
mode of GTDA adopted in our method. PM (D-X-I), which has the worst results in PMs, outperforms
all of the comparative methods. Thus, the effectiveness of PM is verified without considering the
combination order of CNN features. The influence of this order has an interesting characteristic, and
we should consider its decision method. However, in this paper, since we focus on heterogeneous
CNN feature fusion and analysis, we will tackle this decision problem as our future work.
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Table 2. Average values of F1-measures of all emotional categories calculated for each subject. Note that •-•-• and •,•,• are different in terms of whether their order is
considered or not. p-value was obtained by Welch’s t-test [41].

PM PM PM CM1 CM1 CM1 CM2 [42] CM3 [28] CM4 [44] CM5 [46] CM6 CM6 CM7 CM7 CM8 CM8

CNN Feature D-I-X D-X-I X-D-I D I X - - D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X
Classifier ELM ELM ELM ELM ELM ELM ELM SVM SVM SVM SVM ELM SVM ELM SVM ELM

Sub1 0.616 0.613 0.631 0.426 0.468 0.452 0.567 0.546 0.512 0.529 0.533 0.543 0.578 0.544 0.531 0.560
Sub2 0.616 0.591 0.635 0.514 0.429 0.486 0.402 0.371 0.311 0.455 0.508 0.519 0.413 0.414 0.506 0.570
Sub3 0.592 0.552 0.538 0.469 0.415 0.362 0.490 0.379 0.567 0.538 0.531 0.567 0.442 0.501 0.494 0.498
Sub4 0.567 0.558 0.583 0.401 0.417 0.423 0.402 0.520 0.532 0.540 0.502 0.563 0.503 0.571 0.468 0.527
Sub5 0.606 0.603 0.551 0.507 0.446 0.441 0.512 0.488 0.564 0.502 0.489 0.560 0.504 0.525 0.473 0.528
Sub6 0.603 0.542 0.589 0.486 0.453 0.440 0.505 0.397 0.478 0.512 0.495 0.526 0.504 0.498 0.446 0.528
Sub7 0.565 0.643 0.593 0.393 0.498 0.341 0.521 0.396 0.440 0.489 0.487 0.592 0.513 0.507 0.469 0.546
Sub8 0.567 0.597 0.598 0.378 0.424 0.533 0.468 0.473 0.567 0.537 0.510 0.511 0.565 0.588 0.400 0.515
Sub9 0.598 0.558 0.597 0.471 0.436 0.414 0.505 0.463 0.565 0.479 0.503 0.475 0.498 0.433 0.484 0.539
Sub10 0.560 0.526 0.603 0.463 0.395 0.400 0.425 0.471 0.522 0.563 0.487 0.483 0.447 0.474 0.451 0.555
Sub11 0.628 0.564 0.568 0.465 0.431 0.433 0.423 0.468 0.468 0.494 0.548 0.521 0.497 0.492 0.408 0.599
Sub12 0.597 0.597 0.588 0.333 0.442 0.408 0.414 0.406 0.497 0.466 0.509 0.515 0.562 0.529 0.489 0.625
Sub13 0.570 0.579 0.598 0.503 0.487 0.381 0.667 0.537 0.409 0.495 0.550 0.537 0.436 0.440 0.506 0.584

Average 0.591 0.579 0.590 0.447 0.442 0.424 0.485 0.453 0.487 0.502 0.512 0.532 0.497 0.503 0.471 0.552
p-value (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.01)

Table 3. Average values of F1-measures of all subjects calculated for each emotional category. Note that •-•-• and •,•,• are different in terms of whether their order is
considered or not. p-value was obtained by Welch’s t-test [41].

PM PM PM CM1 CM1 CM1 CM2 [42] CM3 [28] CM4 [44] CM5 [46] CM6 CM6 CM7 CM7 CM8 CM8

CNN Feature D-I-X D-X-I X-D-I D I X - - D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X D,I,X
Classifier ELM ELM ELM ELM ELM ELM ELM SVM SVM SVM SVM ELM SVM ELM SVM ELM

Amusement 0.667 0.667 0.667 0.409 0.473 0.564 0.527 0.418 0.531 0.501 0.486 0.648 0.488 0.489 0.462 0.622
Anger 0.667 0.667 0.667 0.605 0.506 0.446 0.527 0.449 0.493 0.517 0.502 0.493 0.505 0.545 0.483 0.490
Awe 0.667 0.667 0.667 0.360 0.354 0.410 0.529 0.453 0.469 0.536 0.387 0.500 0.648 0.457 0.540 0.526
Content 0.424 0.414 0.394 0.426 0.443 0.355 0.411 0.498 0.497 0.503 0.553 0.501 0.502 0.514 0.389 0.519
Disgust 0.667 0.667 0.667 0.452 0.481 0.475 0.521 0.435 0.505 0.476 0.420 0.488 0.460 0.450 0.524 0.481
Excitement 0.550 0.599 0.630 0.431 0.450 0.419 0.434 0.494 0.475 0.500 0.527 0.533 0.480 0.482 0.544 0.622
Fear 0.612 0.523 0.563 0.452 0.388 0.366 0.531 0.441 0.456 0.495 0.660 0.547 0.530 0.551 0.406 0.551
Sad 0.474 0.426 0.468 0.438 0.439 0.358 0.402 0.435 0.473 0.487 0.558 0.544 0.543 0.533 0.421 0.602

Average 0.591 0.579 0.590 0.447 0.442 0.424 0.485 0.453 0.487 0.502 0.512 0.532 0.497 0.503 0.471 0.552
p-value (p < 0.01) (p < 0.01) (p < 0.01) (p < 0.05) (p < 0.01) (p < 0.05) (p < 0.05) (p < 0.06) (p < 0.08) (p < 0.02) (p < 0.05) (p < 0.01) (p < 0.2)
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From the obtained results, the PM outperforms the comparative methods in the average of
F1-measure. As shown in the results of PM with CM1, the effectiveness of the novel approach
adopted in our method is verified. Moreover, the use of multiple CNN features is more effective
for the emotional category classification than that using only one CNN feature. Then, it is expected
that the greater the number of CNN features, the higher the accuracy of the emotional category
classification. However, if the number of CNN features is four or more, the combination of CNN
features increases. Thus, we simply used three CNN features for the simplicity in this experiment. The
method which determines the optimal kinds and the number of CNN features should be investigated
in the future work.

Comparing PM with CM1 and CM2 verifies that the new gaze-based image representation and
CFT, i.e., the collaborative use of image and gaze information, are effective. Furthermore, since PM has
a higher F1-measure than those of CM3 and CM4, which are recent and state-of-the-art frameworks, PM
can classify images into emotional categories with high performance. A comparison of PM and CM5
indicates that the combination use of gaze information and images via both the new gaze-based image
representation and CFT is more effective for emotional category classification than the baseline fusion
method. Moreover, a comparison of PM with CMs 6, 7, and 8 shows that the proposed heterogeneous
CNN feature fusion and its analysis are more effective than the vector-based concatenation methods
for emotional category classification. Then, the tendency of experimental results of CM8 is different
from that of other methods according to the difference of the fusion method [50]. Concretely, CM8
adopted the late-fusion method which generally provides high performance when the performance of
each method to be fused is close.

We also show the results of Welch’s t-test between PM (D-I-X) and the comparative methods.
Since the p-value is lower than 0.05, PM is statistically superior to CMs 1–5 and 7. On the other hand,
the results for CMs 6 and 8 have higher p-values than those of other comparative methods since
CMs 6 and 8 utilize the change in CNN features with time in the same manner as that in PM. The
differences between PM, CM 6, and CM 8 are only the concatenation method and when to concatenate
heterogeneous modalities. In other words, CMs 6 and 8 are similar to PM. However, these differences
are considered to cause the slight improvement of the classification performance.

In addition to the quantitative evaluations, we show one of the experimental results in Figure 3.
In Figure 3, if the classified category is the same as the ground truth, the corresponding category is
indicated in red. If the classified category is false, the corresponding category is indicated in black.
Although the gaze-based image representation of Subs 2 and 7 are classified into four categories
including all of the GTs that of Sub 8 is classified into three categories including one of the GTs.
Concretely, although Subs 2 and 7 gazed at almost the same area at each frame in the image shown,
Sub 8 gazed at a different area. This difference causes the difference in classified emotional categories.
Thus, we confirmed that the change in visual attention with time is related to human emotions.
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Figure 3. This figure shows some experimental results of some test images and their ground truths.
The areas that the subjects gazed at are shown in white at frames 1, 50, and 100. From these gaze
data, PM (D-I-X) classifies this image into some categories. If the classified category is the same as
the ground truth, the corresponding category is indicated in red. If the classified category is false, the
corresponding category is indicated in black.

5. Discussion and Conclusions

In this paper, we presented an emotional category classification method based on tensor analysis
that realizes the visual attention-based heterogeneous CNN feature fusion. In order to improve
the classification performance, the PM constructs the new tensor, CFT, that integrates the outputs
from the multiple CNN architectures with consideration of the changes in visual attention with
time. Consequently, emotional category classification becomes feasible by using GTDA and LTR.
Experimental results verified the effectiveness of the PM. In the experiment, we used only one image
dataset in consideration of the burden on the subjects. Obtaining eye gaze data is a great burden
for the subjects. Since such a task may prevent verifying the correct effectiveness, we used only one
dataset. However, the use of an abstract painting dataset is more suitable than realistic image datasets
for emotional category classification. Thus, there is no lack of the effectiveness of the PM with respect
to the number of images in this dataset. In a future work, we will use other datasets in order to verify
the robustness of our method.
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Appendix A. Mathematical Notations

The order of a tensor corresponds to the number of modes. In this paper, each lowercase letter,
e.g., a, represents a scalar, each boldface capital letter, e.g., A, represents a matrix (second-order tensor)
and each calligraphic letter, e.g., A represents a tensor (third-order tensor or higher tensor).

The mode-l matricizing of a kth-order tensor Akth ∈ RD1×D2×···Dk is denoted by matl(Akth) ∈
R

Dl×∏i 6=l Di , which is the ensemble of vectors ∈ Rml obtained by keeping the lth mode fixed and
varying the other modes. The mode-l product of a kth-order tensor Akth is denoted as Akth ×l Bl ∈
R

D1×D2×···×Dl−1×D∗l ×Dl+1×···×Dk by using a matrix Bl ∈ R
Dl×D∗l . Several multiplications are described

as follows:

Akth ×l̄ Bl = Akth ×1 B1 ×2 B2 × · · · ×l−1 Bl−1 ×l+1 Bl+1 × · · · ×k Bk. (A1)

The inner product is denoted by 〈A,B〉, where the size of B is the same as that of A. The above
notations are based on those used in previous reports [26,35].
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