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Abstract: Force myography (FMG) signals can read volumetric changes of muscle movements,
while a human participant interacts with the environment. For collaborative activities, FMG signals
could potentially provide a viable solution to controlling manipulators. In this paper, a novel
method to interact with a two-degree-of-freedom (DoF) system consisting of two perpendicular
linear stages using FMG is investigated. The method consists in estimating exerted hand forces
in dynamic arm motions of a participant using FMG signals to provide velocity commands to the
biaxial stage during interactions. Five different arm motion patterns with increasing complexities,
i.e., “x-direction”, “y-direction”, “diagonal”, “square”, and “diamond”, were considered as human
intentions to manipulate the stage within its planar workspace. FMG-based force estimation was
implemented and evaluated with a support vector regressor (SVR) and a kernel ridge regressor
(KRR). Real-time assessments, where 10 healthy participants were asked to interact with the biaxial
stage by exerted hand forces in the five intended arm motions mentioned above, were conducted.
Both the SVR and the KRR obtained higher estimation accuracies of 90–94% during interactions
with simple arm motions (x-direction and y-direction), while for complex arm motions (diagonal,
square, and diamond) the notable accuracies of 82–89% supported the viability of the FMG-based
interactive control.

Keywords: force myography signal; exerted hand force; intended arm motion; biaxial stage; planar
workspace; collaborative interactions; machine learning

1. Introduction

Human robot interaction (HRI) is observed as a growing interest in manufacturing environments.
In recent years, robots working in collaboration with human workers in final assembly lines have
boosted up productivity [1–3]. A variety of measures, such as vision systems (cameras, image/depth
sensors, and tracking systems), ultrasonic or wideband/radio frequency (RF) transceivers, proximity
detections (capacitive, inductive, infrared, or magnetic sensors) are implemented for surveying,
monitoring and sharing the workplace [4–6]. These tools can be either attached to the robot or
installed in the workspace. However, proper supervision is hard due to obstructions of signals,
limited signal ranges, and difficulties of installations within workspace. Besides, a dynamic and
unpredictable environment during collaboration introduces uncertainties increasing risks of injuries for
workers [7–9]. To address such variabilities, some input signals from human would help implementing
better collaboration. Therefore, current researches focus on including biosignals for understanding
human activities during interactions with machines [10,11]. Utilizing wearable sensing devices based

Sensors 2020, 20, 2104; doi:10.3390/s20072104 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0002-7313-3969
https://orcid.org/0000-0002-2309-9977
http://dx.doi.org/10.3390/s20072104
http://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/20/7/2104?type=check_update&version=2


Sensors 2020, 20, 2104 2 of 22

on biosignals provides more flexibility in movements and insight about human intentions. Among
such biosignals, the traditional surface electromyography (sEMG) has been studied for the last few
decades. This is a noninvasive technique that can interpret electrical activities associated with muscle
contraction variations under the skin. This typical technique has been studied for gesture recognition,
hand force recognition, prosthetic limb controls, and rehabilitation applications [12–15].

Recently, an innovative wearable sensing system integrating the noninvasive force myography
(FMG) technique has gained interest. It can be a viable solution to force measurements of upper/lower
extremity by assessing muscle voluntary contractions using force-sensing resistors (FSRs), of which the
resistances change with applied forces on their surfaces [16]. FSRs are small, easy to use, low-cost and
repeatable, which is essential for any wearable sensor. As a contemporary technique to the sEMG, FMG
signals has proven their potential in similar researches of finger and gesture recognition, isometric
grasp/hand force recognition, prosthetic upper limb control, rehabilitation applications, and assistive
solutions to activities in daily life (ADLs) of elders [17–22]. Surprisingly, this technique is found
comparable and sometimes better than the sEMG in those applications. Recent researches have shown
the FMG technique is advantageous over the sEMG in terms of lower cost, simple signal processing,
and easy incorporation as a wearable device and is a better choice for human–machine interfacing than
the sEMG [23–25].

In physical HRIs (pHRIs), interactions between humans and robots mostly occur through hand
activities such as object handling or transportation tasks in simple and fixed trajectories. These require
dynamic arm movements, while force interactions occur with hands. Learning human intentions such
as realizing human hand forces and arm motions have been studied extensively to facilitate these
collaborative tasks [26–29]. Such hand forces can be estimated by utilizing sEMG signals and isometric
hand forces with FMG signals. Although the sEMG has been researched from the last few decades to
estimate hand forces or positions for improving human–robot interactions, there is a gap in research
for FMG-based HRI control. Therefore, our objective was to investigate the recognition of exerted hand
forces in motions using FMG signals in collaboration with a simple linear robot.

In this study, real-time isotonic hand force estimation in dynamic two-dimensional (2D) arm
motions using FMG was investigated for the first time. A variety of simple and complex isotonic arm
movements involving shoulder abduction/adduction and elbow flexion/extension were performed
continuously within the workspace. A novel scheme to interact with a biaxial stage by estimating an
exerted hand force in an intended arm motion with FMG signals was implemented. The biaxial setup
of two-degree-of-freedom (2-DoF; xy-plane) motions used in this study resembled a 2-DoF robotic arm.
It was a type of gantry-positioning stage sometimes known as a linear or cartesian robot. Learning
human intention was defined as an exerted hand force in a motion in a desired path trajectory during
interactions. In a real-time scenario, a participant wearing FMG bands grasped a custom-made gripper
mounted to a stage and interacted with an exerted force in an intended motion in the XY-plane. In
addition, the biaxial stage adjusted its velocity with the estimated exerted hand force, so that the
gripper would slide accordingly in the same trajectory, thus ensuring compliant collaboration. Two
well-established supervised machine learning techniques, the support vector regressor (SVR) and the
kernel ridge regressor (KRR) with their selected features, were implemented for force estimation from
FMG readings, and their performances were observed separately.

Recognizing different arm motion patterns in two dimensions with real-time FMG signals was
interesting and challenging because of the dynamic nature of motions and individual-specific muscle
contractions. As a preliminary study, a simple interactive setup with a constrained protocol allowed
investigating force estimations in a variety of complex motions with FMG signals. These motions
were examined for understanding human intentions of manipulating a stage in any direction. The
admittance control strategy implemented in this investigation utilized supervised machine learning
methods. In many interactive control systems, complex human arm dynamics modeling is required [30];
while this study showed possible interactions without such modeling. In addition, FMG-based force
estimation could be beneficial in implementing safe collaboration while working with a robot. If safety
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issues arise such as to avoid unwanted contacts or impact forces from the manipulator, participants
can force the robot to move it further away in a certain direction. Therefore, using FMG biosignals as
the only input in learning human activities appears promising.

The remainder of the paper is organized as follows: Section 2 describes the materials and methods
used for real-time FMG-based integrated control, the experimental setup, and the protocol followed
during different phases of real-time control. The obtained results are presented and analyzed in
Section 3 and are discussed in Section 4. The paper concludes with final remarks and future work in
Section 5.

2. Materials and Methods

2.1. Experimental Setup

2.1.1. FMG Bands

Two custom-made wearable FMG bands were used to track muscles volumetric changes from the
upper extremity of human participants during specific arm motions, as shown in Figure 1a. The bands
were made of FSRs, of which the resistances changed as the muscles contracted. The FSRs exhibited
high resistances (~10 MΩ) at no pressure, and their resistances decreased as the pressure increased
(during interactions). Each band had 16 FSRs (TPE 502C, Tangio Printed Electronics, Vancouver,
Canada) [31] and was approximately 30 cm long. Using voltage dividers to extract signals from these
sensors, two data acquisition (DAQ) devices with a 16-channel analog input (NI USB 6259 and 6341,
National Instruments, Austin, TX, US)) were used for FMG data acquisition from these bands at 50 Hz.
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shows the biaxial stage with a gripper. The stages had a 450 mm travel distance and supported up to 
a 1 m/s speed and a 100 N thrust; they were chosen because of high stiffness and back drivability. A 
binary communication protocol was used to exchange commands between the biaxial stage and the 
FMG-based real-time integrated controller at 9.6 kbps. A customized three-dimensionally (3D) 
printed knob as a gripper using the ABS (acrylonitrile butadiene styrene) material was mounted on 
top of the biaxial stage; this allowed participants to grab the gripper/knob and applied forces to slide 
it on a planar surface during real-time interactions. External forces acting upon the biaxial stage were 

Figure 1. (a) Two customized force myography (FMG) bands worn on the upper-extremity of a
participant to read muscle contraction; (b) a biaxial stage with a knob-like gripper mounted on its top.

2.1.2. The Biaxial Stage

This 2-DoF linear robot consisted of two linear stages (X-LSQ450B, Zaber Technologies, Vancouver,
Canada) with built-in motor controllers for desired translational movements [32]. Figure 1b shows
the biaxial stage with a gripper. The stages had a 450 mm travel distance and supported up to a
1 m/s speed and a 100 N thrust; they were chosen because of high stiffness and back drivability. A
binary communication protocol was used to exchange commands between the biaxial stage and the
FMG-based real-time integrated controller at 9.6 kbps. A customized three-dimensionally (3D) printed
knob as a gripper using the ABS (acrylonitrile butadiene styrene) material was mounted on top of
the biaxial stage; this allowed participants to grab the gripper/knob and applied forces to slide it on
a planar surface during real-time interactions. External forces acting upon the biaxial stage were
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measured using a 6-axis force torque sensor (mini45, ATI industrial automation, Apex, NC, USA) [33].
It was placed inside the gripper/knob to measure the true label data of exerted hand forces during
interactions. NI DAQ 6210 (National Instruments, Austin, TX, USA) was used for data acquisition
from the sensor. The workspace of the biaxial stage (450 mm × 450 mm) was within the maximum
working area for a human operator (average size: 683 mm × 485 mm) [34]. In addition, each stage
could support up to a 20 kg load capacity, while the maximum masses of a human hand were around
1 kg for female and 1.2 kg for male to interact during hand movement [35]. The biaxial stage was
positioned and secured firmly on a heavy table with wooden supports for a uniform load distribution
on the entire workspace.

2.2. Real-Time FMG-Based Integrated Control

In this study, human robot collaboration was observed, as a participant interacted with a biaxial
stage in an intended arm motion. The wearable FMG bands on the upper extremity read muscles
contraction during interactions. The FSRs used in the bands had an active area of 14.7 mm, actuation
forces less than 15 g, and a pressure sensitivity range of 100–200 psi (pound of forces per square inches)
and could easily sense muscle contractions in the underlying skin. The collaborative task was defined
as the interactions between a participant to manipulate the biaxial stage by grasping its gripper to
apply hand forces while moving his/her arm in an intended trajectory; the biaxial stage would adjust
its velocity proportionate to the applied force, and the gripper would slide in the same path. Five
different 1-degree-of-freedom (1-DoF) and 2-DoF arm trajectories were selected as intended motions.
For simplicity, the collaborative task would be termed as 1-DoF/2-DoF interactions throughout the paper.
Each arm motion with a grasping force had its unique characteristics represented by multichannel
FMG signals. Thus, to identify a variety of intended motion patterns, these signals could represent
muscle groups active in interaction.

An interactive control using a supervised regression algorithm estimated an applied hand force in
a dynamic arm motion with FMG signals, converted it to the speed and sent the estimated data to the
biaxial stage, thus allowing participants to manipulate the stage by grasping its gripper in the same
trajectory. For the supervised training, force sensor (mounted inside the gripper) data was used as a
true label data generator. The data acquisition and design aspect of this proposed integrated control is
shown in Figure 2. During the real-time data collection for training, the biaxial stage was manipulated
by the force sensor reading of the exerted hand force. During the real-time test phase, the integrated
controller allowed participants to manipulate the biaxial stage with FMG-based estimated hand forces.
The user interface provided a visual feedback to the participants about the target arm motion pattern
and the exerted force to maintain muscle volumetric contraction (MVC) in certain ranges.
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For the real-time control design, a traditional admittance control scheme was implemented [36].
Therefore, external forces applied to a gripper/knob were translated into torques at each joint, and the
stage moved to a new position based on the calculated displacement. The kinematics of the considered
biaxial stage was shown as: (

x
y

)
=

(
1 0
0 1

) (
dx

dy

)
(1)

where x and y are the end positions of the gripper, and dx and dy are the displacements of the biaxial
stage in the x- and y-directions, respectively. Actual and estimated hand forces (N) were first converted
to velocities (mm/s) for the motor controllers of the stage and then as microsteps (displacements) per
seconds according to Equation (4) as in the documents from Zaber technologies, which was written
as [32]:

Displacementx, y = Velocityx, y/(Microstepsizex, y/1000/1.638). (2)

Interactions between a participant and the biaxial stage in real time are shown in Figure 3. The
participant could freely slide the gripper on the entire workspace by an exerted force. All mechanical
devices mentioned in Table 1 were synchronized properly for real-time operation, and fine tunings
were implemented to reduce the stiffness and smooth control of the manipulator. These measurements
helped the participant to reduce muscles fatigue and to interact with the biaxial stage easily while
avoiding damages to the hardware.
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the biaxial stage by grasping the gripper/ knob.

Table 1. Hardware and devices used.

Devices

Two force myography (FMG) bands with 16
force-sensing resistors (FSRs) each

� Forearm band (500 Hz, 50 samples to read)
� Upper-arm band (500 Hz, 50 samples to read)

Biaxial stage with a gripper/knob (9600 bps)
� Linear stage 1 in the x-direction (top)
� Linear stage 2 in the y-direction (bottom)
� Gripper as a knob mounted on top of stage 1

Force sensor � Mounted inside the gripper/ knob (500 Hz, 50
samples to read)

Controlling the biaxial stage in real time with dynamic forces exerted by human hands involved
careful system design considerations. The allowed external forces applied to stage were between 3 and
90 N, and certain ranges of MVC (30% and 80%) were maintained to keep the limits of the maximum
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thrust for proper operations of the linear stages. The smooth sliding of the gripper was ensured for the
participant’s comfort and ease of control. An HP Zbook laptop (HP, Palo Alto, California, USA) with
Intel Core i7 was used for implementing the real-time FMG-based integrated controller. The higher
data acquisition rate (50 Hz), high-speed computations, and data transmission to the biaxial stage
(9.8 kbps) with a minimal time delay (within 8 ms) made the real-time control achievable.

The real-time FMG-based integrated controller was implemented as a Labview interface (Labview
2014, National Instrument, Austin, Texas, USA) that controlled the mechanical system components. It
used Matlab scripts (Matlab, Mathworks, Natick, MA, USA) to implement regression models for force
estimation with FMG signals, as shown in Figure 4.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 22 

 

and 90 N, and certain ranges of MVC (30% and 80%) were maintained to keep the limits of the 
maximum thrust for proper operations of the linear stages. The smooth sliding of the gripper was 
ensured for the participant’s comfort and ease of control. An HP Zbook laptop (HP, Palo Alto, 
California, USA) with Intel Core i7 was used for implementing the real-time FMG-based integrated 
controller. The higher data acquisition rate (50 Hz), high-speed computations, and data transmission 
to the biaxial stage (9.8 kbps) with a minimal time delay (within 8 ms) made the real-time control 
achievable. 

The real-time FMG-based integrated controller was implemented as a Labview interface 
(Labview 2014, National Instrument, Austin, Texas, USA) that controlled the mechanical system 
components. It used Matlab scripts (Matlab, Mathworks, Natick, MA, USA) to implement regression 
models for force estimation with FMG signals, as shown in Figure 4. 

 
(a) 

 
(b) 

Figure 4. Labview interface of the RT FMG-based integrated controller: (a) control pane of FMG-based 
force estimation, (b) display pane of a target motion pattern to follow and maintain muscle volumetric 
contraction (MVC). 

2.3. Regression Methods 

Two supervised regression models, the SVR and the KRR were used for force estimation to 
control the biaxial stage during interactions with the captured labeled raw FMG signals. These two 
models were chosen among several other machine learning techniques (such as the multidimensional 
SVR (MSVR) and the general regression neural network (GRNN)). The selected features and 
hyperparameters were chosen carefully to create relevant separation among hyperplanes such as L2 

Figure 4. Labview interface of the RT FMG-based integrated controller: (a) control pane of FMG-based
force estimation, (b) display pane of a target motion pattern to follow and maintain muscle volumetric
contraction (MVC).

2.3. Regression Methods

Two supervised regression models, the SVR and the KRR were used for force estimation to control
the biaxial stage during interactions with the captured labeled raw FMG signals. These two models were
chosen among several other machine learning techniques (such as the multidimensional SVR (MSVR)
and the general regression neural network (GRNN)). The selected features and hyperparameters were
chosen carefully to create relevant separation among hyperplanes such as L2 regularizers, and penalty
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functions (Cost and Lambda). Data preprocessing, i.e., scaling both training and test datasets (between
0 and 1), was required. The enhanced performances of the selected radial basis function (RBF) kernel
features (also known as Gaussian kernel) of both algorithms were observed. The regressors differed in
the loss functions, as the SVR used an epsilon-insensitive function and the KRR used a least squared
error function. The SVR is a well-known regressor useful for the regression of real-time signals, while
the KRR is reported to perform better with small datasets [37]. The selected hyperparameter values
used in the study are shown in Table 2. The best values for Cost (c) and Gamma (g) of the SVR model
were obtained by grid searches. The regularization penalty (lambda) and the kernel width parameter
of the KRR were selected through the parameter trial and error. A single model would be trained either
for the x- or y-direction or for both directions, depending on intended arm motions (1-dimentional (1D)
or 2D plane). These algorithms were preferred because of lower computational time, special features
of the SVR and the KRR (such as a higher number of support vectors and kernel trick), and ability
to handle real instantaneous data. Therefore, real-time training and testing of force estimations in
motions were possible with their appropriate features and provided reasonably higher performances.

Table 2. Regression models parameters.

Model Hyperparameters Ranges Parameter Selection Matlab Toolbox

Support vector regressor (SVR) Cost = 20, Gamma = 1 Grid search livsvm

Kernel ridge regressor (KRR) Lambda = 1,
Kernel width parameter = 0.9 Trial & Error Kernel methods toolbox

2.4. Dynamic Arm Motion Patterns

Five different dynamic arm motions (denoted as M1, . . . , M5), i.e., “x-direction (X)”, “y-direction
(Y)”, “diagonal (DG)”, “square (SQ)”, and “diamond (DM)” motions, in the manipulator’s cartesian
space were considered as intended path trajectories for a participant to interact. These arm trajectory
paths included both simple and complex arm movements and were chosen to cover the workspace of
the biaxial stage. During interactions, a participant always kept his/her hand grasping the gripper with
his/her elbow parallel to the horizonal plane with no specific instructions of grasp moment production.
These interactions had 1-DoF and 2-DoF motions, such that the elbow and shoulder rotations were
confined in the horizontal plane. The arm movements required shoulder abduction/adduction and
elbow flexion/extension while his/her hand grasped the gripper, such that the wrist joint torque direction
was in coincidence with the elbow joint torque. Each arm trajectory required unique combinations of
elbow and shoulder movements and had spatial-temporal effects vary continuously with a changed
direction of motion. For 2-DoF motions, more muscle contractions and expansions happened, while
arm movements became progressively frequent, as described below. For data collection and evaluation,
all arm motions were performed continuously for a certain time in a sinusoidal motion on the planar
surface, with directions as indicated with arrows in Table 3.

Table 3. Five interactive arm motion patterns.

X Y Diagonal Square Diamond
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2.4.1. Intended 1-DoF Arm Motion Patterns

For X motions, the participant grabbed the gripper/knob mounted on top of linear stage 1 and
exerted a hand force in the X-axis only. For Y motions, the gripper was placed on top of the linear
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stage 2, and the participant grabbed the gripper and then an exerted hand force in the y-axis only. This
intended interaction motion pattern required changing the hardware setup and dismounting linear
stage 1 in the x-axis.

2.4.2. Intended 2-DoF Arm Motion Patterns

For DG, SQ, and DM interactive arm motions, the participant grasped the gripper and applied a
hand force in one of these arm trajectories (Table 3). The applied force in a motion allowed the biaxial
stage to adjust its velocity, and the gripper would slide in the same path in the XY planar space. The
interaction would continue anticlockwise for a certain time.

In general, people tend to move their arms similarly for certain tasks to minimize energy
expenditure tendency [38,39]. Although participants were instructed to interact in certain motions (the
general shape of a path to follow with no restriction), the movements were individual-specific. Each
participant manipulated the stage in the same way during a certain task to avoid muscle fatigue and
energy expenditure during interactions. Considering a torso as a ground (origin) and a hand being
fixed as a rigid body by grasping the gripper, the unilateral arm motion was guided by the intended
path the participant would choose from redundant degrees of freedom. The full elbow extension (full
arm length: 74 ± 4 cm) was avoided (to prevent elbow singularity) [40] and reached the boundary point
in the workspace area (to avoid boundary singularity for the biaxial stage). Otherwise, misalignment
might happen, and the biaxial stage would fail to follow a compliant trajectory. It is worthwhile
mentioning that the range of arm motions and trajectories performed by the participants were affected
by hand forces, motions, and ranges of MVCs to maintain muscle fatigue and sitting positions.

2.5. Performance Metrics

The coefficient of determination (R2) and the normalized root mean square error (NRMSE) were
considered for evaluating regression models with force estimation and corrective measurements, as
defined in Table 4. R2 was used to measure the goodness of fit of the linear regression model by
indicating the proportion of a dependent variable explained by an independent variable. It ranges
between 0 and 1, while larger values indicating better fit by the model. The NRMSE is usually used for
comparing datasets or models with different measurements, with its lower values indicating lower
residual variances. Equations (3) and (4) were used for calculating R2 and NRMSE, where Yi, Yest. and
Ym were the ith input, the estimated value, and the mean value, respectively.

R2 = Explained variation/total variation = (Σ(Yi − Ym)2 - Σ(Yi − Yest.)2)/ Σ(Yi − Ym)2 (3)

NRMSE =
√

(1/n(
∑

i(Yest. − Yi)2)/Ym (4)

Table 4. Performance matrices.

Measures of Estimations

Accuracy Coefficient of determination (R2) Equation (3)
Error Normalized root mean square error (NRMSE) Equation (4)

Several statistical tests such as one-way ANOVA with single-factor and multivariate tests and
two-way ANOVA with repeated measures were performed (IBM SPSS 2.0, NY, USA). A single-factor
ANOVA was used to observe the separability of FMG signals during arm flexions and extensions.
A two-way ANOVA with repeated measures [41] was performed to assess if arm motion patterns
significantly related to the accuracy of regression methods. Five different arm motion patterns and
accuracies of two regression models were considered as the two factors. Mauchly’s sphericity tests were
employed, and post-hoc tests were performed. The main effects were studied to observe interactions
during the motion patterns and the regression model accuracies. The Holm–Bonferroni method
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was adopted for post-hoc tests, and corrected p-values were calculated. One-way ANOVA [41]
with multivariate analysis was done to investigate the relationship of the participant’ ages and the
performance accuracy.

2.6. Protocol

Ten right-handed healthy participants (denoted as P1, . . . , P10) with the mean age of 33 voluntarily
took part in this study and gave their informed written consents as approved by the Office of Research
Ethics at Simon Fraser University, Canada (approval code: 2018s0244). Table 5 shows the descriptive
statistics of the participants’ demographics. Among them, one participant was female, and her data
fitted well with others.

Table 5. Descriptive statistics of participants.

Feature Age (year) Height (cm) Arm Length (cm) Upper Arm (cm) Forearm (cm)

Mean 33 175 74 29 27
Standard deviation 8 5 4 3 3
Mode 35 178 78 29 27

All participants interacted with the manipulator in five arm motion patterns separately. For
each intended motion, there were a data collection phase, two training phases, and two testing
phases, termed as a cycle and was described as Algorithm I in Table 6. Training and testing were
performed twice for evaluating the two regression algorithms (SVR and KRR) separately. This process
was repeated for all five interactive motions and required for around 1.5 h to complete one cycle.
Because of this time-consuming nature of the study, only few arm motions with limited directions were
investigated. Intended interactions in a certain motion within participants were randomly chosen with
periodical rests and controlled MVCs [42]. During training and test phases, regression algorithms were
selected randomly. The randomization of motions and regressors helped to avoid observer-expectancy
effects. During a cycle, the FMG bands were never removed, when interactions happened in one
intended motion. As FMG signals were transient and nonstationary, removing the band would require
data collection and training again, as the positions of the sensors would change.

2.6.1. Data Collection Phase

At the beginning of the data collection session, the participant sat comfortably on a specialized
chair in front of the biaxial stage with his/her shoulder and back straight, while the chair was locked in
position, as shown in Figure 5.
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Table 6. Algorithm I: Logic flow of RT FMG-based integrated control.

Real-time (RT) FMG-based admittance control of a biaxial stage by an estimated hand force in an intended arm
motion pattern

Input: Forearm and upper-arm FMG signals, x = [x1, x2, . . . , x32]
True labels from a force sensor, y = [Fx, Fy]
Output: FMG-based estimated force, y’ = [Fx’, Fy’] to control the velocity of the biaxial stage
Initialization: z seconds, n data samples, r repetitions, m reg.model {SVR, KRR}

1: for z do
2: Compute maximum voluntary contraction (MVC) in a planar surface
3: end for
4: Target_forceH ← above MVCs of 30% and below MVCs of 80%
5: Display← (Target_forceH, Intended_motion)
6: while (RT_Data_collection_phase = = true) do
7: r = 1;
8: repeat
9: for n samples do
10: while (exerted_force = = true) do
11: Collect x and y and save them in comma-separated values (csv) format
12: end for
13: r = r + 1;
14: until r = 5;
15: end while
16: while (RT_Training_phase = = true) do
17: Select m reg_model
18: Select r rep csv files
19: Trained_model← {x, y}
20: end while
21: while (RT_Test_phase = = true) do
22: Select m reg_model
23: while (exerted_force = = true) do
24: FMG-based estimated force, y′ ← Equation (3)
25: Velocity of the biaxial stage← Equation (2)
26: end while
27: end while
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Figure 5. A participant wearing FMG bands interacts with the biaxial stage using an RT FMG-based
integrated controller.

Two custom designed FMG bands were placed on the forearm and upper arm positions of the
participant’s dominant right hand. The data collection phase started by measuring the maximum force
that the participant could exert during an intended arm motion for 20 s. Based on this measurement,
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visual feedback alerted the participant to maintain MVCs above 30% and below 80% for both the x-
and y-directions, as shown in Figure 6.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 22 

 

the force sensor. This phase required around 15 minutes to complete (with periodic rests between 
repetitions), although the actual data collection duration was less than 10 minutes. 

 
Figure 5. A participant wearing FMG bands interacts with the biaxial stage using an RT FMG-based 
integrated controller.  

 
Figure 6. Exerted hand force (the maximum force was what participants could apply; MVCs between 
30% and 80% of the average force was exerted by participants (denoted as P1, …, P10) in interactions).  

Training Phase 

Once the data collection was done, the next step was to train models using the regression 
algorithms. The force sensor data were used as true labels for FMG-based force mapping. The 
collected FMG data were normalized and preprocessed before training using the min-max scaling 
method. For 1-DoF movements, each regressor generated one trained model (either model x or model 
y) to estimate hand forces in one direction of an arm motion (X/Y). While for 2-DoF movements 
(DG/SQ/DM), each regressor generated two trained models for the x- and y-directions (both model x 
and model y) to estimate forces simultaneously. Models were trained online by calling Matlab scripts 
in the Labview interface while the participant relaxed, and all trained models were saved; this usually 
required 2–3 minutes. Training accuracies and errors were displayed on the Labview interface (Figure 
4). All trained models (including the min-max values) were saved as .mat files for the next step of the 
test phase. 

The training process was conducted separately for both regressors and were selected randomly. 
Offline five-fold leave-one-out cross-validations (LOOCVs) were carried out later for comparing real-
time test accuracies. 

Test Phase 

The test phase was followed immediately after training; and the trained models were evaluated 
to estimate forces in real time. Instantaneous test data (FMG data) arriving at the Labview interface 

Figure 6. Exerted hand force (the maximum force was what participants could apply; MVCs between
30% and 80% of the average force was exerted by participants (denoted as P1, . . . , P10) in interactions).

The controller also provided visual feedbacks displaying target arm motion patterns to follow.
Next, the participant exerted forces to the gripper to manipulate the biaxial stage in an intended
motion pattern. This was repeated 5 times, while for each repetition 400 records (1 record: 1 × 32
FSR channels and 1 × Fx or Fy in 1-DoF or both in 2-DoF of the label data) of raw data were collected
without any filtering. Periodical rests between repetitions allowed the participants to comfort and
relax their muscles. For each motion pattern, 2000 records of training data were collected and saved in
comma-separated values (csv) files. In this phase, the biaxial stage was controlled by readings from the
force sensor. This phase required around 15 min to complete (with periodic rests between repetitions),
although the actual data collection duration was less than 10 min.

2.6.2. Training Phase

Once the data collection was done, the next step was to train models using the regression
algorithms. The force sensor data were used as true labels for FMG-based force mapping. The collected
FMG data were normalized and preprocessed before training using the min-max scaling method. For
1-DoF movements, each regressor generated one trained model (either model x or model y) to estimate
hand forces in one direction of an arm motion (X/Y). While for 2-DoF movements (DG/SQ/DM), each
regressor generated two trained models for the x- and y-directions (both model x and model y) to
estimate forces simultaneously. Models were trained online by calling Matlab scripts in the Labview
interface while the participant relaxed, and all trained models were saved; this usually required 2–3 min.
Training accuracies and errors were displayed on the Labview interface (Figure 4). All trained models
(including the min-max values) were saved as .mat files for the next step of the test phase.

The training process was conducted separately for both regressors and were selected randomly.
Offline five-fold leave-one-out cross-validations (LOOCVs) were carried out later for comparing
real-time test accuracies.

2.6.3. Test Phase

The test phase was followed immediately after training; and the trained models were evaluated
to estimate forces in real time. Instantaneous test data (FMG data) arriving at the Labview interface
were normalized with the scaling values used in the training phase and sent to the regressor, and
an exerted hand force was estimated in a dynamic arm motion. The same collaborative task was
performed as before, i.e., participants manipulated the stage by grasping its gripper to slide it on
the planar surface with an FMG-based estimated force in a certain arm motion and the biaxial stage
followed the trajectory immediately. This phase lasted around 2 min, and 1000 records of the test
data (labeled FMG signals and estimated hand forces) were collected. The test phase was conducted
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separately for both regressors. Figure 7 shows the actual exerted forces (true label generator from a
force sensor reading) and the estimated force with FMG signals, while a participant was interacting
with the stage in X and Y motions in real time with both regressors separately. These plots of real-time
test evaluations (true vs. estimated forces) were visible in the control pane of the Labview interface
(Figure 4a). Table 7 shows the training data used by the two regressors and the test data (estimated
force) collected during the real-time evaluation of each of them.

Table 7. Training data and test data (estimated forces collected during real-time interactions).

Collaborative Task Training Data
(Labeled FMG Signals)

Test Data (Estimated Forces
and Labeled FMG Signals)

A participant interacting with the stage by
sliding its gripper with an exerted hand

force in an intended motion

2000 records or
68,000 data samples

1000 records or
36,000 data samples
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3. Results

Initially, FMG signals were studied to evaluate separability of arm motion directions in a planar
space. These signals were collected during one participant performing isotonic muscle contraction of
arm flexions and extensions for a certain time in the x- and y-directions, as shown in Figure 8a. The
FMG signals (forearm and upper-arm) were fed to the K-means clustering algorithm with a shilloute
value of 1, resulting in the clustered FMG signals in the x-direction and the y-direction, as shown
in Figure 8b. These FMG signals during flexion and extension (in x- and y- directions) were found
statistically significant (p = 7.89 × 10–51). More specifically, this result meant that FMG signals in x- and
y-axes corresponding to arm flexion and extension were distinguishable and revealed the potential of
using FMG signals in recognizing arm motion patterns in a planar surface.
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Figure 8. (a) FMG signals of arm motions in the x- and y-directions; (b) K-means clustering of
FMG signals.

FMG-based force estimations in 1D interactions and 2D interactions are described in the following
subsections, where cross-validation (CV), training, and test accuracies are presented as box plots of
median values.

3.1. Real-Time FMG-Based 1-DoF Interactions

Figure 9a shows the performance accuracies of the regressors in estimating hand forces in intended
X interactive motions with FMG signals. The real-time test accuracies were around 94% and 92% for the
SVR and the KRR, respectively, which were comparable with the cross-validation accuracies (around
95%). In intended Y motions, the cross-validation accuracies of hand force estimations were also above
95% for both regressors, although in real time the test accuracies were around 91% and ~90% for the
SVR and the KRR, respectively, as shown in Figure 9b. For both intended arm motions, the regressors
obtained training accuracies higher than 95%.
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Figure 9. Performances of regressors estimating FMG-based hand forces during intended one-degree-of
freedom (1-DoF) arm motions: (a) x-direction only; and (b) y-direction only.

3.2. Real-Time FMG-Based 2-DoF Interactions

Performance evaluations of the regressors in estimating hand forces during three different arm
motion patterns (DG, SQ, and DM) for the participants (denoted as P1, . . . , P10) are reported as box
plots in Figure 10a–c, respectively, with training accuracies for all patterns higher than 90%. The
accuracies of the cross-validations for the DG arm motions pattern were around 94% for both regressors,
while the real-time test accuracies were 88% and 91% for the SVR and the KRR, respectively. For the
SQ patterns, the accuracies of the cross-validations were 87–89%, while in real-time tests the accuracies
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were 84% and 86% secured by the SVR and the KRR, respectively. For the DM patterns, the real-time
test accuracies of the SVR and the KRR were 82% and 85%, respectively; the cross-validation accuracies
were approximately 88–92% for both the regressors.

Performance evaluation of the regressors during force estimation in the real-time test phase in
terms of R2 and NRMSE (calculated using Equations (1) and (2)) are reported in Table 8 as median values
(rounded to ceiling values), which were reasonably notable with higher accuracies and lower errors.
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Figure 10. Performances of regressors estimating FMG-based hand forces during intended
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Table 8. Real-time performance evaluation: R2 and NRMSE.

Data Sample Regression
Model

Test Accuracy (R2) Test Error (NRMSE)

X Y DG * SQ * DM * X Y DG * SQ * DM *

Training: 2000
records SVR 0.94 ±

0.04
0.91 ±
0.04

0.88 ±
0.07

0.84 ±
0.09

0.82 ±
0.09

0.10 ±
0.05

0.11 ±
0.03

0.10 ±
0.03

0.10 ±
0.04

0.11 ±
0.03

Testing: 1000
records KRR 0.92 ±

0.03
0.90 ±
0.05

0.91 ±
0.07

0.86 ±
0.09

0.85 ±
0.10

0.10 ±
0.04

0.12 ±
0.017

0.09 ±
0.02

0.10 ±
0.04

0.13 ±
0.02

* DG, SQ, and DM stand for diagonal, square and diamond motion patterns.

3.3. Comparison of Force Estimations in Dynamic Motions

Figure 11 shows the mean distributions of the test accuracies of the regression models in force
estimations for five different motions. Both regressors (SVR and KRR) provided better estimation in
1-DoF arm motions (R2

≥ 90%) than 2-DoF arm motions (R2
≥ 82%). During the 1-DoF interactions, the

SVR outperformed the KRR because of model simplicity. While for the 2-DoF interactions, the force
estimations in the x- and y-directions were required simultaneously. This required high computational
power, considerable memory allocation, and fast communication between the integrated controller
and the biaxial stage. Moreover, lower accuracies obtained in the 2-DoF patterns compared to in the
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1-DoF arm motions might be due to the increased level of the elbow and shoulder rotations resulting
in faster muscle fatigue. For the 2-DoF interactions, the KRR slightly outperformed the SVR in DG and
SQ trajectories, although the results were quite comparable. While the SVR required considering all
the support vectors of the trained models to estimate, the KRR could provide better prediction with
limited samples available in real-time force estimation [36]. Among the 2-DoF arm motion patterns,
both the KRR and the SVR performed better in DG patterns because of simpler arm motions and
fewer muscle contractions/expansions than in the other two patterns. Although the regressors had
lower accuracies in the DM patterns compared to in the other two patterns, real-time force control was
achievable with satisfactory accuracies.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 22 

 

SVR outperformed the KRR because of model simplicity. While for the 2-DoF interactions, the force 
estimations in the x- and y-directions were required simultaneously. This required high 
computational power, considerable memory allocation, and fast communication between the 
integrated controller and the biaxial stage. Moreover, lower accuracies obtained in the 2-DoF patterns 
compared to in the 1-DoF arm motions might be due to the increased level of the elbow and shoulder 
rotations resulting in faster muscle fatigue. For the 2-DoF interactions, the KRR slightly outperformed 
the SVR in DG and SQ trajectories, although the results were quite comparable. While the SVR 
required considering all the support vectors of the trained models to estimate, the KRR could provide 
better prediction with limited samples available in real-time force estimation [36]. Among the 2-DoF 
arm motion patterns, both the KRR and the SVR performed better in DG patterns because of simpler 
arm motions and fewer muscle contractions/expansions than in the other two patterns. Although the 
regressors had lower accuracies in the DM patterns compared to in the other two patterns, real-time 
force control was achievable with satisfactory accuracies. 

 
Figure 11. Performances (average R2) of the SVR and the KRR in estimating exerted forces with FMG 
signals during different arm motions. 

With different demographic data, each participant manipulated the stage at his/her own 
comfortability during an intended motion. For a real-time environment, the regressors had estimated 
forces that varied among 1-DoF and 2-DoF motions (R2 = 82‒94%). Studies have shown that changing 
arm positions adversely influenced the performances of the regression algorithms over the 
population [43,44], as observed in this study. 

The mean absolute error (MAE) shown in Table 9 was also used to compare the regression 
algorithms’ accuracies in force estimations. The lower the MAE was, the more accurate the regression 
model was. The MAEs of the SVR were higher than those of the KRR for the DG and SQ patterns, but 
that of the SVR was lower for the DM patterns compared with that of the KRR. The results indicated 
that the KRR and the SVR were comparable in the 2-DoF motions while the SVR slightly 
outperformed the KRR in the 1-DoF motions. 

Table 9. Mean absolute errors (MAE) of regression models in different arm motions. 

 X Y Diagonal Square Diamond 
SVR 0.1091 0.1114 0.1055 0.1092 0.1188 
KRR 0.1174 0.1154 0.0997 0.1069 0.1262 

Figure 12 shows the observed average force estimations with standard deviations (SDs) using 
FMG signals in different arm motions from participants. Participants applied hand forces (MVC 
between 30% and 80%), such that the estimated force range was between 20 and 60 N. Demographic 
data such as height, arm length, arm perimeters, muscle contractions, and interactions varied in wide 
ranges among participants. For the 1-DoF interactions, less change of directions introduced fewer 
variations in DoF in arm motions and hence smaller SDs. However, for the 2-DoF interactions, 
especially in square and diamond motion patterns, more frequent changes in arm directions in the 
xy-plane were required. This led to more variations among the participants to interact in one motion 

Figure 11. Performances (average R2) of the SVR and the KRR in estimating exerted forces with FMG
signals during different arm motions.

With different demographic data, each participant manipulated the stage at his/her own
comfortability during an intended motion. For a real-time environment, the regressors had estimated
forces that varied among 1-DoF and 2-DoF motions (R2 = 82–94%). Studies have shown that
changing arm positions adversely influenced the performances of the regression algorithms over the
population [43,44], as observed in this study.

The mean absolute error (MAE) shown in Table 9 was also used to compare the regression
algorithms’ accuracies in force estimations. The lower the MAE was, the more accurate the regression
model was. The MAEs of the SVR were higher than those of the KRR for the DG and SQ patterns, but
that of the SVR was lower for the DM patterns compared with that of the KRR. The results indicated
that the KRR and the SVR were comparable in the 2-DoF motions while the SVR slightly outperformed
the KRR in the 1-DoF motions.

Table 9. Mean absolute errors (MAE) of regression models in different arm motions.

X Y Diagonal Square Diamond

SVR 0.1091 0.1114 0.1055 0.1092 0.1188
KRR 0.1174 0.1154 0.0997 0.1069 0.1262

Figure 12 shows the observed average force estimations with standard deviations (SDs) using FMG
signals in different arm motions from participants. Participants applied hand forces (MVC between
30% and 80%), such that the estimated force range was between 20 and 60 N. Demographic data such
as height, arm length, arm perimeters, muscle contractions, and interactions varied in wide ranges
among participants. For the 1-DoF interactions, less change of directions introduced fewer variations
in DoF in arm motions and hence smaller SDs. However, for the 2-DoF interactions, especially in
square and diamond motion patterns, more frequent changes in arm directions in the xy-plane were
required. This led to more variations among the participants to interact in one motion pattern with
their redundant choices of DoF. Thus, variations in SD were higher for the 2-DoF interactions.
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Figure 12. Averaged estimated hand forces and standard deviations (SDs) (within participants) in
intended arm motions [X, Y, diagonal (DG), square (SQ), and diamond (DM) patterns].

The performances of the regressors in estimating hand forces in the 1-DoF interactions were
similar (R2

≤ 94% in the x-direction, R2
≤ 91% in the y-direction, as reported in Table 8), and the

one-way ANOVA showed no statistical significance among these motions (F = 2.95, p = 1.03). However,
participants exerted more hand forces (average estimated FY ≈ 49 N) to push and pull during Y
motions than during any other arm motion interactions, as shown in Figure 12. In both 1-DoF x- and
y-directions, arm motions required joint torque combinations of elbow extensions/flexions and shoulder
abductions/adductions. In the x-direction, elbow–shoulder combinations were elbow extension ad
shoulder extension/horizontal abduction (EE) in the positive x-axis and elbow flexion and shoulder
flexion, and horizontal adduction (FF) in the negative x-axis. While applying forces in the y-axis
required torques in opposite directions at the shoulder and elbow, such as elbow flexion, shoulder
extension, and horizontal abduction (FE) in the positive y-axis and elbow extension and shoulder
flexion/horizontal adduction (EF) in the negative y-axis. This contrasted with the fact that human
participants could easily interact with the biaxial stage in the horizontal direction (with less exerted
force) and required more efforts in the vertical direction of a planar surface (more exerted force). These
effects were found similar to those in studies monitoring moments and forces generated by human
arms [35,36,45].

3.4. Significance in Estimations

An investigation was done to study main effects if there was a significant relation between the arm
motion patterns and the accuracies of the regressors. The within-subject-effects tests for arm motion
patterns showed statistical significance in different patterns (F(4,36) = 9.681, p = 0.000). However, it
was found that there was no significant difference between the regression models (F(1,9) = 0.0251,
p = 0.877), and no significant interactions between the arm motion patterns and the regression models
(F(4,36) = 1.144, p = 0.352). The post-hoc tests showed statistical significance as X arm motions had
performance improvements of 10.3% and 12.1% than those of SQ and DM arm motions, respectively.
Likewise, the performance of the Y patterns was 7.4% and 9.2% higher than those of SQ and DM
motions, respectively. Pair-wise comparisons of X–SQ and X–DM were statistically significant, while
those of Y–SQ and Y–DM were marginally significant, as observed from the corrected p-values reported
in Table 10.

Table 10. Two-way repeated measures ANOVA.

Arm Motion Patterns Mean Difference SD Corrected p-Value

X–SQ 0.103 0.013 0.000
X–DM 0.121 0.019 0.000
Y–SQ 0.074 0.022 0.048
Y–DM 0.092 0.026 0.049
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The one-way ANOVA showed that participants’ ages did not significantly affect the performances
of the regression models (F = 0.578, p = 0.875). There was no relation between the FMG-based force
estimation and the participant’ age.

4. Discussion

Proper placements of the FMG bands to read the maximum useful information of muscle
contractions (elbow and shoulder flexion/extension/adduction/abduction) were selected in accordance
with previous studies [46]. For the 2-DoF planar workspace, interactions with the biaxial stage required
participants with a combination of elbow and shoulder rotations in the planar space. Positioning the
bands in upper-arm (biceps, triceps brachii muscles) and forearm (brachioradialis and extensor carpi
radialis muscles) positions, muscle movements were better read. It was observed that using either
one of the bands was not enough for force estimation in motions (efficiencies dropped to R2

≤ 45%).
The unique characteristics of each arm motion when grasping a force was better captured with more
multichannel FMG signals. To recognize versatile complex arm motions in the experimental setup, the
32-multichannel FMG bands provided better estimations.

Both bands were placed approximately at the same locations across participants and wrapped on
arms moderately to avoid producing some constant pressures on the sensors. Figure 13 shows the
winding forces of the bands wrapped on the forearm and upper arm of the participants at an initial
time (t = 0-100 ms) waiting to interact (the arm was at rest, while the hand grasped the knob) with
individual SDs among participants for each band.
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Group differences between the SDs of the two bands’ winding forces were not found statistically
significant (F = 4.49, p = 0. 987), meaning no difference in winding forces were present. As the
reported results of the estimated forces in one motion were different than those in the other twos
motions (Figures 9 and 10), and the SDs varied significantly among the motions (Figure 12). It could be
conclusive that the winding forces (mean ≤ 0.092) did not significantly affect the estimation accuracies
of the regressors for individuals due to individual variations in muscle contractions during interactions.

The SVR and the KRR were chosen among several machine learning algorithms and the
hyperparameters and features were carefully selected. These algorithms, other than the MSVR
(capable of estimating force in one direction while considering forces acting in other dimensions)
and the GRNN (a neural network algorithm for regression), were selected for force estimation. The
MSVR was appropriate for 2D motions only and did not provide good estimation and therefore was
not implemented in real time. Although the GRNN worked well for 1D motions and could achieve
comparable cross-validation accuracies to those of the SVR and the KRR, it suffered in real-time 2D
interactions (specially in DM motions) because of longer computation time when more complex arm
motions are present. Five-fold LOOCVs were carried out for 2D DM motion patterns to justify the
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selection. Figure 14 shows the force estimation accuracies of these algorithms (for MSVR: R2 = 73%,
and GRNN: R2 = 87%). Among these, the other two algorithms, i.e., SVR and KRR, were implemented
in real-time interactions and were proven efficient.
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The FMG technique can be a viable alternative to the traditional sEMG. In this study, raw FMG
signals were used for learning and estimating, which did not require complex signal preprocessing
like sEMG signals [24,25]. A similar study implemented several machine learning classification
algorithms to decode discrete hand motion intention using high-density transient EMG signals with
a short window (only 150 ms) [47]. A survey on the sEMG technique reported it was adopted in
discrete arm motions using classification (approximately 73–98%) and in continuous arm motions and
forces using regression (approximately 84–93%) involving offline machine learning and deep learning
techniques [48]. Although there is a gap between offline and online performances using sEMG signals,
interestingly, the FMG technique was found to perform better in online classification and regression
than the sEMG technique [49]. The proposed control scheme in this paper evaluated machine learning
techniques in real time, and comparable estimation accuracies (approximately 88–89% averaged across
all motions) were obtained with FMG signals, which were in affiliation with the literature. The
accuracies of these estimators were higher in 1-DoF in the x-direction, which were 94% and 92% for the
SVR and the KRR, respectively; these results were comparable with the reported accuracies of 90% and
92% for the SVR and the KRR, respectively, when one participant interacted with a linear actuator in
the x-axis using the FMG technique [50]. The performances of the estimators gradually descended
with the increased complexity of 2-DoF arm motion patterns, although being reasonably efficient in
real-time interactions.

As a preliminary study, our focus was to investigate the feasibility of FMG-based force estimation
in dynamic motions in collaboration with a simple linear robot. The experimental setup was constrained
in 2D only, capturing FMG signals were maximized with multidimensional channels, and human
interactions were conducted with the biaxial stage with exerted hand forces in dynamic motions. Due
to the transient and nonstationary nature of FMG signals and individual-specific muscle contraction
during interactive tasks, the changed positions of the FSRs (if the FMG band was removed and put
back again) led to retraining the models. The regressors performed well, as the models were trained for
estimating forces in a certain motion only; therefore, evaluating all interactions were time-consuming
and was not practical. In addition, to capture the unique features when grasping a force in each motion,
both bands were required. This might not reflect a practical scenario of HRI, but the outcome proved
the viability of the FMG-based control mechanism. The current configuration worked for arm motions
considered in two dimensions, which might be different in three-dimensional interactions and require
elaborate investigation.
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5. Conclusions

Realizing human activities is vital in collaborative tasks, where physical interactions happen
between a human worker and a robot. Most common interactions occur by using hands with a contact
force and a motion. Estimating hand positions or forces with machine learning techniques are feasible
using visual signals but are limited to reliability and range. While biosignals can be wearable and
provide flexibility in human movements, it is challenging to intercept human intentions using these
signals due to the dynamic nature of interactions. Among many biosignals, the contemporary FMG
technique can detect muscle contractions during contact forces. It can be a viable solution to indirect
measurements of hand forces, thus understanding human actions. Hence, estimating hand forces in
motions in such interactions with FMG signals can be useful for performing collaborative tasks with
a robot.

In this paper, a novel scheme of real-time interactions between a human and a biaxial stage via
FMG was studied. During interactions, a participant manipulated a stage in a 2D plane with estimated
exerted isotonic hand forces to slide a gripper in an intended motion. The biaxial stage would follow
the same trajectory by adjusting its velocity, implementing compliant collaboration. The two regression
models, SVR and KRR, were implemented for FMG-based force estimation, where accuracies in one
dimension, i.e., above 92% in the x-direction and above 89% in the y-direction, were obtained. In 2D
complex arm motion patterns such as diamond motions, the estimation accuracies around 82% was
obtained; this can be considered as acceptable results in real-time scenarios. Recognizing such arm
motion patterns with FMG signals would be beneficial in practical scenarios of collaborative activities.
Both regressors were comparable, as no significant differences were found statistical. The probable
use of the wearable FMG band by recognizing human activities can enhance pHRI quality in safe
collaborations, rehabilitation applications, or prostheses control.

Future studies will be conducted to evaluate the generalization of the FMG-based machine learning
model in recognizing unlearned factors in real-time applications during interactions. Implementing
a generalized model trained with population data would be able to fit unseen sample data. This
would reduce repetitions in training, reduce retaining/recalibration time (if the band is removed and
wrapped again) and be applicable for general conditions without compromising estimation accuracies.
In addition, optimizing the number of FSRs and combining other sensors such as inertia measurement
units (IMUs) in the band could be studied. In future, 3D interactions with FMG signals will be
investigated with a 7-DoF robotic arm. Exploring deep learning algorithms (such as convolutional
neural networks (CNNs)) might also be useful for learning human intentions using FMG. Exploring
advanced algorithms for unsupervised transfer learning would justify the high compatibility of the
FMG band for general applications.
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