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Abstract: All non-foot-mounted inertial localization systems have a common challenge: the need for
calibrating the parameters of the step length model. The calibration of the parameters of a step length
model is key for an accurate estimation of the pedestrian’s step length, and therefore, for the accuracy of
the position estimation. In a previous work, we provided a proof of concept on how to calibrate step
length models with a foot inertial navigation system (INS), i.e., an INS based on an inertial measurement
unit (IMU) mounted on the upper front part of the foot. The reason is that the foot INS does not require
calibration thanks to the implementation of the strapdown algorithm. The goal of this article is to
automatically calibrate the parameters of a step length model of the pocket INS by means of the foot
INS. The step length model of the pocket INS has two parameters: the slope and offset of a first-order
linear regression that relates the amplitude of the thigh pitch with the user’s step length. Firstly, we
show that it is necessary to estimate the two parameters of the step length model. Secondly, we propose
a method to automatically estimate these parameters by means of a foot INS. Finally, we propose a
practical implementation of the proposed method in the pocket INS. We evaluate the pocket INS with the
proposed calibration method and we compare the results to the state of the art implementations of the
pocket INS. The results show that the proposed automatic calibration method outperforms the previous
work, which proves the need for calibrating all the parameters of the step length model of the pocket INS.
In this work, we conclude that it is possible to use a foot INS to automatically calibrate all parameters of
the step length model of the pocket INS. Since the calibration of the step length model is always needed,
our proposed automatic calibration method is a key enabler for using the pocket INS.

Keywords: pedestrian localization; wearables; inertial navigation; IMU; step and heading; strapdown;
parameter estimation; evaluation; ground truth

1. Introduction

Applications based on inertial localization systems have extended from localization in shopping malls
or museums [1,2], to safety-critical applications, e.g., tracking a fire fighter’s position [3]. In either case, the
trend is to implement the inertial localization system in a smartphone or in a wearable. A wearable is a
device with embedded sensors and a processing unit which can be carried out by attaching it to the body,
e.g., a smart watch, or by integrating it in the clothes.

In comparison to smartphones, wearables offer an advantage: they can be integrated within the
clothes. In fact, the miniaturization of sensors, e.g., inertial sensors, will allow for future smart clothing.
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The prospect of wearable devices and smart clothing spreading in the market opens up a new alternative
for developing inertial localization systems. More specifically, we envision the possibility of developing
new inertial localization systems that combine measurements from inertial measurement unit (IMU) placed
on different body parts.

The fusion of measurements from IMUs mounted on different body locations may be a solution to
the current challenges of inertial localization [4,5]. Some of the challenges are related to the specific body
location where the IMU is mounted. For instance, a wrist-mounted inertial localization system needs to
cope with the fact that the motion of the arm is detached from the motion of the body. Therefore, it is
challenging to track the pedestrian’s position when the hand is not swinging [6,7]. Another challenge
of inertial localization systems is related to the integration of the errors in the IMU measurements. For
example, the integration of the bias in the turn rate measurements causes the error in the attitude to
accumulate over time [8].

There is a specific challenge associated to all non-foot-mounted inertial localization systems. They
implement the so-called step&heading algorithm [9]. In this algorithm, the position is estimated in two
steps. The first one is the estimation of the pedestrian’s heading. The second one is the estimation of the
pedestrian’s step length. There are different alternatives to estimate the step length, for instance:

• by means of a step length model, which is an equation that relates observable parameters, e.g., the
acceleration [10], with the step length. The advantage of this alternative is that we can gain an
understanding of how the observable parameters relate to the step length model. Moreover, the
implementation of step length models has a low computational complexity and therefore can be
implemented in wearables or smartphones. The disadvantage of this alternative is that the step length
model contains parameters which need to be adapted or tuned to the pedestrian.

• by means of leg kinematics, which is a method that develops a kinematic model of the human leg
and uses kinematic equations to iteratively detect steps and estimate the step length between two
consecutive steps [11]. The advantage of this alternative is that it is possible to incorporate motion
constraints in the kinematic model. The disadvantage is that the motion constraints may lead to
unexpected results. In addition, the development of a kinematic model is a complex process.

• by means of machine learning methods, which take observable signals like the acceleration and
turn rate and the associated step length and train an algorithm to estimate the step length [12]. The
advantage of this alternative is that the machine learning method needs to be trained only once. The
disadvantage is that it is necessary to collect a large data set, e.g., hundreds of users, to train the
network. Moreover, some machine learning algorithms are computationally expensive and thus
cannot be implemented in wearables or smartphones.

In this work, we focus on the first alternative to estimate the step length, i.e., by means of a step
length model. As indicated above, step length models have user-specific parameters that need to be
tuned to every user. We use the term calibration to refer to this tuning process. What is more, we use the
expression calibration of the step length model to refer to the estimation of the user-specific constants of the
step length model.

The calibration of the step length model is key for an accurate estimation of the pedestrian’s step
length. The calibration reduces the error accumulation in the position estimation of non-foot-mounted
inertial localization systems. Let us mention here that the error accumulation in the position estimation of
the step&heading approach has two sources: the error due to the estimation of the step length and the
error due to the heading drift. The latter is the error accumulation in the heading estimation [13].

We distinguish two main approaches in the state of the art to calibrate step length models:
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• the use of trained parameters [14], which is the most common calibration approach. These parameters
are learned by training the step length model with the data from a set of users. The main challenge
of this alternative is that the data set has to be large and varied in order for the parameters to be
meaningful. A large data set refers to the number of users, e.g., a data set with data from a few
hundred users. To the best of our knowledge, there is no work that recommends a minimum number
of volunteers for such a training. A varied data set refers to the fact that the data should be from users
of different gender, height, physical constitution, etc. The disadvantage of this calibration method is
that it fails to optimally characterize the step length model to a specific user. Thus, the step length
model will have a systematic error in its estimation.

• manual calibration [15]. In this method, the user is required to walk a predefined known distance.
Then, the user or an external operator estimates an average step length by dividing the predefined
distance by the number of steps. Finally, the model parameters are calibrated to estimate the average
step length. The shortcoming of this alternative is that it is prone to errors, if the person who carries
out the calibration is not familiar with the system. In addition, it is necessary to measure a predefined
distance, which may be another source of errors. Manual calibration can be carried out without the
need to manually measure distances. To that end, maps can be used to calculate the distance that the
user walks [16]. The disadvantage of this alternative is the reliance on the availability of maps, which
may not be available or may contain wrong information.

To the best of our knowledge, there are several challenges regarding the calibration of step length
models. Three of these challenges are the need for calibrating or re-calibrating when:

• the pedestrian uses the inertial localization system for the first time,
• the IMU is placed on the expected body location, e.g., the upper thigh, but the exact position of the

IMU is shifted with respect to the last time the calibration was carried out or
• the IMU slips during the walk.

All these situations make the calibration of step length models a tedious process. We believe there
is an opportunity of tackling the challenge of automatically calibrating step length models thanks to the
increasing popularity of wearables devices, especially smart clothing. We think it is of interest to assess the
potential of using a foot IMU, i.e., an IMU mounted on foot or integrated in the shoes, to calibrate the step
length models of non-foot-mounted inertial localization systems. The reason is that, through a foot IMU,
it is possible to estimate increments in distance without the need of a step length model. To that end, it is
only necessary to implement the strapdown algorithm with the zero-velocity update (ZUPT) [8]. In fact,
since the ZUPT can also be applied with an ankle-mounted IMU, such body location could also be used to
estimate increments in distance.

In [17], we provided a proof of concept on how to automatically calibrate step length models with
a foot inertial navigation system (INS). We considered the step length model of a pocket INS, which
is an inertial localization system based on an IMU mounted on the upper thigh. The disadvantage of
the proposed method is that it is not valid for certain users, which leads to an increased error in the
position accuracy.

The goal of this article is to extend the work in [17] to develop a method to automatically calibrate the
parameters of the step length model. In particular, we have the following objectives:

• identify if it is necessary to calibrate all the parameters of the step length model of an IMU mounted
on the upper thigh,

• develop an automatic calibration method based on a foot IMU,
• quantitatively evaluate the performance of the pocket INS with the proposed calibration method and

compare it to the performance of the pocket INS without automatic calibration.
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2. Materials and Methods

In this section, we describe the method to automatically calibrate the step length model of a pocket
INS with a foot IMU. First, we describe two fundamental concepts on which the automatic calibration is
based. Then, we show that it is necessary to calibrate all the parameters of the step length model of the
pocket INS for certain users. Finally, we present the method to automatically calibrate the step length
model of the pocket INS by means of the foot INS.

For the remainder of this paper, we will consider that:

• two IMUs are fixed on the same leg of the user and they do not move during the walk, see left picture
in Figure 1,

• one IMU is mounted on the upper-thigh, and
• one IMU is mounted on the front part of the foot.

2.1. Fundamental Concepts

There are two fundamental concepts to take into account prior to describing the method to
automatically calibrate step length models. The first one is that the step length model depends on
the body location of the IMU. Since we are using a pocket IMU, we will describe the associated step length
model in order to understand what the model represents as well as its parameters. The second one is the
proof of concept presented in [17] by which we show that a foot INS can be used to automatically calibrate
step length models.

2.1.1. Step Length Model of a Pocket INS

In pedestrian dead reckoning, there are different step length models that relate an observable signal,
e.g., the norm of the acceleration, with the step length [10]. Although we focus on the step length model
of the pocket INS, the automatic calibration method based on a foot INS is extensible to the step length
model of other inertial localization systems.

The derivation of the step length model of the pocket INS is detailed in [18] and references therein.
For completeness, we present here a summary of the step length model. Munoz et al. observed that the
relationship between the user’s step length and amplitude of the thigh pitch is approximately linear for
different walking speeds [18], see Figure 1. Therefore, the step length model of the pocket INS relates
the step length sk with the amplitude of the thigh pitch ∆θk through a first-order linear regression [18],
such that:

sk = a · ∆θk + b + ek, (1)

where the slope a and the offset b are user-specific parameters that have to be estimated during a calibration
phase. More specifically, the slope a depends on the user’s physiology and its value is constant over time.
The offset b depends on the walking style of the person and, therefore, its value may change over time. ek

is an unobservable random variable that represents the error in the first-order linear regression model [19].
The super-index k refers to the k-th step and the pitch angle θ is the rotation around the y-axis and therefore
represents the opening angle of the leg, see Figure 1.

Figure 1 exemplifies the relationship of Equation (1) for three different users during walking. The
walking speed conditions the step length sk and the pitch amplitude ∆θk of the pocket IMU. In fact, the
higher the walking speed, the higher these values are. From Figure 1, it can be seen that different users
have approximately the same slope a. In contrast, the offset b differs significantly among users. The study
in [18] states that the value of the offset b depends on the walking style of the person.
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Figure 1. (Left) Visualization of the maximum and minimum of the pitch θ of the pocket inertial navigation
system (INS) while walking as well as the user’s step length. The stance phase is the gait phase during
which the foot is in contact with the ground. The orange boxes are the inertial measurement units (IMUs).
(Right) Relationship between the pitch amplitude of the pocket INS and the step length for three different
users. The point clouds depend on the walking speed of the user.

The previous results need to be taken into account because they lead to two possible alternatives of
calibrating the step length model in Equation (1):

• The first alternative is the offset calibration, which implements the universal slope a and calibrates
the offset b to every user. The universal slope is the value obtained after training the parameters on a
set of users, namely 0.05 m/◦ [15]. This calibration method assumes that the user’s slope equals the
universal slope, which may not be a valid assumption for certain users.

• The second alternative is the full calibration, which estimates the user’s optimal slope and optimal
offset by following the methodology described in [18]. This calibration method is costly in time and
resources. Firstly, it is necessary to request the user to actively change the walking speed in order to
obtain values along the line in Figure 1. Secondly, it is necessary to estimate the parameters of the
step length model in a post-processing stage. Finally, it may still be necessary to adjust the offset b if
the inertial sensor is not placed on the same position along the leg [17].

Therefore, for practical reasons, Munoz proposes to follow the offset calibration of the step length
model [15]. Following such an alternative, next section summarizes our proposal on how to implement
the offset calibration automatically. The full calibration is the main contribution of this article and will be
presented later on.

2.1.2. Automatic Offset Calibration

The proof of concept to automatically calibrate one parameter of the step length model of the pocket
INS is detailed in [17]. For completeness, we present a summary, which estimates the offset b of the step
length model of the pocket INS.

The automatic offset calibration estimates the offset b of Equation (1) when the slope a is set to the
universal value 0.05 m/◦. The calibration method uses a foot INS [9] which is mounted on the same leg as
the pocket INS. The reason for using the foot INS is that it implements the strapdown algorithm together
with the ZUPT update [8]. Therefore, the foot INS provides a measurement of the user’s step length
without the need of a model. Moreover, the accuracy of the user’s step length estimated with the foot INS
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is at least 20 cm per step [5], which is smaller than the size of an adult’s foot. Thus, we consider the foot
INS presented in [5] to have an accuracy good enough for our goal.

Let sk
f be the user’s step length estimated by the foot INS and ∆θk be the amplitude of the pitch

estimated by the pocket INS. It can be proven that the offset bk that optimizes the model of Equation (1) is
iteratively estimated as:

bk = bk−1 · k− 1
k

+
sk

f − a · ∆θk

k
, (2)

where k refers to the k-th step.
When the slope a is adapted to the user, then the offset estimated by Equation (2) converges after

approximately 2 min. An example is given in Figure 2 which presents the offset estimation during four
different walks for two different users. As expected, different users have different offset estimations. In
the figure, an interesting phenomenon can be observed. The offset estimations of User 2 take two different
values during each walk. The reason may be that the pocket IMU was not placed at the exact same location
on each day. For User 1, the two offset estimations differ less than for User 2, which is why we consider
them to be approximately the same.

0 1 2 3 4 5 6
-1.4
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-1.2
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-0.9

-0.8

-0.7

-0.6

Figure 2. Recursive estimation of the offset of the step length model according to the automatic offset
calibration method. The example is given for two users and two tests for each user.

The advantage of the calibration through Equation (2) is its low computational complexity. Moreover,
the automatization of the calibration method simplifies the use of the pocket INS. In contrast to the state of
the art methods, the user is not aware of the need for calibration with our proposed method nor the fact
that the step length model of the pocket INS is being calibrated.

2.2. Analysis of the Need for Full Calibration of the Step Length Model

When the step length model of Equation (1) was first proposed [18], Munoz et al. pointed out that the
slope of the model remained approximately constant among users. This constant value is the universal
value mentioned above, i.e., 0.05 m/◦. The followup work in [15] shows that some users might not have a
slope similar to the universal one. This fact may be caused by the user’s height, the walking style or any
other aspect that the author could not specify. Independently of the cause, the highlight is that the slope a
of the step length model is not optimal to certain users and thus, the slope a needs to be calibrated.

The fact that a user’s optimal slope differs from the universal slope is, in principle, not noticeable
with the calibration method of Section 2.1.2. This statement holds as long as the user walks at a constant
speed. Let us analyze the example in Figure 3. While walking at a certain speed, e.g., 3 km/h, a user has a
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specific amplitude of the thigh pitch ∆θk and associated step length sk. These values are distributed along
the circle depicted in Figure 3. For these given pairs of step length–pitch amplitude, the step length model
of Equation (1) can be adapted with different sets of parameters. For instance, the universal slope and
adapted offset, black line, or the optimal slope and optimal offset, blue line.

Figure 3. Comparison of the step length model adapted to the same user with two different set of parameters.
The first set consists of the universal slope and the adapted offset when the user walks at 3 km/h. The
second set is the optimal slope and the optimal offset that characterize the user.

In contrast, if the user walks faster or slower, the change in speed will be reflected in a change of
the offset b estimated according to Equation (2). Figure 4 is an example of the different offset estimations
at different walking speeds. These different estimations are an indication that the universal slope is not
adapted to the user. In such a case, a continuous offset calibration with Equation (2) would suffice to adapt
the step length model to the user continuously over time. Nevertheless, a continuous calibration would
result in an inefficient procedure.

Figure 4. Effect of calibrating only the offset when the universal slope differs from the user’s optimal slope.
When the user walks at different speeds, the calibrated offset changes, e.g., the offset is 0.07 m at 3 km/h,
whereas the offset equals −0.21 m at 5 km/h.

The users who belong to the case described by Figures 3 and 4 require a full calibration of the step
length model, i.e., the estimation of both the optimal slope and optimal offset. The automatic calibration
method for such cases is described in detail in the following section.
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2.3. Automatic Full Calibration of the Step Length Model

In order to estimate the optimal slope and optimal offset of the user, let us consider again the step
length model of Equation (1):

sk
f = a · ∆θk + b + ek. (3)

The automatic calibration method aims at estimating the predefined constants a and b that minimize
the error ek of the step length model. Let us denote by ao and bo the optimal slope and optimal offset,
respectively, that minimize the error in Equation (3). By means of the least squares method [20], the
optimal offset and optimal slope are estimated as follows:

ao =
n ·∑n

k=1 ∆θk · sk
f −∑n

k=1 ∆θk ·∑n
k=1 sk

f

n ·∑n
k=1(∆θk)2 −

(
∑n

k=1 ∆θk
)2 , (4)

bo =
∑n

k=1(∆θk)2 ·∑n
k=1 sk

f −∑n
k=1 ∆θk · sk

f ·∑
n
k=1 ∆θk

n ·∑n
k=1(∆θk)2 −

(
∑n

k=1 ∆θk
)2 , (5)

where n is the total number of steps since the beginning of the walk.
These two equations have been used in an example to estimate the optimal parameters of a user. The

example compares the regression line with two sets of parameters; on the one hand, the optimal slope
and optimal offset, on the other hand, the universal slope and the adapted offset. Moreover, the example
considers three walking speeds: low speed, medium speed and high speed. Taking the experiment of
Munoz as a reference [15], we consider a slow walking speed to be 5 km/h, a medium walking speed to be
6 km/h and a fast walking speed to be 7 km/h.

Figure 5 shows that, at different walking speeds, the offset calibration estimates different values. More
specifically, the offset difference between the lowest speed and highest speed is 18 cm. In this example in
particular, the user’s optimal slope is ao = 0.022 m/◦, whereas the universal slope is 0.05 m/◦.

38 40 42 44 46 48 50 52 54 56 58

1

1.2

1.4

1.6

1.8

2

5 km/h
6 km/h

7 km/h

Figure 5. Comparison of the different step length models of a user whose optimal slope differs from
the universal one. The clouds indicate the pairs of step length–pitch amplitude used to train the model
parameters. The cross marks, square marks and circle marks are associated to 5 km/h, 6 km/h and 7 km/h,
respectively.

Figure 6 is an example of the full calibration where the user’s optimal slope is approximately equal to
the universal slope. In particular, the difference in the offset between the lowest speed and highest speed
is 5 cm which is approximately 72% smaller than the difference in Figure 5. Therefore, we can assume that
the slope is adapted to the user.
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An interesting fact to observe in Figures 5 and 6 is that the point clouds are not equally distributed.
The distribution is characteristic of each user and responds to the user’s physiology and walking style.

30 32 34 36 38 40 42 44 46 48
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

5 km/h

6 km/h

7 km/h

Figure 6. Comparison of the different step length models of a user whose optimal slope is approximately
the same as the universal one. The clouds indicate the pairs of step length–pitch amplitude used to train
the model parameters. The cross marks, square marks and circle marks are associated to 5 km/h, 6 km/h
and 7 km/h, respectively.

2.4. Practical Implementation

Figure 7 presents the block diagram of the calibration method of step length models. In the diagram,
only the blocks of the pocket INS that are relevant for the calibration method are shown. In a practical
case, the pocket INS follows the implementation described in [15].

Attitude

estimation

Step Amplitude of

Turn rate

Acceleration

detection pitch

Step length

model

Step length estimation

Step length

Pitch

Foot inertial

navigation system

Step

length

z
−1

Current
position

Position at
previous stance phase

Stance phase
flag

Turn rate

Acceleration

Parameter

calibration

Model calibration

Slope (a),
offset (b)

Figure 7. The block diagram of the calibration method is indicated by the thick solid line. The blocks of the
pocket INS that are relevant for the calibration method are shown.

In order to carry out the full calibration, the position estimated by the foot INS is sampled upon the
detection of the stance phase to estimate the step length, see Figure 1. Then, the estimated step length is
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input to the Parameter calibration block which implements Equations (4) and (5). Finally, the estimated
slope and offset are input to the step length model in order to estimate the step length.

3. Results

The last goal of this work is to evaluate the proposed method to automatically calibrate the step
length model of the pocket INS. To that end, this section describes the evaluation methodology to assess
the performance of the pocket INS. Then, the results of the evaluation are presented for the pocket INS
with four different calibrations of the step length model.

3.1. Evaluation Methodology

Our ground truth system, similar to indoor localization competitions [21,22], is based on ground truth
points [4,5]. The location of these points is measured in advance. Then, the user visits these points in a
predefined sequence. The inertial localization system is evaluated by comparing its estimated position of a
ground truth point to the true position of the ground truth point.

The location of the ground truth points is measured with a laser distance measurer. It has,
approximately, centimeter accuracy which is at least one order of magnitude smaller than the expected
accuracy of the inertial localization systems under evaluation. This criterion is recommended by the ISO
standard [23].

In this work, the inertial localization systems are evaluated with three metrics. The first two are the
distance error ed and the heading error eψ, which are defined as follows:

ed = |dr
ij − dw

ij |, (6)

eψ = |ψr
ij − ψw

ij |, (7)

where dr
ij and dw

ij are the true horizontal distance and the estimated horizontal distance between the i-th
and the j-th ground truth points, respectively. Similarly, ψr

ij and ψw
ij are the true angle and estimated angle

between the i-th and the j-th ground truth points. | · | denotes the absolute value of the argument. ed and
eψ are representative of the distance and heading error only if the trajectory between the i-th the j-th point
is straight. This consideration is taken into account in the design of the experiments.

The third metric is the height error eh, which is defined as follows:

eh =
|hr

i − hw
i |

∆hr
i

, (8)

where hr
i and hw

i are the true height and the estimated height of the i-th ground truth point. | · | denotes
the absolute value of the argument. ∆hr

i is the total height change at the i-th ground truth point, that is:

∆hr
i =

i

∑
j=0
|hj − hj−1|, (9)

where hj is the height of the j-th ground truth point. Equation (8) represents a height error normalized
to the total change in height. For instance, a height error eh equal to 0.1 m/m tells us that the inertial
localization system makes an error of 10 cm in a height change of 1 m.

The data set was collected during a set of experiments which took place in a five-storey building, see
Figure 8. During the experiments:

• The users visited each of the five floors in the sequence indicated by the height profile in Figure 9, i.e.,
they started in the second floor, then proceeded to the third floor by taking the stairs, etc.
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• The users always took the stairs during the experiments.
• In each floor, the users walked the trajectory indicated on the left picture of Figure 9.

Figure 8. Five-storey building where the experiments took place.

Each user carried out each walk in the following phases:

1. the user starts on the second floor, at the point indicated on the right picture of Figure 9,
2. the user follows the sequence indicated by the letters (a)–(h) on the left picture of Figure 9,
3. the user takes the stairs to the next floor. The stairs are indicated by the dashed lines on the left picture

of Figure 9. The floor sequence is indicated by the height profile on the right picture of Figure 9,
4. on the new floor, the users follow the trajectory (b)–(h). For each floor, the user repeats phases 3 and

4 until the user is back to the end point on the second floor.

(a) (b) (c) 

(d) 
(e) 

(f) (g) 

(h) 

Ground truth point Approximate trajectory 

Start/

end 

-5

0

5
3rd floor

4th floor

0th floor

1st floor

2nd floor2nd floor

Figure 9. (Left) Approximate 2D trajectory, the users started at the indicated point and walked in the order
indicated by the letters (a)–(h). The dashed lines on the floor plan indicate the stairs. (Right) Height profile
followed by the users. The height difference between two consecutive floors is 3.5 m.

Regarding the ground truth points, the users visited three points on each floor, see Figure 9. The
users were instructed to stop 2 s to 3 s at each ground truth point to signal that they reached one. This
approach is also followed in indoor localization competitions [24]. Finally, users of different heights and
different ages participated in the experiment. Each user repeated the aforementioned trajectory twice, and
each trajectory lasted approximately 15 min to 20 min. The users were equipped with two IMUs mounted
on the upper thigh and the front part of the foot, respectively. The IMUs were fixed to the associated
positions with straps that assured that the devices would stay fixed during the experiments. The IMUs
are measurement units from Xsens [25] whose noise characteristic are given in [4].

The summary of the experiments is given in Table 1. The outcome of the experiments is the
acceleration vector and turn rate vector from both the pocket IMU and the foot IMU of each user. In
addition, the ground truth points are identified by detecting when the user stopped at each ground
truth point. This detection is done by analyzing the norm of the acceleration vector of either IMU. An
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example is given in Figure 10, where the acceleration norm of both the foot IMU and the pocket IMU is
represented. We can see how the stop at the ground truth points are clearly observed by the periods of
constant acceleration.

Table 1. Summary of the experiments.

No. of Users Total Time Total No. of Ground Truth
Points

4 3 h 20 min 295

3 3.5 4 4.5 5 5.5 6
0

20

40

60

80

100

3 3.5 4 4.5 5 5.5 6
0

10

20

30

40

Figure 10. Identification of the stop at the ground truth points. The norm of the acceleration vector is
presented for the foot IMU (left) and the pocket IMU (right).

3.2. Results and Discussion

The evaluation presented in this section has two goals. Firstly, we aim at evaluating the pocket INS
with the full calibration described in this article. Secondly, we aim at comparing the performance of the
full calibration with the state of the art calibration methods of the step length model. We consider three
state of the art calibration methods of the step length model:

• in the first one, the step length model implements the universal parameters [15]. In the following, we
refer to this implementation of the pocket INS as universal parameters.

• in the second one, the step length model is manually calibrated to each user [15]. In the following, we
refer to this implementation of the pocket INS as manual calibration.

• in the third one, only the offset of the step length model is automatically calibrated while the slope
is set to the universal value, namely 0.05 m/◦, see Section 2.1.2. In the following, we refer to this
implementation of the pocket INS as offset calibration.

In order to evaluate the pocket INS with the full calibration we have followed two steps. Firstly,
we have estimated the optimal parameters of the users during a dedicated walk where the users were
instructed to change their walking speed as depicted in Figures 5 and 6. In order to estimate a user’s
optimal parameters, we have followed the implementation proposed in this article, see Figure 7. The
optimal parameters estimated for four different users are given in Table 2. Secondly, we have evaluated
the pocket INS with two sets of parameters for the step length model:

• the first set of parameters comprises the ones indicated in Table 2. In the following, we refer to this
implementation of the pocket INS as full calibration.

• the second set of parameters comprises the user’s optimal slope, estimated with the proposed method,
whereas the offset is calibrated with Equation (2). For the implementation of Equation (2), we have set
the slope a to the user’s optimal value, see Table 2. In the following, we refer to this implementation
of the pocket INS as hybrid calibration.
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The results of the evaluation are given in Table 3, which shows that all the implementations of the
pocket INS have the same heading error. This result is expected since the calibration method effects only
the step length estimation of the step&heading algorithm. The same applies to the height error, where the
vertical displacement is not influenced by the step length model [15]. That is, the effect of the proposed
calibration methods on the heading error and height error are consistent with the expectations.

Table 2. Optimal parameters of the step length model estimated with the proposed full calibration method.

User Slope a [ m/◦] Offset b [m]

User 1 0.0288 0.1
User 2 0.0523 −0.7
User 3 0.0450 −0.5
User 4 0.0437 −0.6

Table 3. Evaluation of the pocket INS with different calibration configurations. The performance figures are
given as mean ± standard deviation of the error metrics. Q3(ed) is the third quartile of the distance error.

System Description ed [m] Q3(ed) [m] eψ [◦] eh [m/m]

Universal parameters 12.6± 8.3 14.9 57.5± 49.6 0.6± 1.4
Manual calibration 3.4± 7.7 2.3 61.1± 48.6 0.6± 1.4
Offset calibration 5.0± 8.4 4.7 57.0± 49.4 0.6± 1.4

Full calibration 4.0± 7.3 2.8 57.7± 50.7 0.6± 1.4
Hybrid calibration 4.7± 8.2 3.1 57.7± 50.7 0.6± 1.4

The key metric in this evaluation is the distance error. Table 3 shows not only the mean and standard
deviation of the distance error ed but also its third quartile. Such metric is used commonly in indoor
localization competitions to compare different systems [24]. The calibration with universal parameters has
the highest distance error because it is the one that worst models the physiology of an user.

Table 3 indicates that the full calibration outperforms both the offset calibration and the hybrid
calibration. This result shows the benefits, in distance accuracy, of calibrating both parameters of the step
length model. The cumulative distribution function (CDF) of Figure 11 supports this result.

The mean distance error of the hybrid calibration outperforms the mean distance error of the offset
calibration by 15%. Yet, the third quartile of the distance error of the hybrid calibration outperforms the
same metric of the offset calibration in 34%. In fact, the CDFs of the distance error in Figure 11 depict a
clear advantage of the hybrid calibration over the offset calibration.

By comparing the full calibration and the hybrid calibration, we observe that the full calibration
outperforms the hybrid calibration by a small margin, i.e., 15% regarding the mean distance error ed and
10% regarding the third quartile of the distance error ed. Moreover, the CDFs of the distance error ed of
both systems are approximately similar.

The main difference between the full calibration and the hybrid calibration is in their practical
implementation. The full calibration requires the user to actively participate in the calibration process by
changing the walking speed. Such step is necessary to estimate the parameters of the step length model
that represent the user’s physiology. If the IMU moves during the walk, a new full calibration is necessary.
Although such process leads to the same optimal slope, the new estimated offset is different from the one
estimated initially.
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Figure 11. Cumulative distribution function (CDF) of the distance error ed of the pocket INS with
different configurations.

In contrast, the hybrid calibration assumes that once the user’s optimal slope is estimated, only a
calibration of the offset is necessary. As shown in previous works [15], the user’s optimal slope remains
constant while the offset may vary depending on the walking style of the person. Therefore, the hybrid
calibration combines the benefits of both the full calibration and the offset calibration:

• with respect to the full calibration, the hybrid calibration benefits from using the user’s optimal slope
which clearly outperforms the offset calibration, see Table 3.

• with respect to the offset calibration, the hybrid calibration benefits from the fact that it is only
necessary at the beginning of the walk and it is a process transparent to the user [17].

As expected, the benefits of the hybrid calibration come at a cost of a higher distance error ed than the
full calibration.

Interestingly, none of the implementations of the pocket INS with the automatic calibration methods
outperforms the manual calibration. The reason is that we calibrate the step length model with the foot
INS, which has errors as well. Thus, there is a lower bound to the accuracy of the step length model, i.e.,
the estimation of the step length model cannot outperform the distance estimation of the foot INS. In
addition, the step length model has errors due to the model itself. The combination of the latter two error
sources explains why the distance error ed of the proposed pocket INSs with automatic calibration do not
outperform the pocket INS with manual calibration in Table 3.

We finalize this section with an example of the odometry to show the effect of the calibration method.
Figure 12 shows one stretch of a user’s trajectory: from the start to the end of the corridor. The duration of
this stretch is approximately 60 s. The odometry estimated by the pocket INS with universal parameters
clearly estimates longer distances than any other version of the pocket INS. We appreciate this fact by
comparing the true ground truth point at the end of the corridor with the estimated one. The distance
overestimation is due to the use of the universal parameters in the step length model. In this example, the
parameters do not model the physiology of the user, thus leading to the overestimation of the step length,
which leads to an overestimation of the distance.
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Ground truth point Approximate trajectory 

End of the corridor Start/end 
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0
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Figure 12. (Top) Approximate true trajectory. (Bottom) Example odometry of the pocket INS with different
calibration methods. The circle marks are the estimated positions of the ground truth points.

The remaining versions of the pocket INS have approximately the same accuracy. In fact, we observe
that the estimated odometry reaches, approximately, the end of the corridor. The error at the end of the
corridor is 1.8 m over a total distance of 35 m, which is the length of the corridor. That is, the error at the
end of the corridor is 5% of the length of the corridor.

With the proposed full calibration method, we can estimate the two parameters of the step length
model of the pocket INS provided that the user changes the walking speed. The resulting slope is the
optimal slope of the user and it only needs to be estimated once. If the IMU moves, the full calibration is
necessary again, which means that the user would have to actively participate in the calibration process
again by changing the walking speed. In order to ease the calibration process for the user, we propose an
alternative hybrid calibration. According to it, the step length model of the pocket INS can be used by
setting the slope to the user’s optimal value. Such a value is estimated with the approach proposed in this
article. Then, the offset can be calibrated in each walk with Equation (2).

4. Conclusions

In this article, we have presented a method to automatically calibrate the step length model of a pocket
INS. The step length model has two parameters: the slope and offset of a first-order linear regression
which relates the leg aperture with the step length. The proposed method uses a foot INS to estimate
the parameters of the step length model that are specific to a user. Moreover, we have evaluated the
performance of the proposed method and compared it to the state of the art calibration methods.

There are three main conclusions from the work we have presented. The first one is that there are
users whose optimal slope differs from the universal slope, which is the one used by default. For such
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users, the offset of the step length model changes with the walking speed, hence making the calibration of
the offset necessary every time the walking speed changes. The second one is that we can automatically
estimate the two parameters of the step length model of the pocket INS by using the output of the foot INS.
With our proposed method, we find the user’s optimal parameters for the step length model. The third
conclusion is that the full calibration needs to be done only once to estimate the optimal slope of the user.
The resulting optimal slope can then be used in the pocket INS as the characteristic value of the user’s and
the offset can be calibrated for each walk using the method we have proposed in a previous work.

5. Patents

The work presented in this article is related to a patent which is being under consideration at the
German Patent Office. The file number is 10 2017 103 607.5.
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