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Abstract: This paper proposes a compact, high-linearity, and reconfigurable continuous-time filter
with a wide frequency-tuning capability for biopotential conditioning. It uses an active filter
topology and a new operational-transconductance-amplifier (OTA)-based current-steering (CS)
integrator. Consequently, a large time constant τ, good linearity, and linear bandwidth tuning
could be achieved in the presented filter with a small silicon area. The proposed filter has a
reconfigurable structure that can be operated as a low-pass filter (LPF) or a notch filter (NF) for different
purposes. Based on the novel topology, the filter can be readily implemented monolithically and a
prototype circuit was fabricated in the 0.18 µm standard complementary-metal–oxide–semiconductor
(CMOS) process. It occupied a small area of 0.068 mm2 and consumed 25 µW from a 1.8 V supply.
Measurement results show that the cutoff frequency of the LPF could be linearly tuned from 0.05 Hz
to 300 Hz and the total-harmonic-distortion (THD) was less than −76 dB for a 2 Hz, 200 mVpp sine
input. The input-referred noises were 5.5 µVrms and 6.4 µVrms for the LPF and NF, respectively.
A comparison with conventional designs reveals that the proposed design achieved the lowest
harmonic distortion and smallest on-chip capacitor. Moreover, its ultra-low cutoff frequency and
relatively linear frequency tuning capability make it an attractive solution as an analog front-end for
biopotential acquisitions.

Keywords: reconfigurable filter; continuous-time; low frequency; low-pass filter (LPF); notch filter
(NF); current-steering (CS); biomedical sensors

1. Introduction

Global population aging produces a strong demand for portable and wearable biomedical
sensor devices for the continuous monitoring of physiological signals in preventive and personalized
healthcare. Ideally, these devices should possess a high precision, low power consumption, and
small size. The performance of such biopotential signal acquisition systems depends critically on the
analog front-end (AFE) [1]. Analog filters are often preferred over digital filtering in the AFEs for
their low power consumption, especially for multi-channel systems. Moreover, as most AFEs often
support DC offset suppression through the use of chopper stabilization, which requires digital clocks,
considerable interference is introduced. Therefore, band-limiting analog filters are often utilized to
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remove out-of-band noise (e.g., from clock signals or other interference). Such filters also provide
anti-aliasing for subsequent A/D conversion and are essential for the removal of high-frequency noise,
such as crosstalk from clock signals, power-line interference (PLI), etc.

In general, biopotential signals are characterized by their low amplitude (e.g., tens of microvolts
to several millivolts) and significant low-frequency components (several millihertz to several hundreds
of hertz) [2]. For example, the T-wave of an electrocardiograph (ECG) has its spectral content mostly
centered around 2.4 Hz, for which the signal acquisition is often designed to have a cutoff frequency of
about 150 Hz to ensure that all important information is captured [3,4]. Generally, the magnitude of
ECG signals is from 1 mV to 5 mV, and the preamplifier is designed to have a moderate gain (e.g., 10) to
avoid saturation of the amplifier due to the DC offset. Therefore, the input signal swing of the filter is in
the order of tens of millivolts (e.g., 10–50 mV). Apart from area and power consumption considerations,
as the biopotential is a delicate signal, attention should also be given to noise and linearity.

The 50/60 Hz PLI is another significant and commonly encountered interference source when
recording biopotential signals that is ubiquitous, even in clinical settings [5]. Noise sources can also
originate from the surrounding environment, such as the patient’s residence, where many sources of
ambient interference may arise. It is therefore desirable for the analog filters to be able to reconfigure
either as a low-pass filter (LPF) or a notch filter (NF), or a combination of them with a wide tunable
frequency characteristic, depending on the practical applications.

Conventionally, achieving a low cutoff frequency in a monolithic implementation for a
continuous-time filter has always been a challenge as passive components are often large. The issue is
even more serious for multi-channel systems, such as brain–machine interfaces (BMI), where power
and area budgets are usually stringent. Much effort has been devoted to reducing the values of
passive components while maintaining a good linearity. Operational-transconductance-amplifiers and
capacitors (OTA-C)are usually preferred due to their simple and tunable structure [6,7]. However,
they rely on current division mirrors to obtain extremely small gm values. As transistors biased in
weak inversion can lead to a decreased matching of currents in current mirrors, degradation of the
total-harmonic-distortion (THD)will occur as a result [3]. A switched-capacitor (SC) filter is another
popular technology for realizing NFs and LPFs with a low cutoff frequency due to its low sensitivity
and high precision [8,9]. However, extra clock generators and large capacitor ratios are required to
implement a large time constant. Moreover, dynamic power consumption is large and its linearity
performance is limited by metal–oxide–semiconductor (MOS) switch charge injection and clock
feed-through. Biasing the MOS transistor in the subthreshold regime to form large pseudo-resistors
is an effective technique for obtaining a very low and tunable gm [10,11]. However, most designs
employing this scheme produce low linearity and large distortions. Floating-gate MOS transistors
have been proven to be effective in realizing low cutoff frequency filters [12]. The main drawback
is that a special double-poly process, which is often unavailable in standard -CMOS technologies,
is involved [13]. From the above discussion, it is apparent that a reconfigurable filter structure
with a good solution to achieve low cutoff frequency, small silicon area, and low signal distortion is
highly desirable.

In this paper, we present an area-efficient, high-linearity, and reconfigurable second-order
continuous-time filter architecture by exploiting current-steering (CS) integrators for biopotential
recording sensors. It relies on an active filter topology to achieve a high linearity and a new realization of
an OTA-based CS integrator to achieve an ultra-low cutoff frequency. Moreover, a new analog inverter
was implemented in the proposed filter by adopting the non-linear pseudo-resistors compensation.
The new integrator was based on an improved realization of the current-steering (α block) and a
high-gain OTA with lowinput-referred noise. It achieved a large time constant τ and good linearity,
while requiring a small silicon area. The improved α block avoided the RC network in the conventional
α block in Moon and Song [14] and led to lower power consumption and a smaller silicon area.
Compared to the α block approach in Wong et al. [15], the proposed integrator was incorporated into a
new biquad reconfigurable filter with a stable closed-loop feedback such that high linearity and linear
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bandwidth tuning could be achieved with a small area and low power consumption. The noise and
linearity of the proposed circuits were also thoroughly analyzed.

The proposed filter can be readily implemented monolithically using standard CMOS technology,
achieving good linearity, a wide frequency-tuning range, and a small silicon area. Comparison
with conventional designs [6,16,17] revealed that the proposed design achieved the lowest harmonic
distortion and smallest on-chip capacitor among these designs. Furthermore, the proposed filter has a
reconfigurable topology, which can be used as an LPF or an NF.

The rest of this paper is organized as follows: Section 2 gives an overview of the proposed
filter architecture and the detailed circuit implementation is described in Section 3. The analysis
of the linearity, noise, and tuning performance of the proposed structure is presented in Section 4.
The measurement results and comparisons are presented in Section 5. Finally, Section 6 concludes
the paper.

2. System and Architecture

Figure 1 shows the system block diagram of a typical AFE for biopotential recording. It consists
of a preamplifier (Preamp), a bandwidth configurable low-pass filter (LPF) and a tunable notch filter
(NF), a programmable gain amplifier (PGA), and an analog-to-digital converter (ADC).
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Figure 1. An example block diagram of an analog front-end (AFE) system for bio-potential recording.

As mentioned earlier, the main design challenges for the monolithic realization of such signal
conditioning filters for biopotential acquisition are the requirement of a low cutoff frequency and
linearity under given area and/or power limitations. Generally, active filters are more attractive for its
smaller silicon area, but its linearity is determined by the voltage coefficient of the passive components
only when the gain of the amplifier is high enough. Due to various nonlinear and imperfect properties
of the circuit elements, special care is required to achieve a low cutoff frequency. Several techniques
have been proposed to enhance the linearity in these low cutoff frequency filters, which include input
attenuation, source degeneration, non-linear term cancellation, etc. However, most of these techniques
depend on either a special CMOS process (e.g., a floating-gate MOS) or the accurate matching of MOS
transistors [18]. Therefore, there is a recent trend in employing the classic approach [19] with high-gain
active circuits in feedback loops and passive components to achieve a high linearity.

In this work, a new reconfigurable second-order biquad filter structure was proposed to meet
the high linearity and low cutoff frequency requirements for biopotential acquisitions. The proposed
topology can be viewed as the integration of a traditional active filter structure with a new CS integrator,
and it offers a good tradeoff between linearity and low-frequency bandwidth. Figure 2 shows the block
diagram of the proposed second-order reconfigurable filter, which comprises two identical integrators,
an analog inverter, and an RC feedback network. Each integrator utilizes an improved current-steering
technique (α block) to provide a large time constant, a wide linear tuning range, and a low noise level
comparable to the use of a conventional MOS pseudo-resistor.

The concept of an α block was first proposed by Moon and Song [14] for implementing a variable
resistor for a Bessel filter and by Wong et al. [15] to realize a simple first-order LPF. As mentioned
earlier, the new integrator was based on an improved realization of the α block and a new high gain
OTA with lowinput-referred-noise. It achieved a large time constant τ and a good linearity, while
requiring a small silicon area. It also avoids the need for an RC network in the conventional α block in
Moon and Song [14], and in this way, leads to a lower power consumption and smaller silicon area.
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Compared to the α block in Wong et al. [15], the proposed α block and high gain OTA-based integrator
were incorporated into a new biquad reconfigurable filter with a stable closed-loop feedback such
that high linearity and linear bandwidth tuning could be achieved with a small area and low power
consumption. More details are given later in Section 3.Sensors 2019, 19, x FOR PEER REVIEW 4 of 16 
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In the proposed structure, the NF or LPF operations can be configured depending on whether
the CMOS switch S is ON or OFF. In practical applications, the switch is either ON or OFF when the
working mode is chosen (i.e., LPF or NF). The switch consists of two complementary n-type MOS
(NMOS) and p-type MOS (PMOS) with a small resistance that are located on the feedback loop (not
the main signal path), and hence its effect on the system linearity is small. This provides considerable
flexibility in practical applications where PLI and other high-frequency interference can be mitigated.

Using the α block in the integrator and the switch, the bandwidth of the filter can be tuned
and reconfigured, respectively. To see this, let both positive terminals of the integrator be biased at
Vre f (Vre f = (VDD + VSS)/2), which give the filter a suitable dynamic range. The transfer function
of the integrator employing the α block is then given by H(s) = 1/(τs/α), where the parameter α
is a scaling factor derived in Section 3. Thus, the complete continuous-time transfer function of the
proposed filter described in Figure 2 is given by:

HNF(s) =
1+

R0C0R1Cn f s2

α2

R0
R f
+R0C f s+R0C0R1C1s2

α2

. (1)

If the resistances and capacitances are chosen such that R f = R1= R0 and Cn f= C f= C1= C0,
Equation (1) can be used to realize an NF. The corresponding pass-band gain amplitude is close to
unity and the central frequency of the NF is:

fc,NF =
α

2πR0C0
. (2)

The above equation shows that the central frequency of the NF is determined by the parameter α
given the values of R0 and C0, and hence it can be controlled through α to achieve a specific frequency
in practical applications.

As illustrated in Figure 2, when the switch S is set to OFF, the forward feedback capacitance Cn f
in Equation (1) is equal to zero, and the transfer function becomes:

HLPF(s) =
1

R0
R f
+R0C f s+R0C0R1C1s2

α2

. (3)
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Equation (3) is a classical transfer function of a biquad LPF when R f= R1= R0 and Cn f= C1= C0

and its −3 dB frequency is given by:
fc,LPF =

α
2πR0C0

. (4)

The loop gain of the filter is defined by R f /R0 and it is set to one in the proposed design. One
can see that, if α is set to a value much smaller than one, the cutoff frequency of the LPF can be
lowered to the Hz or mHz range. The ultra-low cutoff frequency LPF is generally required for some
vital signals, e.g., the slow varying photoplethysmogram (PPG) [15]. Thus, bio-signals with a very
low frequency can also be processed by the proposed design. As the values of R0 and C0 are usually
only several hundreds of ohm and several pF, respectively, the proposed reconfigurable filter can
be readily implemented on-chip, even for multi-channel biopotential recording applications where
the area per channel is limited. In principle, the linearity will be even better if a fully differential
architecture is employed. However, it will consume a much larger area with more transistors and
passive components. More importantly, as the α block is rather sensitive to the process, voltage,
and temperature (PVT) variations, it is very difficult to handle the matching problem of the various
components in the fully-differential structure. Therefore, we only focus on a single-ended design.
Fortunately, from the comparison to be presented in Section 5, its impressive performance can still
meet the demanding requirements in most practical applications. The detailed circuit implementation
of various components of the proposed filter are shown in the following section.

3. Circuit Implementation

In this section, the basic principle of the proposed integrator and the circuit-level implementation
of the filter are presented. The various design techniques used to satisfy the aforementioned design
requirements of the reconfigurable biopotential filter are also highlighted.

3.1. Current-Steering Integrator with an Improved α Block

Integrators are critical building blocks for continuous-time filters as they determine both the
frequency characteristic and the linearity. For designing filters with a low cutoff frequency, it is a great
challenge to achieve a large integrator time constant while maintaining a high linearity. Due to the
inherent nonlinearity of large MOS pseudo-resistors, the linearity of such filters reported thus far
is limited to 40–50 dB [20,21]. Figure 3a shows the structure of a conventional first-order RC filter
with a transfer function given by 1/(τs), where τ = RC is the time constant of the integrator. Here,
a single-ended topology is shown for simplicity. The virtual ground of the amplifier allows for a
highly linear voltage-to-current conversion, and the resistor current is then directly conveyed to the
integrating capacitor. Thus, high-linearity is preserved.
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Figure 3. (a) The topology of a traditional RC integrator and (b) the proposed current-steering integrator
and α block.

As mentioned, realizing a large time constant while keeping the values of the on-chip resistances
and capacitances small for monolithic implementation is a big design challenge. To address this issue,
an improved CS integrator and a high-gain OTA was proposed to obtain a large time constant τ and
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a low distortion. In the conventional α block [14], a complicated RC network is used to achieve a
low distortion of approximately −90 dB, which leads to large power consumption and silicon area.
The concept of an α block was also studied in Wong et al. [15], in which a second-order tunable
low-pass filter was proposed. In this design, a cutoff frequency as low as 0.25 Hz was achieved by
cascading two simple integrators. However, due to its single integrator architecture, its gain will
change when the bandwidth is tuned by the gate voltage. Moreover, the linearity is limited by the
simple integrator structure.

The proposed α block is based on a MOS-transistor-based current-sharing block. This is then
incorporated in a high-gain OTA to form a novel CS integrator with improved linearity and a reduced
gain variation during bandwidth tuning. Moreover, the improved CS integrator is incorporated into a
new biquad reconfigurable filter with stable closed-loop feedback to achieve high linearity and a linear
tuning bandwidth.

Figure 3b shows the CS integrator circuit and the details of the MOS-transistor-based α block.
The proposed integrator architecture differs from the LPF of Wong et al. [15] in that it removes the
feedback resistor. This is because the current through the α block is relatively small and hence the
voltage V1 is almost equal to the virtual ground. As a result, distortion and gain variation during
bandwidth tuning are also reduced. Additionally, a high-gain OTA is employed to boost the linearity
and lower the noise of the integrator. As illustrated in Figure 3b, the α block consists of two MOS
transistors, which serve as current-sharing devices, biased in the deep triode region.

The passive resistors and MOS transistors in the α block together create a variable resistance
element with large values. To see that, let the current through R0 and the drain current of M1 and M2

be denoted by I0, I1, and I2, respectively. If I2 is much larger than I1, only a small portion of I0 will
pass through M1 for charging or discharging the capacitor C0. Therefore, the filter time constant τ is
increased significantly. Assuming I1/I0 = α, the transfer function of the CS integrator is given by:

H(s) =
1

τ(s /α)
, (5)

where τ = R0C0. It can be seen that the time constant τ of the proposed integrator is now increased by
1/α times comparing with the conventional one in Figure 3a. Moreover, if α� 1, the −3 dB frequency
can be reduced significantly by a factor of α.

The drain currents of M1 and M2, which are both biased in the linear region [22], can be expressed as:

I1 =
1
2
µnCox

(W
L

)
1
(V bi − Vre f − Vthn

)
·(V 1 − V2), (6a)

I2 =
1
2
µnCox

(W
L

)
2
(V bi − Vre f − Vthn

)
·(V 1 − Vre f ), (6b)

where µn is the electron mobility, Cox is the oxide capacitance, (W/L)i is the gate width-to-length ratio
of Mi, and Vthn is the NMOS threshold voltage.

When I2 is much larger than I1, the parameter α is approximately given by:

α =
I1

I1+I2
≈

I1

I2
≈

(W / L)1(V b1 − Vre f − Vthn
)

(W / L)2(V b2 − Vre f − Vthn
) . (7)

Equation (7) indicates that the value of α can be tuned using the bias voltages Vb1 and Vb2.
In practical implementation, when M1 steps into the subthreshold regime with a small Vb1, a similar
relationship between α and the bias voltages Vb1 and Vb2 can be obtained. Figure 4 shows the AC
responses of the RC integrator with different values of R in Figure 3a and the proposed CS integrator in
Figure 3b. In this simulation, the value of R0 in the proposed integrator was set to 100 kΩ and the value
of R in the conventional integrator was chosen as a multiple of R0. It can be seen that the CS integrator
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could achieve similar linear gain–frequency responses and time constant τ as the conventional RC
integrator, but at a much smaller resistance (R0= R/1000).
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Figure 4. The AC responses of an RC integrator with different values of R (black lines) and the
current-steering integrator (red line) with R0 = 100 kΩ.

3.2. Proposed OTA with High-Gain and Low-Input-Referred Noise

Figure 5 shows the transistor-level circuit of the OTA, which consists of the biasing circuit and
a two-stage amplifier. The key design considerations are highlighted as follows: i) special attention
was given to the design and layout of the input PMOS transistors to lower the flicker noise as it is
significant at low operating frequencies [22] and ii) to effectively boost the OTA gain, NMOS and PMOS
transistors were cascaded at the output stage to enhance the equivalent output resistance. This not
only improved the integrator linearity but also lowered the OTA input-referred noise. Although the
output dynamic range was somewhat lowered due to the large output resistance, it did not affect the
performance of the OTA in our application. This was because the input swing of the OTA was small
since the gain of the preamplifier was usually small for biopotential signals to avoid saturation by a
large DC offset. Moreover, the gain of the filter was unity, and hence the input and output swings of
the OTA were small, which was usually in the order of tens of millivolts.
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3.3. Unity-Gain Analog Inverter with a Linearity Enhancement

The analog inverter is another block that can affect the attenuation of the proposed filter due to
the non-linear pseudo-resistor in the feedback network. To quantify this effect, we assumed the input
and output voltages were related using the following linear model:

Vio= −kVii + ∆Vi, (8)
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where Vii and Vio are the input and output of the unity-gain inverter, k is the proportionality constant
between Vii and Vio, and ∆VI is the offset voltage. Taking the NF as an example, the resultant transfer
function in Equation (1) becomes:

HNF(s) =
1+

R2
0C2

0s2

kα2 −R0C0s·∆Vi
Vii

1 + R0C0s+
R2

0C2
0s2

kα2

. (9)

Equation (9) indicates that the performance of the unity-gain analog inverter not only affects the
cutoff frequency, but also the notch attenuation of the NF. The proposed linearity-enhanced unity-gain
analog inverter is shown in Figure 6. This configuration introduces a pole as well as a zero for a
pole–zero cancellation through the pseudo-resistor and capacitor in both the input loop and feedback
loop, instead of only a pole in the feedback loop in the conventional design.
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It is well-known that many low-frequency amplifiers and filters with pseudo-resistors in the
feedback path have a limited linearity performance due to the inherent nonlinear behavior of MOS
transistors in the triode regime. However, in this work, through careful design and optimization (e.g.,
a symmetrical layout design and a large aspect ratio of MOS transistors), the pole could be canceled by
the zero in the proposed analog inverter to form an approximately ideal analog inverter. Furthermore,
the equivalent resistances of the MOS-based pseudo-resistors in the input loop and feedback loop
change with the input signal simultaneously. Through the symmetrical and unity-gain structure, the
non-linear behavior of pseudo-resistors in this inverter is compensated for and thus the linearity of the
inverter is enhanced. Cadence Spectre [23] simulation results showed that the designed analog inverter
could achieve a −120 dB THD when the DC voltage of the input signal was biased at the middle of the
power supply voltage ( VDD +VSS

2 ). Consequently, the linearity issue in a conventional analog inverter
can be significantly mitigated using the proposed methodology.

4. Circuit Analysis

The performance of the proposed filter in terms of linearity, open loop-gain of the OTA, noise
performance, and frequency tuning will be is discussed in this section. Key design considerations and
techniques for achieving the desired performance metrics are also highlighted.

4.1. Linearity Performance

The main non-linear elements of the circuit are the MOS transistors in the α blocks, which operate
as voltage control variable resistors. Traditionally, MOS-based resistors are usually applied in the
feedback loop, where the voltage swing at the output is large, while the amplitude of the source signal
at the input is relatively small. Thus, the use of MOS-based resistors in the feedback network exhibits
nonlinear behavior, leading to a high-pass frequency point change and a large signal distortion in the
analog chain [24]. In the proposed design, the MOS transistor M1 was designed to have better linearity
than the conventional ones. From Equation (7) and Figure 3b, it is noted that the bypassing current
(I1) through M1 is scaled to αI2, resulting in the scaling down of V1 (see Figure 3b) since the current



Sensors 2020, 20, 2065 9 of 16

through the resistor R0 is unchanged. As a result of this scaling in V1, the signal swing across M1

decreases, and as such, the linearity improves. Although the input signal swing is slightly reduced,
this linearity improvement is proportional to the amount of the scaling in V1.

In the proposed filter, the α blocks are located inside the feedback loop. This configuration
can effectively reduce the distortion within the bandwidth of the filter. An analysis of the effects of
current-steering MOS resistors in the feedback loop on filter performance can be found in Moon and
Song [14].

The linearity of the proposed filter can be measured using the total harmonic distortion (THD) [25],
which can be modeled using the following equation:

THD =

√√√√√√√√√∑N
n=2

∣∣∣∣Vout(n f 0

)∣∣∣∣2∣∣∣∣Vout( f 0

)∣∣∣∣2 , (10)

where f0 is the fundamental frequency component, and the (N−1)th order harmonics are considered in
the above formula. For this work, as shown in Figure 2, the filter has a linear feedback loop in which
the even-order harmonics dominate. In fact, the second-order harmonic distortion (HD2) dominates,
and thus the overall THD of the proposed filter can be approximated using HD2. The other reason
for this approximation is that higher-order harmonics often lie beyond the filter stop-band and are
thus filtered out. With the improved design and implementation of the proposed filter, CS integrator,
OTA, and linear unity-gain analog inverter, as well as the biquad structure, the THD performance is
significantly enhanced.

4.2. The Open-Loop Gain of the OTA

For an ideal active integrator, the OTA has an infinite open-loop gain and the dominant pole
of the integrator lies at the zero frequency (e.g., for a DC). However, there are no other poles and
finite-frequency zeros. The transfer function of an ideal non-inverting integrator is thus given by:

Hideal(s) =
ω0

s
. (11)

The ideal characteristics of the integrator are illustrated in Figure 7 with a dashed line. In practice,
the finite gain of the OTA will degrade the linearity of the active integrator. To analyze the non-ideal
effect of the CS integrator, we denote the DC gain of the OTA by Av, and the equivalent resistances of
M1 and M2 by RM1 and RM2, respectively. From the small-signal equivalent model of the proposed
integrator shown in Figure 8a, the transfer function was determined to be:

H′(s) = −
R0//RM1//RM2

RM1C0s+ 1
Av
−

R0//RM1//RM2
AvRM1

. (12)

If the bias voltages Vb1 and Vb2 are appropriately chosen, and assuming that RM1 � RM2 and
R0 � RM2, then Equation (5) can be rewritten as:

H′(s) ≈ −
1

RM1R0C0s
RM2

−
R0

AvRM2

, (13)

which suggests that the CS integrator forms an active LPF with a low-frequency dominant pole at the
frequency ωp= ω0/Av. The real magnitude response with different DC gains of the OTA is shown by
the solid lines in Figure 7, which indicates that the DC gain has a large impact on the CS integrator,
i.e., better linearity and lower cutoff frequency can be achieved with a larger DC gain. Therefore, care
should be taken in choosing the OTA DC gain and aspect ratio of MOS transistors to ensure that the
transistors do not operate in their nonlinear region.
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4.3. Noise Performance

To analyze the influence of noise, the equivalent noise model of the CS integrator given in Figure 8b
was used. The equivalent noise power of transistor M1 at a low frequency is given by:

V2
n, M1

∆ f
= 4KT

2
3

RM1 +
K f

CoxW1L1
·
1
f

, (14)

where K is Boltzmann’s constant, ∆ f is the frequency range, and K f is a process-dependent parameter
for 1/ f noise. For α� 1 and a large OTA DC gain, the thermal noise of a large RM1 and the 1/ f noise
are the main components of the noise source for the CS integrator. Therefore, the input equivalent
noise of the CS integrator is approximately given by:

Vn,in ≈

1
RM1C0s ·

[(
V2

n,in,OTA

)1/2
+

(
V2

n,M1

)1/2
]

RM2
RM1R0C0s

, (15)

where V2
n,in,OTA is the input noise power of the OTA. Equation (15) can be rewritten as:

Vn,in ≈
R0

RM2
·

[(
V2

n,in,OTA

)1/2
+

(
V2

n,M1

)1/2
]
. (16)

Equation (16) suggests that the noise performance of the CS integrator can be optimized by the
OTA and the value of R0/RM2. In practical implementation, RM2 is kept constant by a constant bias
voltage (VDD) and R0 is chosen to be a slightly smaller value to ensure that the input-referred noise
is kept at a low level. Moreover, the noise performance of the OTA is enhanced through design
techniques, as described in the last subsection.
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4.4. Linear Frequency Tuning

As shown in Figure 3, the transistors M1 and M2 in the α block function as two voltage-control
resistors with resistance values changing according to the overdrive voltage. In other words, the value
α can be adjusted by the control voltages Vb1 and Vb2, which in turn, change the filter cutoff frequency.

In this design, Vb2 is set to the supply voltage VDD. Substituting α into Equation (2) or Equation (4),
and using Equation (7), the cutoff frequency is given by:

fc,NF/LPF ≈
1

2πR0C0
·

(W / L)1(V b1 − Vre f − Vthn
)

(W / L)2(V DD − Vre f − Vthn
) . (17)

Equation (17) suggests that the cutoff frequency of the reconfigurable filter is proportional to Vb1
if the other variables are kept unchanged. Since the relationship between ω0 and Vb1 is approximately
linear, the cutoff frequency for the NF and LPF can be tuned through the α block via appropriate values
of Vb1. Although the cutoff frequencies in conventional designs are rather sensitive to the process used,
these adverse effects can be compensated for in the proposed design by adjusting the gate voltage Vb1
at the expense of requiring a more accurate control voltage for tuning.

5. Results

The proposed reconfigurable filter was fabricated using a SMIC 0.18 µm CMOS process with
supporting circuits, including a bias block. The bias circuit was implemented to offer the bias current
and bias voltage to the filter. Figure 9 shows the die microphotograph of the proposed filter, where the
core size was about 450 µm × 150 µm. Polyresistance and metal–insulator–metal (MIM) capacitance
were employed in the CMOS process. With the proposed methodology, the resistors and capacitors
used could be chosen at the kilo-ohm and picofarad levels, respectively, to achieve a small area.
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5.1. Tunable Frequency Response

The measured frequency responses of the proposed filter in two different configurations, namely
NF and LPF, are shown in Figure 10a,b, respectively. The results demonstrate that impedance-boosting
could create a sharp notch for the NF and a low cutoff for the LPF, with programmable frequencies.
The NF and LPF had a relatively smooth pass-band and the cutoff frequency of the NF and LPF could
be effectively tuned via Vb1. The NF provided approximately 45 dB of attenuation over a bandwidth of
10 Hz centered at 50 Hz without any obvious change of ripple under a 1.35 V bias. Figure 10b shows
the response of the LPF in which a stop-band attenuation of 50 dB was achieved. The cutoff frequencies
of the two configurations could be linearly programmed to various values through the voltage bias.

Figure 11 depicts the cutoff frequency versus the bias voltage Vb1 of the proposed reconfigurable
filter. When Vb1 varied from 1.2 to 1.4 V, the cutoff frequencies of the NF and LPF were seen to vary
almost linearly from 60 mHz to 250 Hz and 50 mHz to 300 Hz, respectively.
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5.2. Total Harmonic Distortion

Figure 12a depicts the measured THD of the proposed filter for a 200 mVpp sine input at 2 Hz. As an
example, measurements were taken with various bias voltage settings (1.39 V and 1.35 V), resulting
in a 150 Hz corner frequency for the LPF and a 50 Hz central frequency for the NF configuration,
respectively. The circuit outputted a very pure 2 Hz tone, showing no distortion above −96 dB, and
it was bounded by the limited accuracy of the spectrum analyzer. The measured HD2 was around
−76 dB (relative to the fundamental) at 4 Hz and the HD3 was −82 dB at 6 Hz, which demonstrates the
high linearity achieved.
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Figure 12. (a) Measured total-harmonic-distortion (THD) of the proposed filter with a 2 Hz, 200 mVpp
sine wave input. (b) Measured THD of the proposed filter versus the input signal swing (2 Hz sine
wave input).
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The measured THD versus input signal swing is shown in Figure 12b. For this test, the amplitude
of the input sine wave was changed while the frequency was kept at 2 Hz. It can be seen that the
THD degraded as the input signal amplitude increased. The reason was that the dynamic range of the
output changed with the input as the pass-band gain of our filter was set to one. As the drain-source
voltage across the large variable MOS resistors increased, which resulted in a change in the equivalent
impedance of the non-linear MOS resistors, degradation in the linearity was observed. Nonetheless,
the measured results showed a low THD of −110 dB relative to the fundamental for a single tone
of 2 Hz when the input signal amplitude was less than 350 mV. The linearity performance was well
within the requirement of biopotential processing.

5.3. ECG Measurement

To evaluate the suitability of the proposed filter in biopotential applications, the prototype filter
was experimentally characterized with an amplified ECG signal using an off-the-shelf amplifier as
input, where a simulated ECG was generated using the Fluke Medsim 300B (Fluke, WA, US). Figure 13a
shows the measurement made under the LPF configuration at a bias of 1.39 V when the input ECG
signal was mixed with a 1 kHz, 10 mVpp sine wave. It is evident that the high-frequency content was
removed effectively. In Figure 13b, a 50 Hz, 10 mVpp sine wave emulating the effects of PLI was also
added in the input of the filter. Under the NF configuration with a bias of 1.35 V, the waveform after
filtering showed that the influence of PLI was significantly mitigated.Sensors 2019, 19, x FOR PEER REVIEW 13 of 16 
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without an LPF (left) and with an LPF (right), (b) waveform captured without an NF (left) and with 
an NF (right). Vb1 was set to 1.39 V for the LPF and 1.35 V for the NF. The input ECG signal was 
combined with (a) a 1 kHz, 10 mVpp and (b) a 50 Hz, 10 mVpp sine wave where the gain of the 
filter was about 0 dB. 
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Figure 13. The simulated electrocardiograph (ECG) measurement results: (a) waveform captured
without an LPF (left) and with an LPF (right), (b) waveform captured without an NF (left) and with an
NF (right). Vb1 was set to 1.39 V for the LPF and 1.35 V for the NF. The input ECG signal was combined
with (a) a 1 kHz, 10 mVpp and (b) a 50 Hz, 10 mVpp sine wave where the gain of the filter was about
0 dB.

Table 1 shows a comparison of the proposed work with recently reported designs. The proposed
filter had the best THD, smallest on-chip capacitor, and lowest input-referred noise relative to the
conventional designs [6,16,17,26–30]. Moreover, the performance was achieved without scarifying the
silicon area, except for that caused by a slight increase in power consumption. The capacitor/pole
metrics were adopted such that similar filters with different orders could be meaningfully compared.
As shown in the Table 1, the integrating capacitor per pole was 1.97 pF and 2.68 pF for the proposed
LPF and NF, respectively, which was the smallest of all designs. It is noted that the proposed design
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had lower input-referred noise compared with other state-of-the-art filters. The main reason was that a
large bias current and a high-gain OTA were employed to reduce the input-referred noise of the circuit.
By employing a micro-amp-level bias current, the proposed filter consumed around 25 µW from a
single 1.8 V power supply, which consumed a larger power compared with References [6,26,29] in
exchange for better noise performance. As noise is a key parameter for biopotential signal conditioning
due to their low voltage amplitude, it is crucial to achieve a good noise performance. The measurement
results demonstrated that the proposed reconfigurable filter and design techniques are attractive
approaches for realizing a tunable filter with a very low cutoff frequency and small-sized on-chip
capacitors, and they are valuable for biopotential acquisition systems.

Table 1. Summary and comparison of low-pass filters and notch filters for biomedical
sensor applications.

Low-Pass Filter Notch Filter

Parameter 2009
[17]

2018
[6]

2018
[26]

2019
[27] *

This
Work 2005 [16] 2013 [28] 2013

[29]
2017
[30] *

This
Work

Filter Order 1 4 4 4 2 5 8 2/4 5 2
Tuning Range (Hz) 0.002–90 100 100–300 0.03–100 0.05–300 30–67 10–1k 40–80 0–47.2 0.06–250

THD (dB)
−48.9

@50 Hz
100 mV

−50
@20 Hz
25 mV

−50
@20 Hz
25 mV

−40
@10 Hz

−76
@2 Hz
20 mV

−49.7
@8 Hz
50 mV

−34
@15 Hz

1 µA

−70/−65
@100 mV

−60.7
@10 Hz
30 mV

−76
@2 Hz
20 mV

Area (mm2) 0.07 0.11 0.1 0.737 0.0675 0.25 12.5 1 0.314 0.0675
Capacitor per pole

(pF) $ 40 9.625 11.785 71.2 1.97 20 25 30.2 7.72 2.68

Pass-Band Gain (dB) 0 −0.05 −0.09 1.14 0 0.1 0 0 −2.08 0
Input-Referred Noise

(µVrms) 32 80.5 39.38 129.2 5.5 & 243 NA NA 170.3 6.4 &

Supply (V) 1 0.9 1.5 1.8 1.8 3 2 1.5 1.2 1.8
Process (µm) 0.35 0.35 0.35 0.18 0.18 0.35 0.35 0.18 0.13 0.18

* Simulation results; $ Calculated by the authors; & The integration frequency range is from 0.05 Hz to 150 Hz.

6. Conclusions

A reconfigurable continuous-time filter with a compact area and high linearity has been presented.
The proposed filter has a flexible structure as it has a wide tunable bandwidth and can be used as
either an LPF or an NF. It adopts a new OTA-based CS integrator to achieve a large time constant and
biquad filter topology, as well as an improved analog inverter to obtain a low distortion. Consequently,
a large time constant τ, good linearity, and low noise performance was achieved, while requiring a
small silicon area. The proposed filter was fabricated in a standard 0.18 µm CMOS process and the
chip size was around 450 µm × 150 µm. A comparison with conventional designs revealed that the
proposed filter is very attractive in that it achieved the lowest harmonic distortion, smallest on-chip
capacitance, and lowest input-referred noise among these designs. The proposed filter structure and
design techniques serve as a good alternative to conventional continuous-time low-frequency filters.
They are particularly valuable to low-frequency physiological signal filtering applications.
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