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Abstract: At present, deep-learning methods have been widely used in road extraction from
remote-sensing images and have effectively improved the accuracy of road extraction. However, these
methods are still affected by the loss of spatial features and the lack of global context information.
To solve these problems, we propose a new network for road extraction, the coord-dense-global (CDG)
model, built on three parts: a coordconv module by putting coordinate information into feature maps
aimed at reducing the loss of spatial information and strengthening road boundaries, an improved
dense convolutional network (DenseNet) that could make full use of multiple features through own
dense blocks, and a global attention module designed to highlight high-level information and improve
category classification by using pooling operation to introduce global information. When tested
on a complex road dataset from Massachusetts, USA, CDG achieved clearly superior performance
to contemporary networks such as DeepLabV3+, U-net, and D-LinkNet. For example, its mean
IoU (intersection of the prediction and ground truth regions over their union) and mean F1 score
(evaluation metric for the harmonic mean of the precision and recall metrics) were 61.90% and 76.10%,
respectively, which were 1.19% and 0.95% higher than the results of D-LinkNet (the winner of a
road-extraction contest). In addition, CDG was also superior to the other three models in solving
the problem of tree occlusion. Finally, in universality research with the Gaofen-2 satellite dataset,
the CDG model also performed well at extracting the road network in the test maps of Hefei and
Tianjin, China.
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1. Introduction

The establishment of road databases is of great significance to the development of modern cities.
At present, the extraction of road networks from high-resolution remote-sensing images has been
widely used in urban services such as urban planning [1], vehicle navigation [2] and geographic
information management [3,4]. However, due to the macro-scale nature of remote-sensing images, the
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complexity of road networks and the interference of other objects (such as parking lots, building roofs
and trees), it is difficult to extract roads effectively [5,6].

At present, the methods for remote-sensing artificial road information extraction mainly include
pixel-based [7–12], object-oriented [13–18], and deep learning methods [19–27]. Pixel-based methods
mainly extract roads by analyzing the spectral information of the pixels, such as road extraction
methods based on mean shift [7], adaptive domain [8], threshold filtering and line segment matching
rules [12]. Pixel-based road extraction methods mainly use the spectrum of the image, which has a
certain effect on simple road network extraction. However, these methods lack information such as the
spatial context of the features and the texture structure, which has a “salt and pepper” effect.

In the object-oriented extraction method, the road is taken as an object and the information model
is built to extract the road from the remote-sensing images. This method has good noise immunity
and applicability. Compared with the pixel method, the accuracy is also improved. For example,
Das et al. [13] used the local linear features of multispectral road images combined with the support
vector machine model to achieve road extraction. However, Cheng et al. [14] made good use of the
texture and geometric features of remote-sensing images in road extraction of rural and suburban
areas. In work on urban road extraction, Senthilnath et al. [15], after preprocessing a remote-sensing
image, used the method of texture progressive analysis and a normalized cut algorithm to realize the
automatic detection of urban roads based on the road structure, spectral information and geometric
features. Xin et al. [17] also proposed a road extraction method based on multiscale structural features
and a support vector machine and successfully extracted the centerline of the road on two multispectral
datasets. Although the extraction performance of such methods has been improved, it is easy to
misclassify pixels that are adjacent spatially and have similar structural features. The design of the
classification rules is very complicated, and the accuracy of extraction also needs to be improved.

Deep learning methods have been increasingly applied to information extraction from
high-resolution satellite images due to their good performance and generalization ability [28,29].
Since Mihi et al. [30] applied deep learning methods to road extraction, other deep learning models
have been applied to road extraction research [5,19–27]. Because fully convolutional networks (FCN)
has achieved good results in semantic segmentation, many excellent FCN-based networks, such as
U-net [31], SegNet [32], and DeepLabV3+ [33], have achieved the advanced performance in image
segmentation and have been widely used for road extraction. For example, Wei et al. [19] proposed a
road extraction model based on the road structure refined convolutional neural network (RSRCNN) and
constructed a new loss function that improved road extraction accuracy. Zhang et al. [5] also proposed
a new road extraction method based on U-net, which improved the model’s semantic segmentation
ability, reduced the loss of information, and effectively improved the accuracy of road extraction.
To reduce misclassification in road classification tasks, Panboonyuen et al. [22] proposed an improved
deep convolutional neural network (DCNN) framework that introduced the three mechanisms of
landscape metrics (LMs), conditional random fields (CRFs), and exponential linear unit (ELU) in the
network, which improved the extraction accuracy of the road and reduced misclassification. However,
FCN mainly expands the receptive field and obtains context information through continuous pooling
layers, which will cause the loss of small targets and important spatial details during the downsampling
process. To overcome the loss of spatial information and obtain more global context information, in
the 2018 CVPR (Computer Vision and Pattern Recognition) DeepGlobe Road Extraction Challenge,
Zhou et al. [23] used dilated convolution to expand the receptive field and save a certain amount of
spatial information while acquiring highly discriminative feature information, which improved the
accuracy of the extraction and ultimately achieved excellent results in the competition. However,
continuous dilated convolution will still cause the loss of spatial information, produce a “chessboard
effect” and consume considerable computer memory.

Then, to reduce the loss of spatial information at multiple levels, Liu et al. [34] proposed
an important coordinate convolution module. Coordinate convolution adds two channels to the
original convolution to store horizontal and vertical pixel information to obtain spatial information.
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Yao et al. [35] applied coordinate convolution to land-use classification, effectively strengthened the
edge information, and improved the accuracy of classification.

Therefore, to reduce the loss of spatial information at multiple levels, strengthen the global context
of FCNs and improve the accuracy of road extraction, in this paper we design a novel encoder-decoder
network called the coord-dense-global network to extract roads from remote sensing imagery and
achieve better performance. DenseNet uses dense connectivity to connect multilevel feature maps
and is considered a powerful feature extractor that can effectively reduce information loss [36]; this is
very suitable for extending FCN networks for semantic segmentation [37]. The coord-dense-global
network mainly use DenseNets to extract multilevel feature maps. The coordconv module is used to
strengthen boundary information and fine details. At the same time, the global attention module is
also introduced to highlight high-level features in the encoder part, which can maintain the continuity
of roads.

The remainder of this paper is organized as follows: Section 2 presents the proposed methods.
Section 3 shows the experimental details and results. Section 4 presents the comparison and analysis
of the proposed model, and the conclusions are presented in Section 5.

2. Materials and Methods

2.1. Proposed Network Architecture

In general, convolutional networks are composed of a series of connected convolutional layers in
which L layers will produce L connections. There exists a nonlinear transformation function FL in each
layer, which usually contains convolutions, rectified linear units [38], and pooling. If the input and
output of layer L are XL−1 and XL, respectively, the layer transition can be defined as:

XL = FL(XL−1) (1)

This simple layer transition will lead to information loss and weaken the information flow between
the layers. DenseNet has been widely used to solve such problems in image segmentation [39], as
its dense connectivity allows the reuse of information from previous layers and reduces the number
of parameters, making the network more easily trainable. In our dense connectivity module, the
feature maps of all preceding layers are connected to subsequent layers, so layer L receives the feature
maps from all previous layers (X0, X1, X2, . . . , XL−1) as input. The layer transformation can thus be
described as:

XL = FL([X0, X1, X2, · · · , XL−1]) (2)

where [X0, X1, X2, . . . , XL−1] is the concatenation of all feature maps from all preceding layers. The
non-linear transformation function FL often consists of three consecutive parts: a batch normalization
layer [40], a layer of rectified linear units, and a convolutional layer. In addition, DenseNet is designed
to have a growth rate that suppresses the redundancy of feature maps and improves the efficiency of
the network.

Due to the efficiency of dense connectivity, we used an encoder–decoder architecture based on
the fully convolutional DenseNet (Figure 1). Because roads are thin and long, we used the coordconv
layer to strengthen informational detail and reduce the loss of spatial features in the network’s top
layer [35]. In the encoder, a series of dense blocks were applied to extract abstract features, with two
global attention layers at the bottom. In the decoder, the high-level features after upsampling were
directly concatenated with low-level features from the encoder using skip layers to form a new dense
block input. Finally, the binary segmentation map was output following a convolutional layer.
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Figure 1. Structure of the proposed coord-dense-global network for improved road extraction from
remote-sensing imagery.

2.2. CoordConv Module

The coordconv module is an extension of the standard convolution operation [34] (Figure 2a).
Here, coordinate information from the original feature map is extracted and concatenated with original
feature maps as input, after which standard convolution is applied (Figure 2b). In general, coordinate
information is allocated in the i (horizontal) and j (vertical) channels. These two coordinates are
sufficient to specify input pixels and improve spatial information. Another channel can be used for an
r coordinate, which is directly calculated from the i and j coordinates.

r =
√
(i− h/2)2 + ( j−w/2)2 (3)

where h and w are the sizes of the original feature maps.
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2.3. Global Attention Module

As roads are thin, long, and continuous, global context information is important for extraction
from remote-sensing images. Because global context information can easily enlarge the receptive
field and enhance the consistency of pixelwise classification [41–43], we designed a global attention
module (GAM) to strengthen high-level features for category classification (Figure 3). The GAM first
applies global average pooling to the feature map, obtains the global context vector, and then performs
different processing paths. On one path, the deconvolution operation is carried out first, and the results
are then added to the original feature map; on the other path, the pooling operation is carried out first.
After the activation, the sigmoid classifier is used to normalize the feature vector to [0,1], and then it is
multiplied with the original feature map. The terminal of the module adds the output feature maps of
the two paths. This module can effectively avoid the loss of global context information and strengthen
high-level features while improving segmentation performance.
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2.4. Implementation

The concrete parameters of the proposed network are displayed in Figure 4. The growth rate
is set as 16, and the convolution operation is 3 × 3 with different numbers of layers in each dense
block. For each transition layer, a 1 × 1 convolution operation and a dropout layer with a 0.2 rate are
implemented, followed by a 2 × 2 average pooling operation. The transition layer is used to reduce
the feature resolution and connect adjacent dense blocks. The transpose layers are opposite, and they
recover the resolution. The transpose layer usually adopts a 3 × 3 convolution operation with a 2 stride,
and the activation function is often a rectified linear unit (ReLu). After the end of the encoder-decoder
process, the feature maps with the same resolution as the input image are output. Due to the binary
classification of road extraction, the output is 512 × 512 × 2.
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2.5. Data

To test the performance of the CDG model, we used a publicly available aerial imagery dataset
for roads in Massachusetts, USA [44]. This dataset provided 1171 images with red, green, and blue
channels, including 1108 training images, 49 test images, and 14 validation images. All images were
1500 × 1500 pixels with a spatial resolution of 1.2 m. These images cover a wide range of contexts,
including urban, suburban, and rural regions, covering an area of 2600 km2, and are considered a
challenging aerial image labeling dataset [22].

2.6. Implementation

We cropped all images to 512 × 512 pixels. Due to the limited number of training samples, we
randomly split all labeled images, producing 14,366 subset images for training. We also directly tested
the testing data at 1500 × 1500 pixels without other processing. The training used 50 epochs and a
batch size of two, according to the graphics processing unit (GPU) memory. To train the network more
appropriately, we used the training epochs to automatically adjust the learning rate by dividing the
training epochs into several levels and then dividing the learning rate by 10 when the epoch reached
the corresponding level. The initial learning rate was 0.001, and the final rate was 0.000001. The total
training time was approximately 50 h, and the average testing time of each image at 1500 × 1500 pixels
was approximately 1 s. In addition, we used the Adam optimizer [45] to optimize our model and
update all parameters because of Adam’s high computational efficiency and low memory requirement.
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2.7. Evaluation Metrics

We used the F1 score and IoU metrics to evaluate the network’s quantitative performance. The F1
score is a powerful evaluation metric for the harmonic mean of the precision and recall metrics, and it is
directly calculated as:

F1 = 2×
precision× recall
precision + recall

(4)

recall =
TP

TP + FN
, precision =

TP
TP + FP

. (5)

where TP, FP, and FN represent the number of true positives, false positives, and false negatives,
respectively. The recall metric represents the number of correct pixels over the ground truth, while the
precision metric represents the number of correct pixels over the prediction result. These values can be
calculated using the pixel-based confusion matrix for each batch.

The IoU metric represents the intersection of the prediction and ground truth regions over their
union, and the mean IoU can be calculated by averaging the IoU of all classes:

IoU =
TP

FN + TP + FP
(6)

3. Experimental Results

After training CDG, we evaluated 49 test images, and we saw that the predicted road performance
obtained by this method was good, more complete than other networks, and closer to the ground truth
image. In order to accurately evaluate the performance, the average of the four evaluation indexes, the
precision, recall, F1 and IoU of all test images are listed in Table 1, which are 81.41%, 71.80%, 76.10% and
61.90%, respectively. At the same time, in order to intuitively understand the extraction effect of the
CDG model, we show the best and worst results in the test pictures, as shown in Figure 5.

Table 1. Statistical accuracy assessments for the testing images using CDG.

Testing Dataset precision recall F1 IoU

All images-average 81.41% 71.80% 76.10% 61.90%
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4. Comparison Results and Analysis

4.1. Comparison with Other Methods

To assess the relative performance of CDG, we performed road extraction on selected images
using three other common methods (DeepLabV3+ [33], D-LinkNet [23], and U-net [31]) and compared
the results with our own, as shown in Table 2. As seen from the table, the CDG model is clearly more
accurate. Although the CDG model is 2.63% lower than the U-net model with the highest accuracy in
the precision index, the CDG model has the highest F1 and mean IoU evaluation index, which are 0.95%
and 1.19% higher than those of D-LinkNet, respectively. Compared to U-net, they increased by 0.86%
and 0.96%, respectively, and far exceeded DeepLabV3+. In addition, in Table 2, we also calculated
the test time of each model. Although our test time is higher than Unet, it has certain advantages in
test time compared with other models. From a qualitative perspective, we can see that the extraction
performance of the method in this paper has improved significantly. Figure 6 shows the road extraction
details of the CDG model and the other three models.

Table 2. Mean accuracy comparisons for four road extraction methods.

Method precision recall F1 IoU test time

DeepLabV3+ 79.16% 60.22% 67.64% 51.95% 245s
D-LinkNet 79.45% 71.96% 75.15% 60.71% 206s

U-net 84.04% 68.90% 75.24% 60.94% 167s

CDG 81.41% 71.80% 76.10% 61.90% 196s
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From the yellow box in Figure 6, we can clearly see that the extraction results of D-LinkNet and
U-net are relatively fragmented, and many small roads in the remote-sensing image also have extraction
losses. Among all the extraction results, DeepLabV3+ has the worst extraction effect, and the continuity
and integrity of the road are difficult to guarantee. In addition, our analysis found that because the
cement structure and road surface are too similar, all the methods have some misclassification problems
in this case (see the red ellipses in Figure 6). However, in terms of overall performance, the extraction
performance of the CDG model is still optimal.

Figure 7 is a partially enlarged image of the extraction result, which primarily reflects the ability
of the CDG model to solve the problem of tree occlusion. It can be seen from the red box in Figure 7
that the CDG model performs better in extracting roads covered by trees and can extract most of the
roads covered by trees, while the other three network models perform worse in extracting such roads.
Although the D-LinkNet and DeepLabV3+ networks have some ability to extract occluded roads, it is
difficult to ensure the continuity of the road, and the result of occluded road extraction is lost. U-net
performed the worst in the problem of tree occlusion, and the degree of fragmentation and loss of
extraction results was the worst. By comparing and analyzing the three network models DeepLabV3+,
D-LinkNet and U-net, it can be found that the CDG network model based on dense links effectively
extracts the effective feature information of the road, which improves the integrity and accuracy of
the road extraction results. Regarding the coordconv module and the global attention mechanism
module, the former can enhance the road edge information and make the road more complete, while
the latter can consider global context information and make the road network more systematic in the
extraction process. Therefore, the method of this paper can effectively counteract the interference of
trees, buildings and other background features and improve the accuracy of road extraction.
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4.2. Analysis of the Effectiveness of the Mechanism of Action

To highlight the importance of coordinate convolution and the global attention mechanism, this
paper compares them with network models lacking coordconv, lacking global attention and lacking
both under the same training conditions. In the experiment, we also used 49 test images from the
Massachusetts dataset to test the performance of different network models. To quantify the performance
of the model, we list the average valuation indicators of all models in Table 3, from which we can see
that the CDG model with two mechanisms is far higher than the other three methods in all evaluation
indexes. Compared with the no-global-attention model with the highest accuracy, our precision, recall,
F1 and IoU are increased by 2.59%, 2.95%, 2.83% and 4.64%, respectively. It can be seen that the
combination of coordinate convolution and the global attention mechanism in the CDG model can
effectively reduce the loss of road spatial features, on the one hand, and take into account the global
information of the road, on the other hand; it can also enhance the integrity of the road and improve
the accuracy of road extraction on the whole.

Table 3. Mean accuracy comparisons for four road extraction methods.

Method precision recall F1 IoU

no coordconv 76.12% 60.25% 65.75% 49.81%
no global attention 76.20% 75.30% 75.33% 60.96%

neither 81.40% 57.61% 66.76% 50.85%

CDG 81.63% 72.07% 75.94% 61.61%

4.3. Generalization Results of the Model

The CDG network model we designed achieved excellent results on the road data set in
Massachusetts, USA. To further verify the generalization of the CDG model, we trained and tested
it on the Gaofen-2 satellite remote-sensing image. The image resolution is 1 m. In the experiment,
we produced 5892 pieces of sample data with a size of 512 × 512. After training, we verified 4
remote-sensing images of size 4578 × 4442 in Hefei, China and Tianjin, China.

The test results are shown in Figure 8, we can see that the roads in the Gaofen-2 satellite
remote-sensing image were extracted. Although there are missing roads in the image (see the yellow
boxes in Figure 8), most of the roads in the image have been extracted; the extraction effect on the main
road is particularly excellent, and the degree of agreement with the label is high. At the same time, the
CDG model also extracts small roads that are not marked by the label (see the red boxes in Figure 8).
To quantitatively evaluate the performance of the CDG model on the Gaofen-2 satellite remote-sensing
image, we list various evaluation indicators in Table 4. As seen from the table, the CDG model reached
68.38%, 77.72%, 72.62%, and 57.11% in precision, recall, F1 and IoU, respectively. This shows that the
CDG model is has excellent extraction performance and strong generalization for road extraction tasks.

Table 4. Gaofen-2 satellite image extraction accuracy.

Num. precision recall F1 IoU

1 62.12% 77.73% 69.00% 52.73%
2 70.88% 75.38% 72.54% 56.97%
3 71.02% 76.93% 73.81% 58.55%
4 69.49% 81.83% 75.11% 60.20%

Average Value 68.38% 77.72% 72.62% 57.11%
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had problems.

4.4. Problem

Although the CDG achieved improved results, the road is extracted when the road is partially
blocked by a low number of trees but, when severely blocked by many trees, the extraction effect of the
CDG model is relatively poor. For example, in the previous line of Figure 9, the roads in the ground
truth image are continuous (yellow boxes), but discontinuities appear in the predicted image. It may
be that the roads are located in rural suburbs, and the trees above the roads are too lush, resulting in
low accuracy of the extraction results; many portions of these roads are nearly indistinguishable by eye
in the original image. In comparison, the lower row of Figure 9 demonstrates the superiority of the
proposed model, where several roads (purple ellipses) were not labelled as roads in the ground-truth
image but were successfully identified by the model. Such mismatch between ground truth images
and prediction results restricts model performance, but it is difficult to further improve accuracy.
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5. Conclusions

This paper proposes a deep learning model CDG for road extraction of high-resolution
remote-sensing images. The main contribution of this method lies in the introduction of two
functional modules based on the Densenet network structure: coordinate convolution and ensemble
attention mechanism. The cooperation of the two mechanisms can not only greatly enhance the edge
information of road images, but also effectively obtain more global context information. In order to
verify the performance of the model, we performed experiments on the M dataset and compared with
the D-LinkNet, U-net, and DeepLabV3 + methods. The experiments show that the performance of
the CDG model is better than other network models. At the same time, our CDG model is also the
best at solving the problem of tree occlusion, and the integrity and continuity of the extraction results
are significantly better than other network models. In the last universal experiment in this paper, the
CDG model also successfully extracted the roads of Tianjin, China and Hefei, China, and achieved
good results. Therefore, CDG is an excellent road extraction model. However, due to interference from
complex backgrounds (forests, buildings, different road types and widths, etc.), the extraction results
still show discontinuities. In future research, we will consider the use of road geometric information to
eliminate incomplete or broken issues in the road extraction process.
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