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Abstract: A computationally efficient target parameter estimation algorithm for frequency agile
radar (FAR) under jamming environment is developed. First, the barrage noise jamming and the
deceptive jamming are suppressed by using adaptive beamforming and frequency agility. Second,
the analytical solution of the parameter estimation is obtained by a low-order approximation to the
multi-dimensional maximum likelihood (ML) function. Due to that, fine grid-search (FGS) is avoided
and the computational complexity is greatly reduced.
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1. Introduction

With the development of new countermeasure technology, radar is faced with an increasingly
complex electromagnetic environment [1]. Therefore, how to eliminate the negative influences using
the complex environment is the precondition of successful target identification [2]. It is well known
that the frequency agile radar (FAR) that adopts the pulse-to-pulse random frequency agility over
shorter intervals can improve the performance in target detection [3,4], and its thumbtack ambiguity
function [5] implies that one is able to obtain high range–velocity resolution and avoid range–velocity
coupling problems which are present in traditional frequency agility waveforms [6]. Thus, the FAR is
an important anti-electronic countermeasure [7,8].

As for the target detection, the early studies were mainly focused on incoherent integration
such as the Hough transform [9] and the Radon transform based methods [10]. However, it has
integration loss compared with the coherent method. Consequently, some researchers proposed the
target detection method based on coherent integration [11]. In [12,13], Zhou et al. proposed an adaptive
monopulse (AM) algorithm based on combining sum–difference and auxiliary beam at subarray level
for anti-jamming. In [14], based on a wideband model, Qian et al. proposed a wideband scale-based
Radon–Fourier transform (WSRFT) method for coherent integration of high-speed targets, but only for
fixed carrier frequency radars. In [7], Wang et al. proposed an improved frequency agile coherent
radon transform (FA-CRT) scheme to cope with the long-time coherent integration in frequency agile
radar. In [15], P. Huang et al. proposed a method for removing the residual coupling between the agile
carrier frequency and slow-time by using Keystone Transform (KT) between different bursts to achieve
coherent accumulation. In [16], Li et al. proposed a combined range–velocity estimation method based
on compressive sensing (CS) in the range–velocity plane, where the CS is employed to reduce the
number of channels, therefore, the system complexity and the computational burden are effectively
reduced [17].
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However, the computational complexities of CRT and CS are very high which greatly limits
their applications. In this communication, a computationally efficient algorithm for estimating target
parameters of FAR under jamming environment is developed. The barrage noise jamming and the
deceptive jamming are firstly suppressed by using adaptive beamforming and frequency agility [18],
and then a low-order approximation of the multi-dimensional maximum likelihood (ML) function is
employed to estimate target parameters [19]. Due to the fact that the fine grid-search is not necessary
anymore, the computational complexity is greatly reduced relative to the conventional grid-search
method. The experimental results show that this method has a lower computational complexity at the
cost of trivial performance loss.

2. System Model Characterization

2.1. Signal Model
Assume that there are M elements and FAR transmits N pulses with random carrier frequencies.

The frequency of the nth pulse can be denoted by fn = f0 + kn∆ f , where f0 is the initial carrier frequency,
∆ f is the minimal frequency agility interval, and kn controls the rules of how carrier frequency varies.
Based on the signal model given in [15], the received signal of the nth pulse at the mth array element
after matched filtering can be expressed as

smn(t, τ) = a sin c(∆ f (t− τmn)) exp(− j2π fnτmn) (1)

where a is the complex amplitude of a moving point-like target, and τmn is the target time delay of the
nth pulse at the mth array element, which can be written as

τmn = 2
(
r− vnT −

1
2

md sinθ
)
/c (2)

where r is the target range, v is the target velocity, d is the array element spacing and θ is the target

angle. For simplicity, we define η =
[

r v θ
]T

as the target parameter vector. The target data can
be assembled in the form of a space–time snapshot

s̄(η) = as(η) = a
[

sT
0 sT

1 . . . sT
N−1

]T
(3)

where sn =
[

exp(− j2π fnτ0n) exp(− j2π fnτ1n) · · · exp
(
− j2π fnτ(M−1)n

) ]T
is an M × 1 spatial

steering vector of the nth pulse, the superscript T means the matrix transpose. Meanwhile, the deceptive
jamming, which is usually obtained by delaying the transmitting signal for multiple pulse repetition
intervals, can be easily suppressed by matched filtering. Thus, the component of deceptive jamming is
omitted after matched filtering. Furthermore, the barrage noise jamming often emerges in various
radar scenes and should be taken into account here. According to the model given in [20], the jammer
space–time snapshot may be written as xJ = αJ ⊗ aJ and the jammer space–time covariance matrix
is RJ = E

(
xJxH

J

)
= IN ⊗ΦJ, where αJ is a random vector containing the jammer amplitudes, aJ is the

jamming steering vector, and ΦJ = σ2
J aJaH

J means the jamming spatial covariance matrix, and σ2
J is the

jamming power. In addition, the noise space–time snapshot is denoted by xn and the noise space–time
covariance matrix is Rn = E

[
xnxH

n

]
= σ2IMN, where σ2 is the noise power. Finally, the echo data can be

expressed as
x1 = as(η) + x0 (4)

where x0 = xn + xJ encompasses the barrage noise jamming and noise, which has the covariance matrix

R0 = E
[
x0xH

0

]
= RJ + Rn = IN ⊗ΦJn (5)

where ΦJn = ΦJ + σ2IM.
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2.2. ML Parameter Estimation
In this section, a computationally efficient algorithm for target parameters estimation based on

the ML method is developed. The joint probability density function of the observed data is given by

f (x1|η) =
1

(2π)
n
2
∣∣∣R0

∣∣∣ 1
2

exp
(
−(x1 − as(η))HR−1

0 (x1 − as(η))
)

(6)

According to the definition of the likelihood function and ignoring the constant term,
the corresponding log-likelihood function is

L(a,η) = (x1 − as(η))HR−1
0 (x1 − as(η)) (7)

The ML estimate of a can be obtained by setting the derivative of the log-likelihood function with
respect to a equal to zero. After some manipulations, we have

â =
sH(η)R−1

0 x1

sH(η)R−1
0 s(η)

(8)

Substituting (8) into (7) yields the ML estimate of η, that is

η̂= argmax
η

L(η) =

∣∣∣sH(η)R−1
0 x1

∣∣∣2
sH(η)R−1

0 s(η)
(9)

In order to obtain the ML estimate of η, it is necessary to perform a search over the whole
parameter grids. However, the three-dimensional fine grid-search brings large computational cost.
To reduce the computational complexity, we can resort to a solving equation. As we know, the ML
solution should satisfy the following condition: the partial derivatives of the log-likelihood function
with respect to these parameters are equal to zero, that is

.
Lθ(η).
Lv(η).
Lr(η)

 =


0
0
0

 (10)

where
.
Lθ(η),

.
Lv(η),

.
Lr(η) represents the first-order partial derivative of L(η) with respect to θ, v and

r, respectively. After some manipulations,
.
Lθ(η) can be written as

.
Lθ(η) =

(
∆ΣH + ∆HΣ

)
c11 − ΣΣH(c12 + c21)

c2
11

= 0 (11)

where



∆ =
.
sH
θ (η)R

−1
0 x1

Σ = sH(η)R−1
0 x1

c11 = sH(η)R−1
0 sH(η)

c12 = sH(η)R−1
0

.
sH
θ (η)

c21 =
.
sH
θ (η)R

−1
0 s(η)

where
.
sθ(η) represents the first-order partial derivative of s(η) with respect to θ.

Simplifying (11),
.
Lθ(η) can be expressed as

.
Lθ(η) = Re


.
sH
θ (η)R

−1
0 x1

sH(η)R−1
0 x1

−Re


.
sH
θ (η)R

−1
0 s(η)

sH(η)R−1
0 s(η)

 = 0 (12)
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Rearranging (12), the equation can be written as

Re

wH
θ
(η)x1

wH(η)x1

 = Re

wH
θ
(η)s(η)

wH(η)s(η)

 (13)

where wθ
(η) = R−1

0
.
sθ(η) and w(η) = R−1

0 s(η) can be considered as the parameter-dependent
adaptive sum and difference weight vectors.

Since the equations in (13) are complex nonlinear functions, the solution cannot be solved in
analytical form. Observing (13), we can see that the complexity of (13) mainly results from the
fact that the sum and difference weight vectors are functions of η. By searching the values of η,
the weight vectors can obtain more matching results with the echo data, and thus the optimal solution is
guaranteed. Although (13) can obtain the optimal solution of parameter estimation, the computational
complexity resulted from fine grid-search is unacceptable. In practice, the performance improvement
due to the variation of η only in one resolution is trivial. Thus, we can approximate the ML solution
by setting the parameter-independent adaptive sum and difference weight vectors in (13), that is,
wθ

(η0) = R−1
0

.
sθ(η0) and w(η0) = R−1

0 s(η0), then (13) can be simplified as

Re

wH
θ
(η0)x1

wH(η0)x1

 = Re

wH
θ
(η0)s(η)

wH(η0)s(η)

 (14)

Similarly,
.
Lv(η) can be written as

.
Lv(η) = Re


.
sH

v (η)R
−1
0 x1

sH(η)R−1
0 x1

−Re


.
sH

v (η)R
−1
0 s(η)

sH(η)R−1
0 s(η)

 = 0 (15)

Approximating (15) by using the parameter-independent adaptive sum and difference weight
vectors, (15) can be approximated by

Re
(

wH
v (η0)x1

wH(η0)x1

)
= Re

(
wH

v (η0)s(η)
wH(η0)s(η)

)
(16)

where wv(η0) = R−1
0

.
sv(η0).

Meanwhile,
.
Lr(η) can be written as

.
Lr(η) = Re


.
sH

r (η)R
−1
0 x1

sH(η)R−1
0 x1

−Re


.
sH

r (η)R
−1
0 s(η)

sH(η)R−1
0 s(η)

 = 0 (17)

and (17) can be approximated by

Re
(

wH
r (η0)x1

wH(η0)x1

)
= Re

(
wH

r (η0)s(η)
wH(η0)s(η)

)
(18)

where wr(η0) = R−1
0

.
sr(η0). Finally, the ML solution can be obtained by solving Equations (14), (16)

and (18). Define Fi(η) = Re
(
wH

i (η0)s(η)/
(
wH(η0)s(η)

))
, i = θ, r, v as the response curve of target

parameters and ηi = Re
(

wH
i (η0)x1

wH(η0)x1

)
, i = θ, r, v as the difference–sum–ratio output. Then (14), (16) and

(18) can be written as 
Fθ(η)
Fv(η)

Fr(η)

 =

ηθ
ηv
ηr

 (19)
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To acquire the solution of (19), one-order Taylor approximation to Fi(η) can be employed

Fi(η) = pi + δiθ(θ− θ0) + δiv(v− v0) + δir(r− r0), i = θ, r, v (20)

where pi = Fi(η)
∣∣∣
η=η0

, δiθ = ∂Fi(η)/∂θ
∣∣∣
η=η0

, δiv = ∂Fi(η)/∂v
∣∣∣
η=η0

, δir = ∂Fi(η)/∂r
∣∣∣
η=η0

, and ∂
means the partial derivative operator. After some manipulations, we have

δiθ = Re
(
(sH(η)R−1

0 s(η))
(..
sH

iθ(η)R−1
0 s(η)+

.
sH

i (η)R−1
0

.
sθ(η)

)
−

( .
sH

i (η)R−1
0 s(η)

)( .
sH
θ (η)R−1

0 s(η)+sH(η)R−1
0

.
sθ(η)

)
(sH(η)R−1

0 s(η))
2

)
δiv = Re

(
(sH(η)R−1

0 s(η))
(..
sH

iv(η)R−1
0 s(η)+

.
sH

i (η)R−1
0

.
sv(η)

)
−

( .
sH

i (η)R−1
0 s(η)

)( .
sH

v (η)R−1
0 s(η)+sH(η)R−1

0
.
sv(η)

)
(sH(η)R−1

0 s(η))
2

)
δir = Re

(
(sH(η)R−1

0 s(η))
(..
sH

ir (η)R−1
0 s(η)+

.
sH

i (η)R−1
0

.
sr(η)

)
−

( .
sH

i (η)R−1
0 s(η)

)( .
sH

r (η)R−1
0 s(η)+sH(η)R−1

0
.
sr(η)

)
(sH(η)R−1

0 s(η))
2

)
and

..
sH

ij (η) represents the second-order partial derivative of s(η) with respect to i and j.
Reformulating (20) into a matrix form yields

Fθ(η)
Fv(η)

Fr(η)

 =


pθ
pv

pr

+

δθθ δθv δθr
δvθ δvv δvr

δrθ δrv δrr

 ·

θ− θ0

v− v0

r− r0

 (21)

Substituting (21) into (19) yields
θ
v
r

 =

θ0

v0

r0

+

δθθ δθv δθr
δvθ δvv δvr

δrθ δrv δrr


−1

·



ηθ
ηv
ηr

−


pθ
pv

pr


 (22)

To improve the accuracy of Taylor approximation, the iterative technique can be employed, which
uses the estimated target parameters instead of the assumed target parameters, i.e., [θ0, v0, r0] = [θ̂, v̂, r̂].
It is shown from (22) that target parameter estimation can be realized by a simple expression, where
the computational complexity is O

(
12(NM)2 + 12NM + 33

)
complex multiplications. Due to the fact

that the computational complexity of complex addition is less than that of complex multiplication,
complex additions are not considered here. In contrast, the conventional grid-search technique has the
computational complexity of O

((
(NM)2 + 2NM

)
J3
)

complex multiplications, where J is the number
of grids in one dimension. To guarantee the accuracy, the number of grids is usually larger than 100.
To demonstrate the advantage of the computational complexity, the computational complexities of
the presented method and the grid-search method as a function of the number of array elements are
plotted in Figure 1, where the number of grids is 100, and the number of pulses is 192. It is observed
that the presented method owns lower computational complexity than the fine grid-search method.
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3. Numerical Experiments

In this section, the effectiveness of the proposed method is verified by simulation experiments.
The radar parameters are designed as follows: a uniform linear array with 8 elements is employed, the
transmitter transmits a multi-cycle inter-pulse stepped frequency signal by 192 pulses, each group has
16 pulses, and the carrier frequency hops from 2 to 2.016 GHz with the frequency increment of 1 MHz,
the sampling frequency is 16 MHz, and the pulse repetition frequency is 4000 Hz.

3.1. Deceptive Interference Suppression and Target Parameter Estimation for Frequency Agile Radar

A frequency agile radar is designed based on the above parameters, and the synthesized bandwidth
is increased by 16 times. Therefore, under the same parameters, the range resolution of the frequency
agile radar is 16 times that of the fixed frequency radar. By using the bandwidth synthesis function of
FAR [13], 16 fine range gates in each coarse range unit can be obtained. Thus, distance information can
be estimated accurately.

To analyze the performance of suppressing deceptive jamming, the experiment randomly simulates
multiple targets and multiple deceptive jamming located in various coarse range bins, velocities and
distances. Figure 2 gives the echo plane after matched filtering for the frequency non-agile case and
the frequency agile case, where multiple target signals and deceptive jamming signals with random
parameters are simulated, where the targets are located in the range bins of 76, 131, 176 and 201,
respectively, and the jamming signals are located in the range bins of 99, 126, 156 and 191, respectively.
It is observed that the target signals and the deceptive jamming signals are all preserved for the
frequency non-agile case in Figure 2a, whereas only the target signals are well preserved for the
frequency agile case in Figure 2b.

In order to see the performance of suppressing deceptive jamming and range resolution
enhancement resulted from frequency agility, three target signals are added in the echo data, where the
two targets are set at the 71st coarse range bin and another one is located in the coarse range bin of
114. Meanwhile, four deceptive jamming signals are added, where two deceptive jamming signals are
set at the 110th coarse range bin and others are located in the coarse range bin of 149. Additionally,
the signals at the same range bin have different speeds and angles.
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The matched filtering results for the frequency agile case and the frequency non-agile case are
given in Figures 3 and 4. Comparing the plane of coarse range bin and velocity given in Figures 3a and
4a, it is clearly observed that the target signal is preserved, and the deceptive jamming is suppressed
due to the agile carrier frequency. Figures 3b and 4b are the range cuts of Figures 3a and 4a at the
velocity of −3.5 m/s, which show a perfect performance of deceptive jamming suppression for the
frequency agile case. Furthermore, a plane of coarse range bin and fine range bin given in Figure 3c
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indicates that more accurate distance information can be obtained since there is a fine resolving within
coarse range bin. In addition, Figure 3d shows the estimation of target speed and accurate distance.
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3.2. Estimation of Target Parameters in Various Conditions

In this section, the simulation results in various conditions are carried out to validate the
effectiveness of the proposed algorithm. Experiments of the fine grid-search method [21] and the
adaptive monopulse method [12] are also performed to prove the superiority of the proposed method.
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All results are obtained by running a Monte Carlo simulation, where the number of Monte Carlo
experiments is 500. For simplicity, the normalized root mean square error (NRMSE) is employed here,
which is defined as σi = σi/ρi, i = [θ, v, r], where σi is the classical RMSE, and ρi is the resolution.
In this simulation, the resolution of ρθ is 14.32◦, the resolution of ρv is 1.56 m/s, and the resolution of ρr

is 9.37 m. The target and deceptive jamming are located at the range bins from 1500 to 3000 randomly,
the velocity of them are from −6 to 6 m/s.

A. NRMSE in Signal Noise Ratio (SNR) Cases

In Figure 5, the NRMSEs as a function of SNR are given, where the SNR varies from 15 to 35 dB,
the line of sight is 113◦ and the angle of the target is 113.5◦. Parameter estimates of angle, range
and velocity by three methods are also incorporated. It is shown that RMSEs of target parameters
decrease with the SNR increasing, and the RMSEs of our presented method approach those of the fine
grid-search method in most of SNR cases. Meanwhile, our presented method shows better estimated
accuracy than the adaptive monopulse method.
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B. NRMSE in the Number of Barrage Noise Jamming Cases

In Figure 6, the NRMSEs of angle, range and velocity as a function of the number of barrage noise
jamming are given for the three methods, the line of sight is 113◦ and the angle of the target is 113.5◦.
It should be noted that as the number of barrage noise jamming varies from one to four, the RMSEs
of target parameters will increase, which means the estimated accuracy is decreasing. Certainly, the
target parameters estimated by the fine grid-search method is the closest to the actual values, followed
by the ML method, and the adaptive monopulse method.
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C. NRMSE in the Angle Deviation from the Line of Sight Cases

In Figure 7, the NRMSEs of the target angle versus angle deviation from the line of sight are
depicted using three methods. The line of sight is 113◦, where the deviation range between the target
and the look direction is from 0◦ to 5◦. It is observed that the RMSEs increase and the estimated
performance decreases as the target angle deviates from the look direction. As shown in Figure 6,
it can be clearly seen that the target parameters are finely estimated by the fine grid-search method and
roughly estimated by the adaptive monopulse method, the ML method may achieve a good balance
between them.
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D. NRMSE in the Line of Sight Cases

In Figure 8, the NRMSEs as a function of the line of sight are given, where the look direction
varies from 90◦ to 125◦ and the deviation between the target and the look direction is 0.5◦, it is shown
that as the look direction deviates from the normal direction, the RMSEs increase, and the parameter
estimation performance decreases. Although the performance of the presented method is worse than
that of the FGS method, it has a better performance compared to the adaptive monopulse method.
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4. Conclusions

In this communication, fast approximated ML estimation for FAR under the sophisticated
jamming environment including the deceptive jamming and the barrage noise jamming is considered.
The presented method suppresses the barrage jamming by adaptive beamforming and the deceptive
jamming by frequency agility. To reduce the computational complexity, we estimate the target
parameters by a low-order approximation of the multi-dimensional ML function. Thus, the proposed
method may achieve a good balance between the computational cost and the target parameter estimation
performance. Numerical examples are given to demonstrate the effectiveness of the presented method.
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