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Abstract: Crack identification plays an essential role in the health diagnosis of various concrete
structures. Among different intelligent algorithms, the convolutional neural networks (CNNs)
has been demonstrated as a promising tool capable of efficiently identifying the existence and
evolution of concrete cracks by adaptively recognizing crack features from a large amount of concrete
surface images. However, the accuracy as well as the versatility of conventional CNNs in crack
identification is largely limited, due to the influence of noise contained in the background of the
concrete surface images. The noise originates from highly diverse sources, such as light spots, blurs,
surface roughness/wear/stains. With the aim of enhancing the accuracy, noise immunity, and versatility
of CNN-based crack identification methods, a framework of enhanced intelligent identification of
concrete cracks is established in this study, based on a hybrid utilization of conventional CNNs with
a multi-layered image preprocessing strategy (MLP), of which the key components are homomorphic
filtering and the Otsu thresholding method. Relying on the comparison and fine-tuning of classic CNN
structures, networks for detection of crack position and identification of crack type are built, trained,
and tested, based on a dataset composed of a large number of concrete crack images. The effectiveness
and efficiency of the proposed framework involving the MLP and the CNN in crack identification are
examined by comparative studies, with and without the implementation of the MLP strategy. Crack
identification accuracy subject to different sources and levels of noise influence is investigated.

Keywords: concrete crack identification; convolutional neural network; homomorphic filtering;
structural health monitoring; signal processing

1. Introduction

Concrete structures in various forms, such as high-rise buildings, bridges and dams, suffer
from continuous health deterioration during long service periods [1,2], making real-time detection
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of different types of structural damage a crucial demand [3]. Traditional visual inspection methods
relying on human labor for damage diagnosis entail unavoidable limitations such as high dependence
on individual subjectivity, expertise, and an extensive amount of labor [4]. In past decades, image
processing techniques demonstrated great advantages in aspects of efficiency, accuracy, objectivity [5],
etc., and were widely adopted to extract damage features, where crack recognition from concrete surface
images formed a particularly active area. Some representative methods for crack identification include
the threshold segmentation method, edge detection method, and artificial intelligence (AI) method.
A threshold segmentation algorithm proposed by Otsu [6] has been widely used in various image
recognition tasks [7], and modifications of that algorithm have been made for crack identification [8–12].
For instance, considering noise influence as the major obstacle for accurate image recognition,
Migdal et al. [13] conducted noise suppression with the assistance of Markov random fields of binary
segmentation, taking into account neighboring pixel classifications. While the process produced a
prominent noise reduction effect, the features of crack and noise become difficult to distinguish with an
increase in the extent of noise interference. Image edge detection was also adopted for crack recognition,
with representative applications established on Roberts, Prewitt and Sobel operators [14]. However,
the edge detection algorithm caused a typical ill-posed problem in that it was highly sensitive to noise
influence, especially due to light and distortion, and optimal solutions were difficult to obtain [15].
Modifications have been made to address the above issues. For example, noise removal algorithms of
nonlinear total variation proved effective in noise reduction and thus were able to enhance the accuracy
of edge detection [16]; Cha et al. [17] used Canny edge detection with a classifier of linear support vector
machine to distinguish loosened bolts from intact ones; Ayenu-Prah et al. [18] employed the Sobel
edge detection algorithm using bidimensional empirical mode decomposition for crack identification
and noise suppression; Acharya et al. [19] reduced noise using gradient-based edge detection based on
the difference between edge and non-edge pixels, where images in a color filter array were treated;
Yan et al. [20] developed an edge detection algorithm based on morphological filtering set to overcome
the interference of noise; Zhou et al. [21] adopted an improved edge detection algorithm based on a
wavelet transform to detect pavement distress, showing an advantage in quantifying the degree of
damage. However, the accuracy of the aforementioned algorithms is still considered limited in crack
identification when taking into account severe noise influences that are common in actual damage
detection scenarios.

With rapid development in recent years, AI methods have been increasingly applied in structural
damage detection [22], where crack recognition based on convolutional neural networks (CNNs) has
shown promise in engineering applications [23]. Compared to conventional machine learning methods,
CNNs are particularly powerful in learning the characteristics of images using a simpler network
structure [24]. Leveraging this merit, CNN-based methods can identify cracks with high efficiency,
especially when dealing with multi-classification [25] and large-scale problems [26]. Moreover, relying
on transfer learning, existing CNN structures can easily be modified and well utilized to solve
similar types of problems [27], enhancing the adaptability of CNNs for treating different crack images.
Chen et al. [28] proposed a method based on CNNs and naïve Bayes data fusion to detect cracks in a
single frame of video; Browne et al. [29] suggested the implementation of separable filters to detect
sewer cracks based on a CNN model. More applications can be found in the studies of Cha [30],
Zhao [31], Zhang [32], and Gavilán et al. [33], where the key concepts of crack detection were analogous.
That is, the image was first divided into a number of sub-regions, from which crack features were
extracted to form the feature vectors. The CNN was trained based on these feature vectors and then
used to identify cracks in each sub-region of the full image. Finally, the crack in the full image was
recognized by combining the identification results of each sub-region. While possessing inherent noise
immunity, CNNs still face challenges in accurate identification of concrete cracks [34]. That is because
the image background noise exhibits a large number of distinct features, which increase the difficulty
of crack feature extraction and largely jeopardize the accuracy, efficiency, and versatility of CNNs.
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Unfortunately, as commonly encountered in actual practice, severe background noise originating in
concrete surfaces from complex and diverse sources can hardly be avoided.

In this paper, crack identification from images of concrete surface was carried out based on the
hybrid utilization of CNNs and a multi-layered image preprocessing (MLP) strategy, defined as the
MLP–CNN framework, the central components of which are homomorphic filtering and the Otsu
thresholding method. Apart from clear improvement in detection accuracy and noise immunity, the
MLP–CNN framework is also able to strengthen the versatility of crack identification, meaning that
different types and levels of background noise can be treated using a uniform framework. Specifically,
both crack position detection (CPD) and crack type identification (CTI) networks were built, trained
and tested, based on datasets composed of a number of concrete crack images. The effectiveness and
efficiency of the developed framework was examined by comparing crack detection results with and
without the implementation of the MLP strategy. Crack identification accuracy subject to different
sources and levels of noise influence was investigated.

2. MLP–CNN Framework

The architecture of the proposed MLP–CNN framework is shown in Figure 1. The multi-layered
preprocessing structure includes a combination of filtering and feature extraction techniques applied
in sequence to fulfill different functions. The first layer, one of the key components in the MLP,
is homomorphic filtering [35], used to process concrete surface images in the frequency domain.
For image processing, homomorphic filtering is able to suppress low frequency components, such as
those associated with lighting variations, while highlighting high-frequency components associated
with local details such as crack edges. Considering that frequency-domain filtering can cause oscillation
of the grayscale in the output image, known as the ringing effect [36], the selection of filter types in
homomorphic filtering has a direct impact on the denoising effect. Three high-pass filters commonly
used for homomorphic filtering are the Gaussian filter, Butterworth filter, and ideal high pass filter.
As can be seen in Figure 2b, Gaussian filtering produces the optimal denoising effect, by showing
the significant crack feature with minimal ringing effect. In Figure 2c,d, the crack features are largely
submerged in the backgrounds. Figure 2c, treated by the Butterworth filter, is severely contaminated by
high-frequency noise likely associated with the ringing effect; Figure 2d, treated by the ideal high pass
filter, shows too weak contrast in the colors of the crack and background. These unsatisfactory results
are due to the filter characteristics, such as the dramatic changes of gradient in the filter functions.
Thus, the Gaussian filter was adopted in this study for homomorphic filtering.
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Figure 2. (a) Original image containing a crack, and the crack feature extraction results treated by:
(b) Gaussian filter; (c) Butterworth filter; (d) ideal high pass filter for homomorphic filtering; and (e) the
Otsu thresholding method.

The other key layer of the MLP structure is the Otsu thresholding algorithm [6] used to identify
the maximum value of gray in the image. Image binarization is carried out in accordance with the
adaptive selection of thresholds. As can be seen in Figure 2e, the Otsu thresholding method, which
is applied after the homomorphic filtering, transforms the crack images into binarized images with
prominent crack features highlighted.

The causes of background noise in the images can be complex, due to unexpected situations.
Moreover, additional noise may be generated during the filtering process to distort the image. Thus, to
obtain the optimal de-noising effect, two additional layers, median filtering and a Gaussian filter, were
inserted between the homomorphic filtering layer and the Otsu thresholding layer. Median filtering
is a nonlinear signal-processing technique based on the theory of sorting statistics. With good noise
suppression effect, median filtering is particularly effective in maintaining crack edge information, due
to its demonstrated merit in image edge protection [37]. The Gaussian filter, with the smooth feature
of the Gaussian function, is applied next to process the image, reducing the accumulation of errors
during filtering. By using the MLP structure, concrete surface images containing different noise types
and levels can be rapidly transformed into binary images with significant crack features, and thus the
generation abilities of the CNNs applied subsequently are maximized.

In the following study, the construction and application of the CNNs are introduced in Section 3,
where CPD and CTI networks were built to identify the position and type of cracks, respectively.
The constructions of these two CNNs are conducted in a similar way to that of the CNN-based
methods introduced in the literature. In Section 4, comparative studies are presented, showing crack
identification results achieved with and without the implementation of the MLP.

3. Concrete Crack Identification Based on CNN

3.1. Overall Structure

A general CNN structure is shown in Figure 3. The structure is mainly composed of three layers,
the input layer, the feature extraction layer and the final layer, where the sub-layers in the feature
extraction layer (i.e., L2, L3, L4, and L5) can be repeated by considering practical demands. For specific
crack detection aims, two network types with analogous structures were constructed, defined as crack
position detection (CPD) and crack type identification (CTI) networks, respectively.
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Figure 3. Overall structure of CNN.

3.1.1. Feature Extraction Layer

The feature extraction layer consists of multiple convolutional layers (CONVs) and pooling layers.
The CONVs (in L2 as shown in Figure 3) feature sparse connections between the convolution kernels
and the pixel matrices of the input images, enabling efficient network training that benefits from the
relatively small number of network parameters [38]. Besides, the memory usage for computation can
be reduced due to the weight sharing of the CONVs [39]. Initial weights and bias of the convolution
kernel in L2 were generated randomly. Activation functions (L3) were used to introduce nonlinear
characteristics into the network [40]. Examples of nonlinear functions are shown in Figure 4. As can be
seen, the sigmoid function ranging between 0 and 1 shows a small gradient that can result in a slow
convergence speed and the problem of the gradient vanishing during CNN training. The hyperbolic
tangent (tanh) ranging between -1 and 1 shows a larger gradient than that of the sigmoid and thus is
easier for optimization. The rectified linear units (ReLU), in the simple mathematical form as shown in
Figure 4, has the largest gradient, which can increase the training efficiency and accuracy of CNN [41].
Therefore, ReLU was selected as the activation function in the following study, located after the CONVs
shown as L3 in Figure 3.
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A normalized layer (shown as L4 in Figure 3) is often included in CNN to enhance the generalization
ability of the network, by creating a competitive mechanism for local neuron activity [42]. The present
crack recognition network adopted batch normalization (BN) (the advantage of which was demonstrated
in [43]) as the normalized layer to alleviate the gradient vanishing problem in network training.
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The pooling layer, shown as L5 in Figure 3, was constructed to perform aggregate statistics, based on
the location features of different images, to further reduce data complexity as well as the probability of
overfitting. The MaxPooling method was adopted for crack recognition.

3.1.2. Final Layer

The final layer normally contains multiple fully connected layers (FCs), activation functions and a
softmax layer. Dropout layers may also be included for improvement of accuracy. Dropout reduces
co-dependence between nodes by randomly resetting parts of the weights or outputs of the fully
connected layer to zero during the CNN training process, whereby the problem of overfitting can be
prevented [44]. As can be seen in Figure 3, the Dropout layer is often between FCs in the final layer.

The output of the softmax layer indicates the probability of an object being classified into a category.
The softmax layer is located before the output layer and is usually adopted for multi-classification
problems (i.e., C > 2). The final output of the network requires utilization of a softmax function to
generate the categories of objects with the highest probability. The softmax function is defined as:

Si =
eVi∑C
i eVi

. (1)

where Si is the softmax function; Vi is the ith element in the set V to be classified; C is the total number
of categories. Softmax is often located at the end of final layer and is connected to the output layer,
representing the relative probability of different categories [45].

3.1.3. Training Algorithms

During the training process, forward propagation obtained a loss, as the differences between the
output and the real values, by evaluating which of the CNN parameters were optimized. Specifically,
a stochastic gradient descent was used to minimize the cost function [46] and achieve optimal biases
and weights. The cost function of the ith CNN layer is:

J(i)(θ0,θ1) =
1
2
(hθ(x(i)) − y(i))

2
, (2)

the partial derivative of which is:

∆J(i)(θ0,θ1)

θ j
= (hθ(x(i)) − y(i))x(i)j , (3)

and the parameter updating formula is written as:

θ j := θ j − α
∆J(i)(θ0,θ1)

θ j
. (4)

In Equations (2)–(4), i represents the CNN neuron index; j represents the CNN layer index and α
is the learning rate. Note that each iteration of the gradient descent algorithm is affected by α. θ0 and
θ1 are the weight and bias of the CNN neurons to be updated; hθ(x(i)) is the predicted value of the
CNN output, and y(i) is the true value.

3.2. Construction of the CPD Network

3.2.1. Preparation of Data Sets

The images for crack detection were live pictures of different concrete surfaces, each containing
1024 × 1024 pixels. The full-size images were divided into small sub-regions, defined as regions of
interest (ROIs), with the uniform resolution of 32 × 32. ROIs containing cracks are called crack ROIs



Sensors 2020, 20, 2021 7 of 24

and all the others are called background ROIs, as shown in Figure 5. The training set for the CPD
network included 1500 crack ROIs and 5000 background ROIs, whereas the test set included 542 crack
ROIs and 3680 background ROIs.Sensors 2020, 20, x FOR PEER REVIEW 7 of 25 

 

 

Figure 5. Diagram illustrating the method for preparing datasets for the CPD network, which consists 

of crack and background regions of interest (ROIs). 

3.2.2. Structure of the CPD Network 

Because the CPD network was designed to deal with two-classification problems, a simple 

network structure was preferred to meet the requirement of training efficiency without an overfitting 

problem. Three classical CNN structures for two-dimensional image recognition, Alexnet, Lenet5 and 

CIFAR10 [47], were tested for accuracy of identification of ROIs along with the training process, as 

shown in Figure 6. Table 1 presents the ultimate accuracy and total time of training. From observation 

of Figure 6 and Table 1, Lenet5 shows the lowest recognition accuracy for crack and background 

identification, whereas Alexnet shows the highest accuracy. However, the training of Alexnet is very 

time-consuming because of its complex structure. Therefore, the CIFAR10 network can be considered 

a favorable option for establishing a CPD network, due to its balance of efficiency and accuracy. More 

importantly, with its simple structure, the CIFAR10 network can be easily adjusted based on finely 

tuned parameters to achieve improvement of accuracy. Nevertheless, Alexnet was used to construct 

the CTI network, as will be introduced.  

0 100 200 300 400 500
0

20

40

60

80

100

A
c
c
u

ra
c
y
(%

)

Iteration

 Alexnet

 Cifar10

 Lenet5

 

Figure 6. Accuracy variations during the training process using Alexnet, Lenet5, and CIFAR10, 

respectively. 

 

Figure 5. Diagram illustrating the method for preparing datasets for the CPD network, which consists
of crack and background regions of interest (ROIs).

3.2.2. Structure of the CPD Network

Because the CPD network was designed to deal with two-classification problems, a simple
network structure was preferred to meet the requirement of training efficiency without an overfitting
problem. Three classical CNN structures for two-dimensional image recognition, Alexnet, Lenet5 and
CIFAR10 [47], were tested for accuracy of identification of ROIs along with the training process, as
shown in Figure 6. Table 1 presents the ultimate accuracy and total time of training. From observation
of Figure 6 and Table 1, Lenet5 shows the lowest recognition accuracy for crack and background
identification, whereas Alexnet shows the highest accuracy. However, the training of Alexnet is very
time-consuming because of its complex structure. Therefore, the CIFAR10 network can be considered
a favorable option for establishing a CPD network, due to its balance of efficiency and accuracy. More
importantly, with its simple structure, the CIFAR10 network can be easily adjusted based on finely
tuned parameters to achieve improvement of accuracy. Nevertheless, Alexnet was used to construct
the CTI network, as will be introduced.
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Table 1. Ultimate accuracy and training time of ROI recognition by Alexnet, Lenet5, and CIFAR10,
respectively.

CNN Test accuracy (%) Time

Alexnet 98.6 140 min 7 s
Lenet5 45.2 1 min 25 s

CIFAR10 94.6 8 min 12 s

Three adjusted structures based on CIFAR10, referred to as Cracknet1-1, 1-2 and 1-3, were tested
for comparison. Cracknet1-1 has a feature extraction layer including three CONVs, three pooling
layers, and three ReLU activation functions, without normalization and dropout layers. The learning
rate (i.e., α in Equation (4)) of Cracknet1-1 is marked as LR1 in Figure 7, with the initial value of
0.001, which is multiplied by a scale factor of 0.1 every 8 epochs. Cracknets1-2 and 1-3 are similar to
1-1, except that the former includes a dropout layer, whereas the latter adopts the constant learning
rate of LR2 (=0.001) as shown in Figure 7. The ultimate accuracy of Cracknets1-1, 1-2, and 1-3 were
94.6%, 95.8% and 94.4%, respectively. It can be seen that, with the addition of a dropout layer, the
accuracy of Cracknet1-2 increased about 1% compared with that of Cracknet1-1. On the other hand,
the learning rate variation had little impact on the accuracy of the CPD network. However, CNN is
sometimes difficult to converge, which requires the learning rate to decrease along with the training
epoch to achieve better convergence. Thus, LR1 was the preferred option in this study. Therefore, by
considering the overall performance in both accuracy and learning rate, Cracknet1-2 was selected as
the CPD network, with detailed information as shown in Table 2. Apart from the extraction layer
as already introduced, the final layer consisted of two FCs, one dropout layer, one ReLU activation
function and one softmax layer connected to the output layer. There were 40 epochs, with 96 iterations
per epoch, for the training of the network.
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Table 2. Specific structure of the CPD network (where h, w, and d are height, width, and depth,
respectively; Conv is convolution layer; MX is MaxPooling layer; FC is fully connected layer; D is
dropout layer; S is softmax layer; NOI is number of input; NOO is number of output).

Layer L1 L2 L3 L4 L5 L6 L7 L8

Operator Input Conv ReLU MP Conv ReLU MP Conv
h/w/d 32/32/3 5/5/32 - 3/3/- 5/5/32 - 3/3/- 5/5/64

Stride - 1 - 2 1 - 2 1

L9 L10 Layer L11 L12 L13 L14 L15 L16

ReLU MP Operator FC ReLU D FC S Output
- 3/3/- NOI 576 - - 256 - 2
- 2 NOO 256 - - 2 - 2
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3.3. Crack Position Detection Using Sliding Window

To detect cracks using the CPD network, the image was scanned by a sliding window as shown in
Figure 8. The window size was 32 × 32 which is the same as that of the ROIs. With ROI types (i.e.,
crack or background) and coordinates as the outputs, crack positions were identified in terms of the
coordinates of the crack ROIs.
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Figure 8. Schematic diagram of the procedure of crack position detection using a sliding window.

Figure 9 shows the crack position detection results using the CPD network or the Alexnet classifier.
The sliding step of the window was set at 32 pixels, which means that no overlap exists between
two adjacent windows. It can be seen that the constructed CPD network achieves detection accuracy
similar to that of the Alexnet, despite using a simpler structure.
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The impact of variation of the sliding step on crack recognition accuracy is shown in Figure 10,
where a different set of surface images is used. It can be seen that, with the sliding step of 32 pixels,
the crack recognition results exhibit several discontinuities, losing important information in the main
portions of the cracks. With reduction of the step size to 16 pixels, on the other hand, recognition
accuracy is considerably enhanced. This is because, with reduction of the step size, adjacent windows
begin to overlap to contain some same areas of interest [48], which are repeatedly identified by the
CPD network to increase the possibility of correct crack recognition.
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Figure 10. Crack position detection results subject to (a) 32 and (b) 16 pixels in step size of the
sliding window.

3.4. Construction of the CTI Network

3.4.1. Preparation of Data Sets

Unlike the data sets of the CPD network, consisting of crack and background ROIs, the data
sets of the CTI network consisted directly of full images of the concrete surface. To improve training
efficiency, the resolution of the original images was reduced from 1024 × 1024 to 227 × 227. Five crack
types, transverse cracks, vertical cracks, left oblique cracks, right oblique cracks, and mesh cracks, were
defined, with examples shown in Figure 11. Therefore, the CTI was constructed as a five-classification
network without the assistance of a sliding window. The training and test sets, which were under
moderate noise influence, contained 1500 and 577 images, respectively.
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Figure 11. Five crack types: (a) transverse cracks; (b) vertical cracks; (c) left oblique cracks; (d) right
oblique cracks; (e) mesh cracks.

3.4.2. Structure of CTI Network

Two structures, labeled Cracknet2-1 and Cracknet2-2, were constructed and compared. Cracknet2-1
was based on Lenet5, with the feature extraction layer consisting of two CONVs and two pooling
layers. Cracknet2-2 was based on Alexnet structure, with the learning rate LR1 selected, containing
40 epochs including 13 iterations per epoch during the training of Cracknet2-2, as shown in Figure 7.
The structure of Cracknet2-2 is shown in Table 3. The feature extraction layer includes five CONVs,
three pooling layers, five ReLU activation functions, and two batch normalization layers. The final
layer consists of three FCs, two ReLU activation functions, two dropout layers, and a softmax layer
connected to the output layer. Figure 12 compares the accuracy of Cracknets 2-1 and 2-2 for crack type
identification during the training process. The ultimate accuracy levels of Cracknets 2-1 and 2-2 are
34.2% and 99.3%, respectively. The superiority of Cracknet2-2 can easily be seen.

Table 3. Specific structure of the CTI network (BN is batch normalization layer; the meanings of the
other abbreviations are consistent with those in Table 2).

Layer L1 L2 L3 L4 L5 L6 L7 L8

Operator Input Conv ReLU BN MP Conv ReLU BN
h/w/d 227/227/3 11/11/96 - - 3/3/- 5/5/128 - -

Stride - 4 - - 2 1 - -

L9 L10 L11 L12 L13 L14 L15 L16 Layer

MP Conv ReLU Conv ReLU Conv ReLU MP Operator
3/3/- 3/3/384 - 3/3/192 - 3/3/128 - 3/3/- NOI

2 1 - 1 - 1 - 2 NOO

L17 L18 L19 L20 L21 L22 L23 L24 L25

FC ReLU D FC ReLU D FC S Output
9216 - - 4096 - - 4096 - 5
4096 - - 4096 - - 5 - 5

For comparison, Cracknet2-2 was further tuned to obtain another two structures, Cracknets 2-3
and 2-4, in which 2-3 used a different learning rate and 2-4 deleted the dropout layer. The ultimate
accuracy levels of Cracknets 2-3 and 2-4 were 98.4% and 98.9%, respectively. It can be seen that under
the learning rate of LR1 and the dropout layer, Cracknet2-2 still gave the best results, and was thus
selected as the CTI network.

To examine the effectiveness of crack recognition by the CTI network (i.e., Cracknet 2-2), a confusion
matrix [49] that is often used to evaluate the quality of classifiers was constructed to quantify the
classification result, as shown in Figure 13. The horizontal and vertical elements of the matrix are the
true and predicted values, respectively. The sum of each row represents the actual number of samples
in a given class, whereas the sum of each column represents the number of samples predicted by the
network. According to the matrix, the accuracy of classification can be deemed high, although false
classification does occur in certain cases. That is, 20 (out of 25) cases of mesh crack were correctly
identified, but five cases were wrongly recognized as vertical cracks; 94 (out of 95) cases of right oblique
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cracks were correctly identified, with one case wrongly recognized as a transverse crack. The overall
accuracy of the CTI network was estimated to be 99.3%.
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Figure 13. Confusion matrix constructed based on the crack type identification results based on the
CTI network.

More detailed analysis was conducted to examine the first 25 feature maps of the 2nd and 3rd
convolutional layers in the CTI network, as shown in Figure 14. Based on convolution visualization,
the crack features extracted by convolution kernels can be seen, showing information about edge,
direction, textures, color, etc. Although each type of crack has similar color patterns, the patterns of
crack edges and textures show larger differences, and difference in the direction patterns is significant.
For the given classification problem, prominent crack direction patterns give rise to the high recognition
accuracy of 99.3% using the CTI network.
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Figure 14. Visualization of crack features in the (a) second and (b) third convolutional layer.

4. Concrete Crack Recognition Based on the MLP–CNN Framework

Based on the establishment of the CTI and CPD networks and the sliding window strategy for
crack detection, as introduced in Section 3, the MLP–CNN framework was used in this section, focusing
on processing different types and levels of the influence of image noise.

4.1. Comparison among Feature Extraction Algorithms

The background noise in concrete surface images can exhibit complex and diverse forms that
greatly increase the difficulty of crack recognition. For example, photography of cracked concrete
surface is easily interfered with by factors such as a light spot, or a blur caused by camera shake (where
an extreme case is drone photography of dams, bridges, roads, etc.). Other factors, such as rain erosion,
daily wear, or human interference can lead to largely uneven concrete surfaces or stains. It was shown
in Section 3 that the effectiveness of the CPD and CTI network was satisfactory under relatively low
levels of background noise. However, severe noise results in a large decrease in the crack detection
accuracy of both traditional image feature extraction methods and CNN-based methods.

Figure 15 shows the results of crack feature extraction obtained by different preprocessing
techniques, i.e., the linear enhancement filtering method, the iterative threshold segmentation method,
the bit plane slicing method, and the MLP used in this study. Subject to relatively severe background
noise, the apparent drawbacks of conventional crack extraction algorithms can be seen in the figure,
where it is difficult to effectively differentiate the features of noise from those of the cracks. Moreover,
there are considerable differences between the feature extraction capacities of the different methods.
The results of the MLP, on the other hand, reveal significant crack features by minimizing the noise
interference. More importantly, with its binary nature and high precision, the MLP shows considerable
versatility in treating different noise types and levels and thus can be combined with CNN to detect
cracks under different circumstances.

Comparison results between the MLP-based results and the results of edge detection algorithms
(based on Prewitt, Roberts and Sobel operators, respectively) are shown in Figure 16. It can be observed
that the MLP-treated results are able to reveal much more prominent crack features.
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4.2. Crack Position Detection Subject to Moderate Noise Level

It was found that, with use of the MLP–CNN framework, the accuracy of the CPD network
increased from 96.5% to 99.6%. A straightforward illustration is shown in Figure 17, where the
confusion matrix in Figure 17a shows that the original CPD network results in 114 (out of 542) crack
ROIs that are misclassified as background ROIs, and of the background ROIs, 34 (out of 3680) are
misclassified as crack ROIs. As shown in Figure 17b, with the use of the MLP–CNN, instances of
misclassification are largely reduced, i.e., only 8 (out of 542) crack ROIs and 5 background ROIs
are misclassified.
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To further examine the crack detection accuracy, 5000 background ROIs combined with varied
numbers of crack ROIs (from 300 to 1800) were used in the training set. As shown in Figure 18, the test
accuracy of both the original CPD and the MLP–CNN tends to be stable after the number of crack
ROIs exceeds 1500. It is notable that the accuracy enhancement with use of the MLP–CNN is especially
significant under relatively small amounts of training data.Sensors 2020, 20, x FOR PEER REVIEW 16 of 25 
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Figure 19 shows the CPD results using a sliding window with the sliding step of 16 pixels.
The results of the original CPD show large discontinuities along the main portion of the crack, whereas
the MLP–CNN has an obviously superior accuracy of detection, by which all cracks are identified
precisely, as shown in Figure 19b.
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Figure 19. Crack position detection(CPD) effect based on (a) the original CPD and (b) MLP–CNN,
under moderate level of noise influence.

4.3. Crack Type Identification Subject to Moderate Noise Level

The accuracy of the CTI network changed from 99.3% to 98.8% with use of the MLP–CNN
framework under moderate noise. Although there was a slight accuracy decrease of 0.6% after using
MLP–CNN, additional analysis showed that the difference in accuracy before and after the MLP
treatment was negligible.

The variation of accuracy in crack type identification along with the increase of the size of the
training set is shown in Figure 20. The abscissa represents the number of images (from 300 to 1800,
with the increment of 300) in the training set that includes the five crack types. The ordinate shows the
testing accuracy of crack type classification using the original CTI and the MLP–CNN, respectively.
It can be seen that the overall accuracy of crack type identification using the original CTI and the
MLP–CNN, respectively, under different sizes of training sets, is comparable. Moreover, the accuracy
tends to remain stable along with the increase in size of the training set. To conclude, no obvious
improvement of detection accuracy was obtained using MLP–CNN under a relatively low level of noise
influence. Improvement in detection accuracy is expected to be achieved under higher noise levels.
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4.4. Crack Position Detection Subject to Severe Noise Influence

Severe noise influence subject to different sources, including light spots, blurs, and surface
anomalies (e.g., uneven surface, low color contract, stains) is considered in this section, treated by the
original CPD and the MLP–CNN framework.

4.4.1. Light Spots

Light spots were simulated by first setting the center of the light source, i.e., (x0, y0). With w and h
defined as the width and height of an image, x0 and y0 were set at w/3 and h/2, respectively. Thus,
images including light spots were generated in accordance with:

∆(x, y) = k× (1−

√
(x− x0)

2 + (y− y0)
2

r
), (5)

L(x, y) = l(x, y) + ∆(x, y). (6)

where k is a parameter relating to the brightness of the light spot, which is equal to 0.4; r is the radius
of the light source; ∆(x, y) is a matrix of the same size as the input image, representing the increase in
the pixel values of the image. Adding it to the matrix of the original image l(x, y) gives L(x, y) after the
lighting simulation.

The closer pixel points were to the light source, the greater was their brightness value. 80 images
after light spot treatment were randomly selected to form the test set. The crack position detection
results obtained using the original CPD and the MLP–CNN are shown in Figure 21. It is seen that
the original CPD fails to identify some main portions of the crack, which, interestingly, are located
close to the light source. In contrast, the MLP–CNN shows significant resistance to light spot influence,
leading to accurate identification results.
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Figure 21. The (a) original crack images, and the results of crack position detection (CPD) based on (b)
the original CPD and (c) the MLP–CNN, under the influence of light spots.

4.4.2. Blurs

Motion blurs were used to simulate camera movement caused by environmental or human factors.
The motion displacement was set to 20 pixels with motion angle of 15◦. After the simulation of motion
blur, 80 crack images were selected to form a blurred test set. The crack position detection results,
under the blur noise, based on the original CPD and the MLP–CNN are shown in Figure 22. As is
evident, the blurring of image results in poor crack recognition with use of the original CPD, causing
serious discontinuity and even failure in crack identification, as seen from Figure 22b. Fortunately,
the MLP–CNN largely increases the identification accuracy under the blurring conditions, so that all
details of crack information are well maintained.
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Figure 22. (a) Original crack images, and the results of crack position detection (CPD) based on (b) the
original CPD and (c) the MLP–CNN, under the influence of blurs.

4.4.3. Surface Anomalies

120 images subject to noise due to background surface anomalies in terms of wear, stains, etc.,
were selected to form the test set of surface anomalies. The detection results for uneven concrete
surfaces are shown in Figure 23. It can be seen that the overall detection accuracy of the original CPD
is satisfactory, but false alarms still exist in the intact region, as shown in Figure 23a. The false alarms
can be effectively prevented with the use of MLP–CNN as shown in Figure 23b. Figure 24 shows
the detection results subject to low contrast in color between crack and background, defined here as
another type of surface anomaly. With the original CPD, several background ROIs were misclassified as
crack ROIs, and some main portions of cracks were missed. In contrast, using MLP–CNN, the majority
of crack information was well manifested, containing few misclassifications and rich crack information.
Figure 25 shows the detection results with regard to surface stains, in which it can be seen that the
stains further raise the issue of misclassification, with most stain areas in the background identified as
cracks with use of the original CPD. Such issues are largely prevented with use of the MLP–CNN.Sensors 2020, 20, x FOR PEER REVIEW 20 of 25 
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Figure 23. Results of crack position detection (CPD) based on (a) the original CPD and (b) the
MLP–CNN, with uneven concrete surfaces.
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Figure 24. Results of crack position detection (CPD) based on (a) the original CPD and (b) the
MLP–CNN, with low color contract between crack and background.

Sensors 2020, 20, x FOR PEER REVIEW 21 of 25 

 

Figure 24. Results of crack position detection (CPD) based on (a) the original CPD and (b) the MLP–

CNN, with low color contract between crack and background. 

 

(a) 

 

(b) 

Figure 25. Results of crack position detection (CPD) based on (a) the original CPD and (b) the MLP–

CNN, with stains in the background. 

4.5. Crack Type Identification Subject to Severe Noise Influence 

Table 4 shows four test sets used by the CTI network, each representing a specific type of noise, 

where moderate noise refers to noise influence as discussed in Sections 4.2 and 4.3. 

Table 4. Four test sets types and the number of pictures contained. 

Test set Moderate noise Light spot Blur Surface anomaly 

Size of each set 577 80 80 120 

Table 5 presents the accuracy of the original CTI network and the MLP–CNN in crack type 

identification subject to different types and levels of noise influence. Apart from the observation 

under moderate noise influence, where the accuracy of the original CTI and the MLP–CNN is 

comparable, a clear difference in identification accuracy between the original CTI and the MLP–CNN 

can be seen under severe noise influence. Specifically, MLP–CNN improves the accuracy by 2.8% 

under light spot influence, 5.4% under blur influence, and 4.7% under surface anomaly influence. In 

summary, the stronger recognition accuracy of the MLP–CNN than that obtained using the CNN 

without the implementation of the MLP is demonstrated, particularly under the influence of severe 

noise. 

 

Table 5. Accuracy of crack type identification under different noise types and levels. 

Noise condition Accuracy of CTI network（%） Accuracy of MLP–CNN（%） 

Figure 25. Results of crack position detection (CPD) based on (a) the original CPD and (b) the
MLP–CNN, with stains in the background.

4.5. Crack Type Identification Subject to Severe Noise Influence

Table 4 shows four test sets used by the CTI network, each representing a specific type of noise,
where moderate noise refers to noise influence as discussed in Sections 4.2 and 4.3.
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Table 4. Four test sets types and the number of pictures contained.

Test Set Moderate Noise Light Spot Blur Surface Anomaly

Size of each set 577 80 80 120

Table 5 presents the accuracy of the original CTI network and the MLP–CNN in crack type
identification subject to different types and levels of noise influence. Apart from the observation under
moderate noise influence, where the accuracy of the original CTI and the MLP–CNN is comparable,
a clear difference in identification accuracy between the original CTI and the MLP–CNN can be seen
under severe noise influence. Specifically, MLP–CNN improves the accuracy by 2.8% under light
spot influence, 5.4% under blur influence, and 4.7% under surface anomaly influence. In summary,
the stronger recognition accuracy of the MLP–CNN than that obtained using the CNN without the
implementation of the MLP is demonstrated, particularly under the influence of severe noise.

Table 5. Accuracy of crack type identification under different noise types and levels.

Noise Condition Accuracy of CTI Network (%) Accuracy of MLP–CNN (%)

Moderate noise 99.3 98.7
Light spot 86.5 89.3

Blur 82.6 88.0
Surface anomaly 89.6 94.3

5. Conclusions

In recognition of the influence of severe noise included in concrete surface images, which largely
degraded the accuracy of existing methods in crack identification, a MLP–CNN framework was
established in this paper relying on hybrid utilization of CNN and a multi-layered preprocessing
technique, the key elements of which were homomorphic filtering and the Otsu thresholding method.
With a binary nature and prominent crack features, the crack images processed by the MLP enabled
a significant enhancement of accuracy and versatility for concrete crack identification based on
CNN application.

Compared to the original CNN networks, i.e., CPD and CTI, the MLP–CNN framework proved
able to improve crack identification. Specifically, under a moderate noise level, accuracy of CPD was
increased by 3.1% using the MLP–CNN. However, the improvement in CTI could not be observed
clearly. Severe noise influence was then introduced, with sources in terms of light spot, blur, or surface
anomaly. Clear enhancement of crack identification was observed: (a) Subject to the noise influence of
light spot and blur, a significant amount of information of large portions of cracks was misclassified
with use of the original CPD, whereas the MLP–CNN identified the cracks precisely, with the majority
of crack information preserved. For CTI, the MLP–CNN increased recognition accuracy by 2.8% and
5.4% under the influence of light spot and blur, respectively. (b) Subject to noise influence from surface
anomalies, specifically uneven surface, low color contract between crack and background, and stains,
the original CPD encountered problems of missing crack information as well as giving false alarms
for the background region. These two drawbacks were well addressed by applying the MLP–CNN.
For CTI, the MLP–CNN increased the recognition accuracy by 4.7%.

The MLP–CNN framework shows potential applications in accurate identification of surface
cracks in concrete buildings such as bridges and dams. And its efficiency can be maximized in
some future scenarios, for example, rapid capturing of massive concrete surface images using drones.
The robustness and flexibility of the MLP–CNN framework can be further enhanced in future study by
adjusting the CNN types and parameters and enlarging the datasets. More comprehensive information
of cracks, such as depths and more patterns, is aimed to be recognized quantitatively.
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